pypy3.10/pypy.spec

977 lines
34 KiB
RPMSpec
Raw Normal View History

Name: pypy
Version: 1.7
Release: 1%{?dist}
Summary: Python implementation with a Just-In-Time compiler
Group: Development/Languages
# LGPL and another free license we'd need to ask spot about are present in some
# java jars that we're not building with atm (in fact, we're deleting them
# before building). If we restore those we'll have to work out the new
# licensing terms
License: MIT and Python and UCD
URL: http://pypy.org/
BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-root-%(%{__id_u} -n)
# High-level configuration of the build:
# PyPy consists of an implementation of an interpreter (with JIT compilation)
# for the full Python language written in a high-level language, leaving many
# of the implementation details as "pluggable" policies.
#
# The implementation language is then compiled down to .c code, from which we
# obtain a binary.
#
# This allows us to build a near-arbitrary collection of different
# implementations of Python with differing tradeoffs
#
# (As it happens, the implementation language is itself Python, albeit a
# restricted subset "RPython", chosen to making it amenable to being compiled.
# The result implements the full Python language though)
# We could build many different implementations of Python.
# For now, let's focus on the implementation that appears to be receiving the
# most attention upstream: the JIT-enabled build, with all standard
# optimizations
# Building a configuration can take significant time:
# A build of pypy (with jit) on i686 took 77 mins:
# [Timer] Timings:
# [Timer] annotate --- 583.3 s
# [Timer] rtype_lltype --- 760.9 s
# [Timer] pyjitpl_lltype --- 567.3 s
# [Timer] backendopt_lltype --- 375.6 s
# [Timer] stackcheckinsertion_lltype --- 54.1 s
# [Timer] database_c --- 852.2 s
# [Timer] source_c --- 1007.3 s
# [Timer] compile_c --- 419.9 s
# [Timer] ===========================================
# [Timer] Total: --- 4620.5 s
#
# A build of pypy (nojit) on x86_64 took about an hour:
# [Timer] Timings:
# [Timer] annotate --- 537.5 s
# [Timer] rtype_lltype --- 667.3 s
# [Timer] backendopt_lltype --- 385.4 s
# [Timer] stackcheckinsertion_lltype --- 42.5 s
# [Timer] database_c --- 625.3 s
# [Timer] source_c --- 1040.2 s
# [Timer] compile_c --- 273.9 s
# [Timer] ===========================================
# [Timer] Total: --- 3572.0 s
#
#
# A build of pypy-stackless on i686 took about 87 mins:
# [Timer] Timings:
# [Timer] annotate --- 584.2 s
# [Timer] rtype_lltype --- 777.3 s
# [Timer] backendopt_lltype --- 365.9 s
# [Timer] stackcheckinsertion_lltype --- 39.3 s
# [Timer] database_c --- 1089.6 s
# [Timer] source_c --- 1868.6 s
# [Timer] compile_c --- 490.4 s
# [Timer] ===========================================
# [Timer] Total: --- 5215.3 s
# We will build a "pypy" binary.
#
# Unfortunately, the JIT support is only available on some architectures.
#
# pypy-1.4/pypy/jit/backend/detect_cpu.py:getcpuclassname currently supports the
# following options:
# 'i386', 'x86'
# 'x86-without-sse2':
# 'x86_64'
# 'cli'
# 'llvm'
#
# We will only build with JIT support on those architectures, and build without
# it on the other archs. The resulting binary will typically be slower than
# CPython for the latter case.
#
%ifarch %{ix86} x86_64
# FIXME: is there a better way of expressing "intel" here?
%global with_jit 1
%else
%global with_jit 0
%endif
# Should we build a "pypy-stackless" binary?
%global with_stackless 0
# Should we build the emacs JIT-viewing mode?
%if 0%{?rhel} == 5 || 0%{?rhel} == 6
%global with_emacs 0
%else
%global with_emacs 1
%endif
# Easy way to enable/disable verbose logging:
%global verbose_logs 0
# Easy way to turn off the selftests:
%global run_selftests 1
%global pypyprefix %{_libdir}/pypy-%{version}
%global pylibver 2.7
# We refer to this subdir of the source tree in a few places during the build:
%global goal_dir pypy/translator/goal
# Turn off the brp-python-bytecompile postprocessing script
# We manually invoke it later on, using the freshly built pypy binary
%global __os_install_post \
%(echo '%{__os_install_post}' | sed -e 's!/usr/lib[^[:space:]]*/brp-python-bytecompile[[:space:]].*$!!g')
# Source and patches:
Source0: https://bitbucket.org/pypy/pypy/get/release-%{version}.tar.bz2
# Supply various useful RPM macros for building python modules against pypy:
# __pypy, pypy_sitelib, pypy_sitearch
Source2: macros.pypy
# Edit a translator file for linux in order to configure our cflags and dynamic libffi
Patch0: config.patch
# By default, if built at a tty, the translation process renders a Mandelbrot
# set to indicate progress.
# This obscures useful messages, and may waste CPU cycles, so suppress it, and
# merely render dots:
Patch1: pypy-1.2-suppress-mandelbrot-set-during-tty-build.patch
# test_commmands fails on SELinux systems due to a change in the output
# of "ls" (http://bugs.python.org/issue7108)
Patch2: fix-test_commands-expected-ls-output-issue7108.patch
# When locating the pypy standard libraries, look first within
# LIBRARY_INSTALLATION_PATH.
# We convert this from being a non-existant variable into a string literal
# with the value of "pypyprefix" in the "prep" phase below.
#
# We still use the scanning relative to the binary location when invoking a
# pypy binary during the build (e.g. during "check")
#
# Sent upstream (with caveats) as:
# https://codespeak.net/issue/pypy-dev/issue614
Patch3: pypy-1.4.1-add-LIBRARY_INSTALLATION_PATH.patch
# Try to improve the readability of the generated .c code, by adding in the
# RPython source as comments where possible.
# A version of this was sent upstream as:
# http://codespeak.net/pipermail/pypy-dev/2010q4/006532.html
# TODO: get this into the upstream bug tracker, and finish inlining
# support (rhbz#666963)
Patch4: more-readable-c-code.patch
# In my koji builds, /root/bin is in the PATH for some reason
# This leads to test_subprocess.py failing, due to "test_leaking_fds_on_error"
# trying every dir in PATH for "nonexisting_i_hope", which leads to it raising
# OSError: [Errno 13] Permission denied
# when it tries to read /root/bin, rather than raising "No such file"
#
# Work around this by specifying an absolute path for the non-existant
# executable
# Not yet sent upstream
Patch5: pypy-1.6-fix-test-subprocess-with-nonreadable-path-dir.patch
# Build-time requirements:
# pypy's can be rebuilt using itself, rather than with CPython; doing so
# halves the build time.
#
# Turn it off with this boolean, to revert back to rebuilding using CPython
# and avoid a cycle in the build-time dependency graph:
# I'm disabling the self-hosting for now, due to a fatal error seen inside the
# JIT, presumably whilst JIT-compiling something within the translator's
# inliner.
#
# Specifically, building pypy-1.4.1-7.fc15.src.rpm on x86_64 using pypy-1.4.1-5.fc15.x86_64
# http://koji.fedoraproject.org/koji/taskinfo?taskID=2721517
# failed with this RPython traceback:
# ... snip ...
# [rtyper:WARNING] prebuilt instance <pypy.rpython.memory.gctransform.asmgcroot.ShapeDecompressor instance at 0x00000000f0b5bc80> has no attribute 'addr'
# [rtyper] specializing: 179300 / 180508 blocks (99%)
# [rtyper] specializing: 180500 / 180566 blocks (99%)
# [rtyper] -=- specialized 1363 more blocks -=-
# [rtyper] specializing: 180600 / 180777 blocks (99%)
# [rtyper] -=- specialized 211 more blocks -=-
# [backendopt:inlining] phase with threshold factor: 32.4
# [backendopt:inlining] heuristic: pypy.translator.backendopt.inline.inlining_heuristic
# [x86/regalloc] Bogus arg in operation 76 at 0
# RPython traceback:
# File "implement_62.c", line 39979, in send_bridge_to_backend
# File "implement_69.c", line 65301, in Assembler386_assemble_bridge
# File "implement_72.c", line 8078, in RegAlloc_prepare_bridge
# File "implement_40.c", line 53061, in RegAlloc__prepare
# File "implement_44.c", line 14305, in RegAlloc__compute_vars_longevity
# Fatal RPython error: NotImplementedError
#
# This appears to be deep within pypy/jit/backend/x86/regalloc.py which has
# called "not_implemented" to emit this message to stderr, before raising the
# exception:
# [x86/regalloc] Bogus arg in operation 76 at 0
%global use_self_when_building 0
%if 0%{use_self_when_building}
BuildRequires: pypy
%global bootstrap_python_interp pypy
%else
# Python 2.6 or later is needed, so on RHEL5 (2.4) we need to use the alternate
# python26 rpm:
%if 0%{?rhel} == 5
BuildRequires: python26-devel
%global bootstrap_python_interp python26
%else
BuildRequires: python-devel
%global bootstrap_python_interp python
%endif
%endif
# FIXME: I'm seeing errors like this in the logs:
# [translation:WARNING] The module '_rawffi' is disabled
# [translation:WARNING] because importing pypy.rlib.libffi raised ImportError
# [translation:WARNING] 'libffi.a' not found in ['/usr/lib/libffi', '/usr/lib']
# Presumably we need to fix things to support dynamically-linked libffi
BuildRequires: libffi-devel
BuildRequires: zlib-devel
BuildRequires: bzip2-devel
BuildRequires: ncurses-devel
BuildRequires: expat-devel
BuildRequires: openssl-devel
%ifarch %{ix86} x86_64 ppc ppc64 s390x
BuildRequires: valgrind-devel
%endif
%if %{run_selftests}
# Used by the selftests, though not by the build:
BuildRequires: gc-devel
# For use in the selftests, for recording stats:
BuildRequires: time
# For use in the selftests, for imposing a per-test timeout:
BuildRequires: perl
%endif
BuildRequires: /usr/bin/execstack
# For byte-compiling the JIT-viewing mode:
%if %{with_emacs}
BuildRequires: emacs
%endif
# pypy is bundling these so we delete them in %%prep. I don't think they are
# needed unless we build pypy targetted at running on the jvm.
#BuildRequires: jna
#BuildRequires: jasmin # Not yet in Fedora
# Metadata for the core package (the JIT build):
Requires: pypy-libs = %{version}-%{release}
%description
PyPy's implementation of Python, featuring a Just-In-Time compiler on some CPU
architectures, and various optimized implementations of the standard types
(strings, dictionaries, etc)
%if 0%{with_jit}
This build of PyPy has JIT-compilation enabled.
%else
This build of PyPy has JIT-compilation disabled, as it is not supported on this
CPU architecture.
%endif
%package libs
Group: Development/Languages
Summary: Run-time libraries used by PyPy implementations of Python
# We supply an emacs mode for the JIT viewer.
# (This doesn't bring in all of emacs, just the directory structure)
%if %{with_emacs}
Requires: emacs-filesystem >= %{_emacs_version}
%endif
%description libs
Libraries required by the various PyPy implementations of Python.
%package devel
Group: Development/Languages
Summary: Development tools for working with PyPy
%description devel
Header files for building C extension modules against PyPy
Requires: pypy = %{version}-%{release}
%if 0%{with_stackless}
%package stackless
Group: Development/Languages
Summary: Stackless Python interpreter built using PyPy
Requires: pypy-libs = %{version}-%{release}
%description stackless
Build of PyPy with support for micro-threads for massive concurrency
%endif
%if 0%{with_stackless}
%package stackless
Group: Development/Languages
Summary: Stackless Python interpreter built using PyPy
Requires: pypy-libs = %{version}-%{release}
%description stackless
Build of PyPy with support for micro-threads for massive concurrency
%endif
%prep
%setup -q -n pypy-pypy-release-%{version}
%patch0 -p1 -b .configure-fedora
%patch1 -p1 -b .suppress-mandelbrot-set-during-tty-build
pushd lib-python/%{pylibver}
%patch2 -p0
popd
# Look for the pypy libraries within LIBRARY_INSTALLATION_PATH first:
%patch3 -p1
# Fixup LIBRARY_INSTALLATION_PATH to be a string literal containing our value
# for "pypyprefix":
sed -i \
-e 's|LIBRARY_INSTALLATION_PATH|"%{pypyprefix}"|' \
pypy/translator/goal/app_main.py
%patch4 -p1 -b .more-readable-c-code
%patch5 -p1
# Replace /usr/local/bin/python shebangs with /usr/bin/python:
find -name "*.py" -exec \
sed \
-i -e "s|/usr/local/bin/python|/usr/bin/python|" \
"{}" \
\;
find . -name '*.jar' -exec rm \{\} \;
# Remove stray ".svn" directories present within the 1.4.1 tarball
# (reported as https://codespeak.net/issue/pypy-dev/issue612 )
find . -path '*/.svn*' -delete
# Remove DOS batch files:
find -name "*.bat"|xargs rm -f
# The "demo" directory gets auto-installed by virture of being listed in %doc
# Remove shebang lines from demo .py files, and remove executability from them:
for f in demo/bpnn.py ; do
# Detect shebang lines && remove them:
sed -e '/^#!/Q 0' -e 'Q 1' $f \
&& sed -i '1d' $f
chmod a-x $f
done
%build
BuildPyPy() {
ExeName=$1
Options=$2
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "STARTING BUILD OF: $ExeName"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
pushd %{goal_dir}
# The build involves invoking a python script, passing in particular
# arguments, environment variables, etc.
# Some notes on those follow:
# The generated binary embeds copies of the values of all environment
# variables. We need to unset "RPM_BUILD_ROOT" to avoid a fatal error from
# /usr/lib/rpm/check-buildroot
# during the postprocessing of the rpmbuild, complaining about this
# reference to the buildroot
# By default, pypy's autogenerated C code is placed in
# /tmp/usession-N
#
# and it appears that this stops rpm from extracting the source code to the
# debuginfo package
#
# The logic in pypy-1.4/pypy/tool/udir.py indicates that it is generated in:
# $PYPY_USESSION_DIR/usession-$PYPY_USESSION_BASENAME-N
# and so we set PYPY_USESSION_DIR so that this tempdir is within the build
# location, and set $PYPY_USESSION_BASENAME so that the tempdir is unique
# for each invocation of BuildPyPy
# Compilation flags for C code:
# pypy-1.4/pypy/translator/c/genc.py:gen_makefile
# assembles a Makefile within
# THE_UDIR/testing_1/Makefile
# calling out to platform.gen_makefile
# For us, that's
# pypy-1.4/pypy/translator/platform/linux.py: class BaseLinux(BasePosix):
# which by default has:
# CFLAGS = ['-O3', '-pthread', '-fomit-frame-pointer',
# '-Wall', '-Wno-unused']
# plus all substrings from CFLAGS in the environment.
# This is used to generate a value for CFLAGS that's written into the Makefile
# https://bugzilla.redhat.com/show_bug.cgi?id=588941#c18
# The generated Makefile compiles the .c files into assembler (.s), rather
# than direct to .o It then post-processes this assembler to locate
# garbage-collection roots (building .lbl.s and .gcmap files, and a
# "gcmaptable.s"). (The modified .lbl.s files have extra code injected
# within them).
# Unfortunately, the code to do this:
# pypy-1.4/pypy/translator/c/gcc/trackgcroot.py
# doesn't interract well with the results of using our standard build flags.
# For now, filter our CFLAGS of everything that could be conflicting with
# pypy. Need to check these and reenable ones that are okay later.
# Filed as https://bugzilla.redhat.com/show_bug.cgi?id=666966
export CFLAGS=$(echo "$RPM_OPT_FLAGS" | sed -e 's/-Wp,-D_FORTIFY_SOURCE=2//' -e 's/-fexceptions//' -e 's/-fstack-protector//' -e 's/--param=ssp-buffer-size=4//' -e 's/-O2//' -e 's/-fasynchronous-unwind-tables//' -e 's/-march=i686//' -e 's/-mtune=atom//')
# If we're already built the JIT-enabled "pypy", then use it for subsequent
# builds (of other configurations):
if test -x './pypy' ; then
INTERP='./pypy'
else
# First pypy build within this rpm build?
# Fall back to using the bootstrap python interpreter, which might be a
# system copy of pypy from an earlier rpm, or be cpython's /usr/bin/python:
INTERP='%{bootstrap_python_interp}'
fi
# Here's where we actually invoke the build:
time \
RPM_BUILD_ROOT= \
PYPY_USESSION_DIR=$(pwd) \
PYPY_USESSION_BASENAME=$ExeName \
$INTERP translate.py \
%if 0%{verbose_logs}
--translation-verbose \
%endif
--cflags="$CFLAGS" \
--batch \
--output=$ExeName \
$Options
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "FINISHED BUILDING: $ExeName"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
popd
}
BuildPyPy \
pypy \
%if 0%{with_jit}
"-Ojit" \
%else
"-O2" \
%endif
%{nil}
%if 0%{with_stackless}
BuildPyPy \
pypy-stackless \
"--stackless"
%endif
%if %{with_emacs}
%{_emacs_bytecompile} pypy/jit/tool/pypytrace-mode.el
%endif
%install
rm -rf $RPM_BUILD_ROOT
# Install the various executables:
InstallPyPy() {
ExeName=$1
install -m 755 %{goal_dir}/$ExeName %{buildroot}/%{_bindir}
# The generated machine code doesn't need an executable stack, but
# one of the assembler files (gcmaptable.s) doesn't have the necessary
# metadata to inform gcc of that, and thus gcc pessimistically assumes
# that the built binary does need an executable stack.
#
# Reported upstream as: https://codespeak.net/issue/pypy-dev/issue610
#
# I tried various approaches involving fixing the build, but the simplest
# approach is to postprocess the ELF file:
execstack --clear-execstack %{buildroot}/%{_bindir}/$ExeName
}
mkdir -p %{buildroot}/%{_bindir}
InstallPyPy pypy
%if 0%{with_stackless}
InstallPyPy pypy-stackless
%endif
# Install the various support libraries as described at:
# http://codespeak.net/pypy/dist/pypy/doc/getting-started-python.html#installation
# which refers to a "PREFIX" found relative to the location of the binary.
# Given that the pypy binaries will be in /usr/bin, PREFIX can be
# "../share/pypy-1.2" relative to that directory, i.e. /usr/share/pypy-1.2
#
# Running "strace" on a built binary indicates that it searches within
# PREFIX/lib-python/modified-2.5.2
# not
# PREFIX/lib-python/modified.2.5.2
# as given on the above page, i.e. it uses '-' not '.'
mkdir -p %{buildroot}/%{pypyprefix}
cp -a lib-python %{buildroot}/%{pypyprefix}
cp -a lib_pypy %{buildroot}/%{pypyprefix}
# Remove a text file that documents which selftests fail on Win32:
rm %{buildroot}/%{pypyprefix}/lib-python/win32-failures.txt
# Remove shebang lines from .py files that aren't executable, and
# remove executability from .py files that don't have a shebang line:
find \
%{buildroot} \
-name "*.py" \
\( \
\( \! -perm /u+x,g+x,o+x -exec sed -e '/^#!/Q 0' -e 'Q 1' {} \; \
-print -exec sed -i '1d' {} \; \
\) \
-o \
\( \
-perm /u+x,g+x,o+x ! -exec grep -m 1 -q '^#!' {} \; \
-exec chmod a-x {} \; \
\) \
\)
mkdir -p %{buildroot}/%{pypyprefix}/site-packages
# pypy uses .pyc files by default (--objspace-usepycfiles), but has a slightly
# different bytecode format to CPython. It doesn't use .pyo files: the -O flag
# is treated as a "dummy optimization flag for compatibility with C Python"
#
# pypy-1.4/pypy/module/imp/importing.py has this comment:
# XXX picking a magic number is a mess. So far it works because we
# have only two extra opcodes, which bump the magic number by +1 and
# +2 respectively, and CPython leaves a gap of 10 when it increases
# its own magic number. To avoid assigning exactly the same numbers
# as CPython we always add a +2. We'll have to think again when we
# get at the fourth new opcode :-(
#
# * CALL_LIKELY_BUILTIN +1
# * CALL_METHOD +2
#
# In other words:
#
# default_magic -- used by CPython without the -U option
# default_magic + 1 -- used by CPython with the -U option
# default_magic + 2 -- used by PyPy without any extra opcode
# ...
# default_magic + 5 -- used by PyPy with both extra opcodes
#
# pypy-1.4/pypy/interpreter/pycode.py has:
#
# default_magic = (62141+2) | 0x0a0d0000 # this PyPy's magic
# # (62131=CPython 2.5.1)
# giving a value for "default_magic" for PyPy of 0xa0df2bf.
# Note that this corresponds to the "default_magic + 2" from the comment above
# In my builds:
# $ ./pypy --info | grep objspace.opcodes
# objspace.opcodes.CALL_LIKELY_BUILTIN: False
# objspace.opcodes.CALL_METHOD: True
# so I'd expect the magic number to be:
# 0x0a0df2bf + 2 (the flag for CALL_METHOD)
# giving
# 0x0a0df2c1
#
# I'm seeing
# c1 f2 0d 0a
# as the first four bytes of the .pyc files, which is consistent with this.
# Bytecompile all of the .py files we ship, using our pypy binary, giving us
# .pyc files for pypy. The script actually does the work twice (passing in -O
# the second time) but it's simplest to reuse that script.
#
# The script has special-casing for .py files below
# /usr/lib{64}/python[0-9].[0-9]
# but given that we're installing into a different path, the supplied "default"
# implementation gets used instead.
#
# Note that some of the test files deliberately contain syntax errors, so
# we pass 0 for the second argument ("errors_terminate"):
/usr/lib/rpm/brp-python-bytecompile \
%{buildroot}/%{_bindir}/pypy \
0
# Header files for C extension modules.
# Upstream's packaging process (pypy/tool/release/package.py)
# creates an "include" subdir and copies all *.h/*.inl from "include" there
# (it also has an apparently out-of-date comment about copying them from
# pypy/_interfaces, but this directory doesn't seem to exist, and it doesn't
# seem to do this as of 2011-01-13)
# FIXME: arguably these should be instead put into a subdir below /usr/include,
# it's not yet clear to me how upstream plan to deal with the C extension
# interface going forward, so let's just mimic upstream for now.
%global pypy_include_dir %{pypyprefix}/include
mkdir -p %{buildroot}/%{pypy_include_dir}
cp include/*.h %{buildroot}/%{pypy_include_dir}
# Capture the RPython source code files from the build within the debuginfo
# package (rhbz#666975)
%global pypy_debuginfo_dir /usr/src/debug/pypy-%{version}-src
mkdir -p %{buildroot}%{pypy_debuginfo_dir}
# copy over everything:
cp -a pypy %{buildroot}%{pypy_debuginfo_dir}
# ...then delete files that aren't .py files:
find \
%{buildroot}%{pypy_debuginfo_dir} \
\( -type f \
-a \
\! -name "*.py" \
\) \
-delete
# We don't need bytecode for these files; they are being included for reference
# purposes.
# There are some rpmlint warnings from these files:
# non-executable-script
# wrong-script-interpreter
# zero-length
# script-without-shebang
# dangling-symlink
# but given that the objective is to preserve a copy of the source code, those
# are acceptable.
# Install the JIT trace mode for Emacs:
%if %{with_emacs}
mkdir -p %{buildroot}/%{_emacs_sitelispdir}
cp -a pypy/jit/tool/pypytrace-mode.el* %{buildroot}/%{_emacs_sitelispdir}
%endif
# Install macros for rpm:
mkdir -p %{buildroot}/%{_sysconfdir}/rpm
install -m 644 %{SOURCE2} %{buildroot}/%{_sysconfdir}/rpm
%check
topdir=$(pwd)
SkipTest() {
TEST_NAME=$1
sed -i -e"s|^$TEST_NAME$||g" testnames.txt
}
CheckPyPy() {
# We'll be exercising one of the freshly-built binaries using the
# test suite from the standard library (overridden in places by pypy's
# modified version)
ExeName=$1
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "STARTING TEST OF: $ExeName"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
pushd %{goal_dir}
# I'm seeing numerous cases where tests seem to hang, or fail unpredictably
# So we'll run each test in its own process, with a timeout
# Use regrtest to explicitly list all tests:
( ./$ExeName -c \
"from test.regrtest import findtests; print '\n'.join(findtests())"
) > testnames.txt
# Skip some tests:
# "audioop" doesn't exist for pypy yet:
SkipTest test_audioop
# The gdb CPython hooks haven't been ported to cpyext:
SkipTest test_gdb
# hotshot relies heavily on _hotshot, which doesn't exist:
SkipTest test_hotshot
# "strop" module doesn't exist for pypy yet:
SkipTest test_strop
# I'm seeing Koji builds hanging e.g.:
# http://koji.fedoraproject.org/koji/getfile?taskID=3386821&name=build.log
# The only test that seems to have timed out in that log is
# test_multiprocessing, so skip it for now:
SkipTest test_multiprocessing
echo "== Test names =="
cat testnames.txt
echo "================="
echo "" > failed-tests.txt
for TestName in $(cat testnames.txt) ; do
echo "===================" $TestName "===================="
# Use /usr/bin/time (rather than the shell "time" builtin) to gather
# info on the process (time/CPU/memory). This passes on the exit
# status of the underlying command
#
# Use perl's alarm command to impose a timeout
# 900 seconds is 15 minutes per test.
# If a test hangs, that test should get terminated, allowing the build
# to continue.
#
# Invoke pypy on test.regrtest to run the specific test suite
# verbosely
#
# For now, || true, so that any failures don't halt the build:
( /usr/bin/time \
perl -e 'alarm shift @ARGV; exec @ARGV' 900 \
./$ExeName -m test.regrtest -v $TestName ) \
|| (echo $TestName >> failed-tests.txt) \
|| true
done
echo "== Failed tests =="
cat failed-tests.txt
echo "================="
popd
# Doublecheck pypy's own test suite, using the built pypy binary:
# Disabled for now:
# x86_64 shows various failures inside:
# jit/backend/x86/test
# followed by a segfault inside
# jit/backend/x86/test/test_runner.py
#
# i686 shows various failures inside:
# jit/backend/x86/test
# with the x86_64 failure leading to cancellation of the i686 build
# Here's the disabled code:
# pushd pypy
# time translator/goal/$ExeName test_all.py
# popd
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "FINISHED TESTING: $ExeName"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
echo "--------------------------------------------------------------"
}
%if %{run_selftests}
CheckPyPy pypy
%if 0%{with_stackless}
CheckPyPy pypy-stackless
%endif
%endif # run_selftests
%clean
rm -rf $RPM_BUILD_ROOT
%files libs
%defattr(-,root,root,-)
%doc LICENSE README demo
%dir %{pypyprefix}
%dir %{pypyprefix}/lib-python
%{pypyprefix}/lib-python/stdlib-version.txt
%{pypyprefix}/lib-python/%{pylibver}/
%{pypyprefix}/lib-python/modified-%{pylibver}/
%{pypyprefix}/lib-python/conftest.py*
%{pypyprefix}/lib_pypy/
%{pypyprefix}/site-packages/
%if %{with_emacs}
%{_emacs_sitelispdir}/pypytrace-mode.el
%{_emacs_sitelispdir}/pypytrace-mode.elc
%endif
%files
%defattr(-,root,root,-)
%doc LICENSE README
%{_bindir}/pypy
%files devel
%defattr(-,root,root,-)
%dir %{pypy_include_dir}
%{pypy_include_dir}/*.h
%config(noreplace) %{_sysconfdir}/rpm/macros.pypy
%if 0%{with_stackless}
%files stackless
%defattr(-,root,root,-)
%doc LICENSE README
%{_bindir}/pypy-stackless
%endif
%changelog
* Mon Nov 21 2011 David Malcolm <dmalcolm@redhat.com> - 1.7-1
- 1.7: refresh patch 0 (configuration) and patch 4 (readability of generated
code)
* Tue Oct 4 2011 David Malcolm <dmalcolm@redhat.com> - 1.6-7
- skip test_multiprocessing
* Tue Sep 13 2011 David Malcolm <dmalcolm@redhat.com> - 1.6-6
- don't ship the emacs JIT-viewer on el5 and el6 (missing emacs-filesystem;
missing _emacs_bytecompile macro on el5)
* Mon Sep 12 2011 David Malcolm <dmalcolm@redhat.com> - 1.6-5
- build using python26 on el5 (2.4 is too early)
* Thu Aug 25 2011 David Malcolm <dmalcolm@redhat.com> - 1.6-4
- fix SkipTest function to avoid corrupting the name of "test_gdbm"
* Thu Aug 25 2011 David Malcolm <dmalcolm@redhat.com> - 1.6-3
- add rpm macros file to the devel subpackage (source 2)
- skip some tests that can't pass yet
* Sat Aug 20 2011 David Malcolm <dmalcolm@redhat.com> - 1.6-2
- work around test_subprocess failure seen in koji (patch 5)
* Thu Aug 18 2011 David Malcolm <dmalcolm@redhat.com> - 1.6-1
- 1.6
- rewrite the %%check section, introducing per-test timeouts
* Tue Aug 2 2011 David Malcolm <dmalcolm@redhat.com> - 1.5-2
- add pypytrace-mode.el to the pypy-libs subpackage, for viewing JIT trace
logs in emacs
* Mon May 2 2011 David Malcolm <dmalcolm@redhat.com> - 1.5-1
- 1.5
* Wed Apr 20 2011 David Malcolm <dmalcolm@redhat.com> - 1.4.1-10
- build a /usr/bin/pypy (but without the JIT compiler) on architectures that
don't support the JIT, so that they do at least have something that runs
* Tue Feb 08 2011 Fedora Release Engineering <rel-eng@lists.fedoraproject.org> - 1.4.1-9
- Rebuilt for https://fedoraproject.org/wiki/Fedora_15_Mass_Rebuild
* Fri Jan 14 2011 David Malcolm <dmalcolm@redhat.com> - 1.4.1-8
- disable self-hosting for now, due to fatal error seen JIT-compiling the
translator
2011-01-14 16:06:07 +00:00
* Fri Jan 14 2011 David Malcolm <dmalcolm@redhat.com> - 1.4.1-7
- skip test_ioctl for now
* Thu Jan 13 2011 David Malcolm <dmalcolm@redhat.com> - 1.4.1-6
- add a "pypy-devel" subpackage, and install the header files there
- in %%check, re-run failed tests in verbose mode
* Fri Jan 7 2011 Dan Horák <dan[at]danny.cz> - 1.4.1-5
- valgrind available only on selected architectures
* Wed Jan 5 2011 David Malcolm <dmalcolm@redhat.com> - 1.4.1-4
- rebuild pypy using itself, for speed, with a boolean to break this cycle in
the build-requirement graph (falling back to using "python-devel" aka CPython)
- add work-in-progress patch to try to make generated c more readable
(rhbz#666963)
- capture the RPython source code files from the build within the debuginfo
package (rhbz#666975)
* Wed Dec 22 2010 David Malcolm <dmalcolm@redhat.com> - 1.4.1-3
- try to respect the FHS by installing libraries below libdir, rather than
datadir; patch app_main.py to look in this installation location first when
scanning for the pypy library directories.
- clarifications and corrections to the comments in the specfile
* Wed Dec 22 2010 David Malcolm <dmalcolm@redhat.com> - 1.4.1-2
- remove .svn directories
- disable verbose logging
- add a %%check section
- introduce %%goal_dir variable, to avoid repetition
- remove shebang line from demo/bpnn.py, as we're treating this as a
documentation file
- regenerate patch 2 to apply without generating a .orig file
* Tue Dec 21 2010 David Malcolm <dmalcolm@redhat.com> - 1.4.1-1
- 1.4.1; fixup %%setup to reflect change in toplevel directory in upstream
source tarball
- apply SELinux fix to the bundled test_commands.py (patch 2)
* Wed Dec 15 2010 David Malcolm <dmalcolm@redhat.com> - 1.4-4
- rename the jit build and subpackge to just "pypy", and remove the nojit and
sandbox builds, as upstream now seems to be focussing on the JIT build (with
only stackless called out in the getting-started-python docs); disable
stackless for now
- add a verbose_logs specfile boolean; leave it enabled for now (whilst fixing
build issues)
- add more comments, and update others to reflect 1.2 -> 1.4 changes
- re-enable debuginfo within CFLAGS ("-g")
- add the LICENSE and README to all subpackages
- ensure the built binaries don't have the "I need an executable stack" flag
- remove DOS batch files during %%prep (idlelib.bat)
- remove shebang lines from .py files that aren't executable, and remove
executability from .py files that don't have a shebang line (taken from
our python3.spec)
- bytecompile the .py files into .pyc files in pypy's bytecode format
* Sun Nov 28 2010 Toshio Kuratomi <toshio@fedoraproject.org> - 1.4-3
- BuildRequire valgrind-devel
- Install pypy library from the new directory
- Disable building with our CFLAGS for now because they are causing a build failure.
- Include site-packages directory
* Sat Nov 27 2010 Toshio Kuratomi <toshio@fedoraproject.org> - 1.4-2
- Add patch to configure the build to use our CFLAGS and link libffi
dynamically
* Sat Nov 27 2010 Toshio Kuratomi <toshio@fedoraproject.org> - 1.4-1
- Update to 1.4
- Drop patch for py2.6 that's in this build
- Switch to building pypy with itself once pypy is built once as recommended by
upstream
- Remove bundled, prebuilt java libraries
- Fix license tag
- Fix source url
- Version pypy-libs Req
* Tue May 4 2010 David Malcolm <dmalcolm@redhat.com> - 1.2-2
- cherrypick r72073 from upstream SVN in order to fix the build against
python 2.6.5 (patch 2)
* Wed Apr 28 2010 David Malcolm <dmalcolm@redhat.com> - 1.2-1
- initial packaging