ocserv/ocserv.conf

696 lines
29 KiB
Plaintext
Raw Normal View History

### The following directives do not change with server reload.
# User authentication method. To require multiple methods to be
# used for the user to login, add multiple auth directives. The values
# in the 'auth' directive are AND composed (if multiple all must
# succeed).
# Available options: certificate, plain, pam, radius, gssapi.
# Note that authentication methods utilizing passwords cannot be
# combined (e.g., the plain, pam or radius methods).
2015-01-22 10:41:49 +00:00
# certificate:
# This indicates that all connecting users must present a certificate.
# The username and user group will be then extracted from it (see
# cert-user-oid and cert-group-oid). The certificate to be accepted
# it must be signed by the CA certificate as specified in 'ca-cert' and
# it must not be listed in the CRL, as specified by the 'crl' option.
2015-01-22 10:41:49 +00:00
#
# pam[gid-min=1000]:
# This enabled PAM authentication of the user. The gid-min option is used
# by auto-select-group option, in order to select the minimum valid group ID.
2015-01-22 10:41:49 +00:00
#
2015-10-08 11:23:49 +00:00
# plain[passwd=/etc/ocserv/ocpasswd,otp=/etc/ocserv/users.otp]
2015-01-22 10:41:49 +00:00
# The plain option requires specifying a password file which contains
2014-05-02 11:59:37 +00:00
# entries of the following format.
2015-01-22 10:41:49 +00:00
# "username:groupname1,groupname2:encoded-password"
# One entry must be listed per line, and 'ocpasswd' should be used
# to generate password entries. The 'otp' suboption allows one to specify
2015-10-08 11:23:49 +00:00
# an oath password file to be used for one time passwords; the format of
# the file is described in https://github.com/archiecobbs/mod-authn-otp/wiki/UsersFile
2015-01-22 10:41:49 +00:00
#
# radius[config=/etc/radiusclient/radiusclient.conf,groupconfig=true,nas-identifier=name]:
2015-01-22 10:41:49 +00:00
# The radius option requires specifying freeradius-client configuration
# file. If the groupconfig option is set, then config-per-user/group will be overridden,
# and all configuration will be read from radius. That also includes the
# Acct-Interim-Interval, and Session-Timeout values.
#
# See doc/README-radius.md for the supported radius configuration atributes.
#
# gssapi[keytab=/etc/key.tab,require-local-user-map=true,tgt-freshness-time=900]
# The gssapi option allows one to use authentication methods supported by GSSAPI,
# such as Kerberos tickets with ocserv. It should be best used as an alternative
# to PAM (i.e., have pam in auth and gssapi in enable-auth), to allow users with
# tickets and without tickets to login. The default value for require-local-user-map
# is true. The 'tgt-freshness-time' if set, it would require the TGT tickets presented
# to have been issued within the provided number of seconds. That option is used to
# restrict logins even if the KDC provides long time TGT tickets.
2015-01-22 10:41:49 +00:00
auth = "pam"
#auth = "pam[gid-min=1000]"
2015-10-08 11:23:49 +00:00
#auth = "plain[passwd=./sample.passwd,otp=./sample.otp]"
#auth = "certificate"
#auth = "radius[config=/etc/radiusclient/radiusclient.conf,groupconfig=true]"
# Specify alternative authentication methods that are sufficient
# for authentication. That is, if set, any of the methods enabled
# will be sufficient to login, irrespective of the main 'auth' entries.
# When multiple options are present, they are OR composed (any of them
# succeeding allows login).
#enable-auth = "certificate"
#enable-auth = "gssapi"
#enable-auth = "gssapi[keytab=/etc/key.tab,require-local-user-map=true,tgt-freshness-time=900]"
# Accounting methods available:
# radius: can be combined with any authentication method, it provides
# radius accounting to available users (see also stats-report-time).
#
2015-10-08 11:23:49 +00:00
# pam: can be combined with any authentication method, it provides
# a validation of the connecting user's name using PAM. It is
# superfluous to use this method when authentication is already
# PAM.
#
# Only one accounting method can be specified.
#acct = "radius[config=/etc/radiusclient/radiusclient.conf]"
# Use listen-host to limit to specific IPs or to the IPs of a provided
# hostname.
#listen-host = [IP|HOSTNAME]
# When the server has a dynamic DNS address (that may change),
# should set that to true to ask the client to resolve again on
# reconnects.
#listen-host-is-dyndns = true
# Use udp-listen-host to limit udp to specific IPs or to the IPs of a provided
# hostname. if not set, listen-host will be used
#udp-listen-host = [IP|HOSTNAME]
# TCP and UDP port number
tcp-port = 443
udp-port = 443
# Accept connections using a socket file. It accepts HTTP
# connections (i.e., without SSL/TLS unlike its TCP counterpart),
# and uses it as the primary channel. That option cannot be
# combined with certificate authentication.
#listen-clear-file = /var/run/ocserv-conn.socket
# The user the worker processes will be run as. It should be
# unique (no other services run as this user).
run-as-user = ocserv
run-as-group = ocserv
# socket file used for IPC with occtl. You only need to set that,
# if you use more than a single servers.
#occtl-socket-file = /var/run/occtl.socket
# socket file used for server IPC (worker-main), will be appended with .PID
# It must be accessible within the chroot environment (if any), so it is best
# specified relatively to the chroot directory.
socket-file = ocserv.sock
# The default server directory. Does not require any devices present.
chroot-dir = /var/lib/ocserv
# The key and the certificates of the server
# The key may be a file, or any URL supported by GnuTLS (e.g.,
# tpmkey:uuid=xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxx;storage=user
# or pkcs11:object=my-vpn-key;object-type=private)
#
# The server-cert file may contain a single certificate, or
# a sorted certificate chain.
# There may be multiple server-cert and server-key directives,
# but each key should correspond to the preceding certificate.
# The certificate files will be reloaded when changed allowing for in-place
# certificate renewal (they are checked and reloaded periodically;
# a SIGHUP signal to main server will force reload).
server-cert = /etc/pki/ocserv/public/server.crt
server-key = /etc/pki/ocserv/private/server.key
# Diffie-Hellman parameters. Only needed if for old (pre 3.6.0
# versions of GnuTLS for supporting DHE ciphersuites.
# Can be generated using:
# certtool --generate-dh-params --outfile /etc/ocserv/dh.pem
#dh-params = /etc/ocserv/dh.pem
# In case PKCS #11, TPM or encrypted keys are used the PINs should be available
# in files. The srk-pin-file is applicable to TPM keys only, and is the
# storage root key.
#pin-file = /etc/ocserv/pin.txt
#srk-pin-file = /etc/ocserv/srkpin.txt
# The password or PIN needed to unlock the key in server-key file.
# Only needed if the file is encrypted or a PKCS #11 object. This
# is an alternative method to pin-file.
#key-pin = 1234
# The SRK PIN for TPM.
# This is an alternative method to srk-pin-file.
#srk-pin = 1234
# The Certificate Authority that will be used to verify
# client certificates (public keys) if certificate authentication
# is set.
#ca-cert = /etc/ocserv/ca.pem
### All configuration options below this line are reloaded on a SIGHUP.
2016-02-19 10:23:57 +00:00
### The options above, will remain unchanged. Note however, that the
### server-cert, server-key, dh-params and ca-cert options will be reloaded
### if the provided file changes, on server reload. That allows certificate
### rotation, but requires the server key to remain the same for seamless
### operation. If the server key changes on reload, there may be connection
### failures during the reloading time.
2014-05-02 11:59:37 +00:00
2015-01-22 10:41:49 +00:00
# Whether to enable seccomp/Linux namespaces worker isolation. That restricts the number of
2014-12-11 12:34:08 +00:00
# system calls allowed to a worker process, in order to reduce damage from a
# bug in the worker process. It is available on Linux systems at a performance cost.
2015-01-22 10:41:49 +00:00
# The performance cost is roughly 2% overhead at transfer time (tested on a Linux 3.17.8).
2016-02-19 10:23:57 +00:00
# Note however, that process isolation is restricted to the specific libc versions
# the isolation was tested at. If you get random failures on worker processes, try
# disabling that option and report the failures you, along with system and debugging
# information at: https://gitlab.com/ocserv/ocserv/issues
2015-01-22 10:41:49 +00:00
isolate-workers = true
2014-12-11 12:34:08 +00:00
2020-09-21 10:37:59 +00:00
# A banner to be displayed on clients after connection
2013-12-06 13:24:37 +00:00
#banner = "Welcome"
2020-09-21 10:37:59 +00:00
# A banner to be displayed on clients before connection
#pre-login-banner = "Welcome"
2013-12-06 13:24:37 +00:00
# Limit the number of clients. Unset or set to zero for unlimited.
#max-clients = 1024
max-clients = 16
2014-05-02 11:59:37 +00:00
# Limit the number of identical clients (i.e., users connecting
# multiple times). Unset or set to zero for unlimited.
2013-12-06 13:24:37 +00:00
max-same-clients = 2
# When the server receives connections from a proxy, like haproxy
# which supports the proxy protocol, set this to obtain the correct
# client addresses. The proxy protocol would then be expected in
# the TCP or UNIX socket (not the UDP one). Although both v1
# and v2 versions of proxy protocol are supported, the v2 version
# is recommended as it is more efficient in parsing.
#listen-proxy-proto = true
2020-09-21 10:37:59 +00:00
# Rate limit the number of incoming connections to one every X milliseconds
# (X is the provided value), as the secmod backlog grows. This
# makes the server more resilient (and prevents connection failures) on
# multiple concurrent connections. Set to zero for no limit.
rate-limit-ms = 100
2015-01-22 10:41:49 +00:00
# Stats report time. The number of seconds after which each
# worker process will report its usage statistics (number of
# bytes transferred etc). This is useful when accounting like
# radius is in use.
#stats-report-time = 360
2014-12-11 12:34:08 +00:00
# Stats reset time. The period of time statistics kept by main/sec-mod
# processes will be reset. These are the statistics shown by cmd
# 'occtl show stats'. For daily: 86400, weekly: 604800
# This is unrelated to stats-report-time.
server-stats-reset-time = 604800
2013-12-06 13:24:37 +00:00
# Keepalive in seconds
keepalive = 32400
2014-05-02 11:59:37 +00:00
# Dead peer detection in seconds.
2015-01-22 10:41:49 +00:00
# Note that when the client is behind a NAT this value
# needs to be short enough to prevent the NAT disassociating
# his UDP session from the port number. Otherwise the client
# could have his UDP connection stalled, for several minutes.
2014-05-02 11:59:37 +00:00
dpd = 90
2014-02-17 07:27:55 +00:00
2015-01-22 10:41:49 +00:00
# Dead peer detection for mobile clients. That needs to
# be higher to prevent such clients being awaken too
2014-05-02 11:59:37 +00:00
# often by the DPD messages, and save battery.
2015-01-22 10:41:49 +00:00
# The mobile clients are distinguished from the header
# 'X-AnyConnect-Identifier-Platform'.
2015-01-22 10:41:49 +00:00
mobile-dpd = 1800
2013-12-06 13:24:37 +00:00
# If using DTLS, and no UDP traffic is received for this
# many seconds, attempt to send future traffic over the TCP
# connection instead, in an attempt to wake up the client
# in the case that there is a NAT and the UDP translation
# was deleted. If this is unset, do not attempt to use this
# recovery mechanism.
switch-to-tcp-timeout = 25
2013-12-06 13:24:37 +00:00
# MTU discovery (DPD must be enabled)
try-mtu-discovery = false
# If you have a certificate from a CA that provides an OCSP
# service you may provide a fresh OCSP status response within
# the TLS handshake. That will prevent the client from connecting
# independently on the OCSP server.
# You can update this response periodically using:
# ocsptool --ask --load-cert=your_cert --load-issuer=your_ca --outfile response
# Make sure that you replace the following file in an atomic way.
#ocsp-response = /etc/ocserv/ocsp.der
2013-12-06 13:24:37 +00:00
2014-05-02 11:59:37 +00:00
# The object identifier that will be used to read the user ID in the client
# certificate. The object identifier should be part of the certificate's DN
2013-12-06 13:24:37 +00:00
# Useful OIDs are:
# CN = 2.5.4.3, UID = 0.9.2342.19200300.100.1.1, SAN(rfc822name)
cert-user-oid = 0.9.2342.19200300.100.1.1
2013-12-06 13:24:37 +00:00
2014-05-02 11:59:37 +00:00
# The object identifier that will be used to read the user group in the
# client certificate. The object identifier should be part of the certificate's
# DN. If the user may belong to multiple groups, then use multiple such fields
# in the certificate's DN. Useful OIDs are:
2013-12-06 13:24:37 +00:00
# OU (organizational unit) = 2.5.4.11
#cert-group-oid = 2.5.4.11
2014-05-02 11:59:37 +00:00
# The revocation list of the certificates issued by the 'ca-cert' above.
2016-02-19 10:23:57 +00:00
# See the manual to generate an empty CRL initially. The CRL will be reloaded
# periodically when ocserv detects a change in the file. To force a reload use
# SIGHUP.
#crl = /etc/ocserv/crl.pem
2013-12-06 13:24:37 +00:00
2015-01-22 10:41:49 +00:00
# Uncomment this to enable compression negotiation (LZS, LZ4).
#compression = true
# Set the minimum size under which a packet will not be compressed.
# That is to allow low-latency for VoIP packets. The default size
# is 256 bytes. Modify it if the clients typically use compression
# as well of VoIP with codecs that exceed the default value.
#no-compress-limit = 256
# GnuTLS priority string; note that SSL 3.0 is disabled by default
# as there are no openconnect (and possibly anyconnect clients) using
# that protocol. The string below does not enforce perfect forward
# secrecy, in order to be compatible with legacy clients.
#
# Note that the most performant ciphersuites are the moment are the ones
# involving AES-GCM. These are very fast in x86 and x86-64 hardware, and
# in addition require no padding, thus taking full advantage of the MTU.
# For that to be taken advantage of, the openconnect client must be
# used, and the server must be compiled against GnuTLS 3.2.7 or later.
# Use "gnutls-cli --benchmark-tls-ciphers", to see the performance
# difference with AES_128_CBC_SHA1 (the default for anyconnect clients)
# in your system.
# Note that in Fedora gnutls follows crypto policies so insecure options
# are disabled within it.
tls-priorities = "NORMAL:%SERVER_PRECEDENCE"
2013-12-06 13:24:37 +00:00
2016-09-23 08:54:38 +00:00
# That option requires the established DTLS channel to use the same
# cipher as the primary TLS channel. This cannot be combined with
# listen-clear-file since the ciphersuite information is not available
# in that configuration. Note also, that this option implies that
# dtls-legacy option is false; this option cannot be enforced
# in the legacy/compat protocol.
#match-tls-dtls-ciphers = true
2013-12-06 13:24:37 +00:00
# The time (in seconds) that a client is allowed to stay connected prior
# to authentication
2016-02-19 10:23:57 +00:00
auth-timeout = 240
2013-12-06 13:24:37 +00:00
2014-05-02 11:59:37 +00:00
# The time (in seconds) that a client is allowed to stay idle (no traffic)
# before being disconnected. Unset to disable.
#idle-timeout = 1200
# The time (in seconds) that a client is allowed to stay connected
# Unset to disable. When set a client will be disconnected after being
# continuously connected for this amount of time, and its cookies will
# be invalidated (i.e., re-authentication will be required).
#session-timeout = 86400
2014-05-02 11:59:37 +00:00
# The time (in seconds) that a mobile client is allowed to stay idle (no
# traffic) before being disconnected. Unset to disable.
#mobile-idle-timeout = 2400
2013-12-06 13:24:37 +00:00
# The time (in seconds) that a client is not allowed to reconnect after
# a failed authentication attempt.
min-reauth-time = 300
# Banning clients in ocserv works with a point system. IP addresses
# that get a score over that configured number are banned for
# min-reauth-time seconds. By default a wrong password attempt is 10 points,
# a KKDCP POST is 1 point, and a connection is 1 point. Note that
# due to difference processes being involved the count of points
# will not be real-time precise.
#
# Score banning cannot be reliably used when receiving proxied connections
# locally from an HTTP server (i.e., when listen-clear-file is used).
#
# Set to zero to disable.
max-ban-score = 80
# The time (in seconds) that all score kept for a client is reset.
ban-reset-time = 1200
# In case you'd like to change the default points.
#ban-points-wrong-password = 10
#ban-points-connection = 1
#ban-points-kkdcp = 1
2013-12-06 13:24:37 +00:00
2014-06-02 07:10:26 +00:00
# Cookie timeout (in seconds)
2014-12-11 12:34:08 +00:00
# Once a client is authenticated he's provided a cookie with
# which he can reconnect. That cookie will be invalidated if not
# used within this timeout value. This cookie remains valid, during
# the user's connected time, and after user disconnection it
# remains active for this amount of time. That setting should allow a
# reasonable amount of time for roaming between different networks.
2014-12-11 12:34:08 +00:00
cookie-timeout = 300
# If this is enabled (not recommended) the cookies will stay
# valid even after a user manually disconnects, and until they
# expire. This may improve roaming with some broken clients.
#persistent-cookies = true
2014-12-11 12:34:08 +00:00
# Whether roaming is allowed, i.e., if true a cookie is
# restricted to a single IP address and cannot be re-used
# from a different IP.
deny-roaming = false
2014-05-02 11:59:37 +00:00
# ReKey time (in seconds)
# ocserv will ask the client to refresh keys periodically once
# this amount of seconds is elapsed. Set to zero to disable (note
# that, some clients fail if rekey is disabled).
2014-05-02 11:59:37 +00:00
rekey-time = 172800
# ReKey method
# Valid options: ssl, new-tunnel
# ssl: Will perform an efficient rehandshake on the channel allowing
# a seamless connection during rekey.
# new-tunnel: Will instruct the client to discard and re-establish the channel.
# Use this option only if the connecting clients have issues with the ssl
# option.
rekey-method = ssl
2013-12-06 13:24:37 +00:00
2015-01-22 10:41:49 +00:00
# Script to call when a client connects and obtains an IP.
# The following parameters are passed on the environment.
# REASON, VHOST, USERNAME, GROUPNAME, DEVICE, IP_REAL (the real IP of the client),
# IP_REAL_LOCAL (the local interface IP the client connected), IP_LOCAL
# (the local IP in the P-t-P connection), IP_REMOTE (the VPN IP of the client),
2015-01-22 10:41:49 +00:00
# IPV6_LOCAL (the IPv6 local address if there are both IPv4 and IPv6
2016-02-19 10:23:57 +00:00
# assigned), IPV6_REMOTE (the IPv6 remote address), IPV6_PREFIX, and
2014-05-02 11:59:37 +00:00
# ID (a unique numeric ID); REASON may be "connect" or "disconnect".
2016-02-19 10:23:57 +00:00
# In addition the following variables OCSERV_ROUTES (the applied routes for this
# client), OCSERV_NO_ROUTES, OCSERV_DNS (the DNS servers for this client),
# will contain a space separated list of routes or DNS servers. A version
# of these variables with the 4 or 6 suffix will contain only the IPv4 or
# IPv6 values. The connect script must return zero as exit code, or the
# client connection will be refused.
2015-01-22 10:41:49 +00:00
# The disconnect script will receive the additional values: STATS_BYTES_IN,
# STATS_BYTES_OUT, STATS_DURATION that contain a 64-bit counter of the bytes
# output from the tun device, and the duration of the session in seconds.
2014-12-11 12:40:49 +00:00
#connect-script = /usr/bin/ocserv-script
#disconnect-script = /usr/bin/ocserv-script
2013-12-06 13:24:37 +00:00
2014-05-02 11:59:37 +00:00
# UTMP
2015-01-22 10:41:49 +00:00
# Register the connected clients to utmp. This will allow viewing
# the connected clients using the command 'who'.
#use-utmp = true
2014-05-02 11:59:37 +00:00
2014-05-26 11:06:37 +00:00
# Whether to enable support for the occtl tool (i.e., either through D-BUS,
# or via a unix socket).
use-occtl = true
# PID file. It can be overridden in the command line.
pid-file = /var/run/ocserv.pid
2013-12-06 13:24:37 +00:00
2013-12-16 09:32:18 +00:00
# Set the protocol-defined priority (SO_PRIORITY) for packets to
# be sent. That is a number from 0 to 6 with 0 being the lowest
# priority. Alternatively this can be used to set the IP Type-
# Of-Service, by setting it to a hexadecimal number (e.g., 0x20).
# This can be set per user/group or globally.
#net-priority = 3
# Set the VPN worker process into a specific cgroup. This is Linux
# specific and can be set per user/group or globally.
#cgroup = "cpuset,cpu:test"
2014-05-02 11:59:37 +00:00
#
2013-12-06 13:24:37 +00:00
# Network settings
2014-05-02 11:59:37 +00:00
#
2013-12-06 13:24:37 +00:00
2015-01-22 10:41:49 +00:00
# The name to use for the tun device
2013-12-06 13:24:37 +00:00
device = vpns
2014-05-26 11:06:37 +00:00
# Whether the generated IPs will be predictable, i.e., IP stays the
# same for the same user when possible.
predictable-ips = true
2013-12-06 13:24:37 +00:00
# The default domain to be advertised
2014-05-02 11:59:37 +00:00
default-domain = example.com
2013-12-06 13:24:37 +00:00
2015-02-16 09:45:16 +00:00
# The pool of addresses that leases will be given from. If the leases
# are given via Radius, or via the explicit-ip? per-user config option then
2015-02-16 09:45:16 +00:00
# these network values should contain a network with at least a single
# address that will remain under the full control of ocserv (that is
# to be able to assign the local part of the tun device address).
# Note that, you could use addresses from a subnet of your LAN network if you
# enable [proxy arp in the LAN interface](http://ocserv.gitlab.io/www/recipes-ocserv-pseudo-bridge.html);
# in that case it is recommended to set ping-leases to true.
2015-01-22 10:41:49 +00:00
#ipv4-network = 192.168.1.0
#ipv4-netmask = 255.255.255.0
# An alternative way of specifying the network:
#ipv4-network = 192.168.1.0/24
2014-05-02 11:59:37 +00:00
2015-02-16 09:45:16 +00:00
# The IPv6 subnet that leases will be given from.
#ipv6-network = fda9:4efe:7e3b:03ea::/48
2015-02-16 09:45:16 +00:00
2015-11-30 15:59:06 +00:00
# Specify the size of the network to provide to clients. It is
# generally recommended to provide clients with a /64 network in
# IPv6, but any subnet may be specified. To provide clients only
# with a single IP use the prefix 128.
#ipv6-subnet-prefix = 128
#ipv6-subnet-prefix = 64
2016-02-19 10:23:57 +00:00
# Whether to tunnel all DNS queries via the VPN. This is the default
# when a default route is set.
#tunnel-all-dns = true
2014-05-02 11:59:37 +00:00
# The advertized DNS server. Use multiple lines for
# multiple servers.
# dns = fc00::4be0
2015-01-22 10:41:49 +00:00
#dns = 192.168.1.2
2013-12-06 13:24:37 +00:00
# The NBNS server (if any)
2014-05-02 11:59:37 +00:00
#nbns = 192.168.1.3
# The domains over which the provided DNS should be used. Use
# multiple lines for multiple domains.
#split-dns = example.com
2013-12-06 13:24:37 +00:00
# Prior to leasing any IP from the pool ping it to verify that
# it is not in use by another (unrelated to this server) host.
2015-01-22 10:41:49 +00:00
# Only set to true, if there can be occupied addresses in the
# IP range for leases.
2013-12-06 13:24:37 +00:00
ping-leases = false
# Use this option to set a link MTU value to the incoming
2015-01-22 10:41:49 +00:00
# connections. Unset to use the default MTU of the TUN device.
# Note that the MTU is negotiated using the value set and the
# value sent by the peer.
2015-01-22 10:41:49 +00:00
#mtu = 1420
2013-12-06 13:24:37 +00:00
# Unset to enable bandwidth restrictions (in bytes/sec). The
# setting here is global, but can also be set per user or per group.
2014-05-02 11:59:37 +00:00
#rx-data-per-sec = 40000
#tx-data-per-sec = 40000
2013-12-06 13:24:37 +00:00
# The number of packets (of MTU size) that are available in
# the output buffer. The default is low to improve latency.
# Setting it higher will improve throughput.
2014-05-02 11:59:37 +00:00
#output-buffer = 10
2013-12-06 13:24:37 +00:00
2014-05-02 11:59:37 +00:00
# Routes to be forwarded to the client. If you need the
# client to forward routes to the server, you may use the
# config-per-user/group or even connect and disconnect scripts.
#
# To set the server as the default gateway for the client just
2015-01-22 10:41:49 +00:00
# comment out all routes from the server, or use the special keyword
# 'default'.
#route = 10.10.10.0/255.255.255.0
#route = 192.168.0.0/255.255.0.0
2014-05-02 11:59:37 +00:00
#route = fef4:db8:1000:1001::/64
#route = default
2013-12-06 13:24:37 +00:00
# Subsets of the routes above that will not be routed by
# the server.
no-route = 192.168.5.0/255.255.255.0
# Note the that following two firewalling options currently are available
# in Linux systems with iptables software.
2015-11-30 15:59:06 +00:00
# If set, the script /usr/bin/ocserv-fw will be called to restrict
# the user to its allowed routes and prevent him from accessing
# any other routes. In case of defaultroute, the no-routes are restricted.
# All the routes applied by ocserv can be reverted using /usr/bin/ocserv-fw
# --removeall. This option can be set globally or in the per-user configuration.
#restrict-user-to-routes = true
# This option implies restrict-user-to-routes set to true. If set, the
# script /usr/bin/ocserv-fw will be called to restrict the user to
# access specific ports in the network. This option can be set globally
# or in the per-user configuration.
#restrict-user-to-ports = "tcp(443), tcp(80), udp(443), sctp(99), tcp(583), icmp(), icmpv6()"
# You could also use negation, i.e., block the user from accessing these ports only.
#restrict-user-to-ports = "!(tcp(443), tcp(80))"
2015-11-30 15:59:06 +00:00
# When set to true, all client's iroutes are made visible to all
# connecting clients except for the ones offering them. This option
# only makes sense if config-per-user is set.
#expose-iroutes = true
2015-01-22 10:41:49 +00:00
# Groups that a client is allowed to select from.
# A client may belong in multiple groups, and in certain use-cases
# it is needed to switch between them. For these cases the client can
# select prior to authentication. Add multiple entries for multiple groups.
# The group may be followed by a user-friendly name in brackets.
#select-group = group1
#select-group = group2[My special group]
# The name of the (virtual) group that if selected it would assign the user
# to its default group.
#default-select-group = DEFAULT
# Instead of specifying manually all the allowed groups, you may instruct
# ocserv to scan all available groups and include the full list.
#auto-select-group = true
2013-12-06 13:24:37 +00:00
# Configuration files that will be applied per user connection or
# per group. Each file name on these directories must match the username
# or the groupname.
2014-02-17 07:42:45 +00:00
# The options allowed in the configuration files are dns, nbns,
# ipv?-network, ipv4-netmask, rx/tx-per-sec, iroute, route, no-route,
# explicit-ipv4, explicit-ipv6, net-priority, deny-roaming, no-udp,
# keepalive, dpd, mobile-dpd, max-same-clients, tunnel-all-dns,
# restrict-user-to-routes, user-profile, cgroup, stats-report-time,
# mtu, idle-timeout, mobile-idle-timeout, restrict-user-to-ports,
# split-dns and session-timeout.
2013-12-06 13:24:37 +00:00
#
# Note that the 'iroute' option allows one to add routes on the server
2013-12-06 13:24:37 +00:00
# based on a user or group. The syntax depends on the input accepted
2015-01-22 10:41:49 +00:00
# by the commands route-add-cmd and route-del-cmd (see below). The no-udp
# is a boolean option (e.g., no-udp = true), and will prevent a UDP session
# for that specific user or group. The hostname option will set a
# hostname to override any proposed by the user. Note also, that, any
# routes, no-routes, DNS or NBNS servers present will overwrite the global ones.
2013-12-06 13:24:37 +00:00
#config-per-user = /etc/ocserv/config-per-user/
#config-per-group = /etc/ocserv/config-per-group/
2014-05-26 11:06:37 +00:00
# When config-per-xxx is specified and there is no group or user that
# matches, then utilize the following configuration.
#default-user-config = /etc/ocserv/defaults/user.conf
#default-group-config = /etc/ocserv/defaults/group.conf
2014-12-11 12:34:08 +00:00
# The system command to use to setup a route. %{R} will be replaced with the
# route/mask, %{RI} with the route in CIDR format, and %{D} with the (tun) device.
2013-12-06 13:24:37 +00:00
#
# The following example is from linux systems. %{R} should be something
# like 192.168.2.0/255.255.255.0 and %{RI} 192.168.2.0/24 (the argument of iroute).
2013-12-06 13:24:37 +00:00
#route-add-cmd = "ip route add %{R} dev %{D}"
#route-del-cmd = "ip route delete %{R} dev %{D}"
2014-12-11 12:34:08 +00:00
# This option allows one to forward a proxy. The special keywords '%{U}'
2014-12-11 12:34:08 +00:00
# and '%{G}', if present will be replaced by the username and group name.
#proxy-url = http://example.com/
2015-01-22 10:41:49 +00:00
#proxy-url = http://example.com/%{U}/
2013-12-06 13:24:37 +00:00
# This option allows you to specify a URL location where a client can
# post using MS-KKDCP, and the message will be forwarded to the provided
# KDC server. That is a translation URL between HTTP and Kerberos.
# In MIT kerberos you'll need to add in realms:
# EXAMPLE.COM = {
# kdc = https://ocserv.example.com/KdcProxy
# http_anchors = FILE:/etc/ocserv-ca.pem
# }
# In some distributions the krb5-k5tls plugin of kinit is required.
#
# The following option is available in ocserv, when compiled with GSSAPI support.
#kkdcp = "SERVER-PATH KERBEROS-REALM PROTOCOL@SERVER:PORT"
#kkdcp = "/KdcProxy KERBEROS.REALM udp@127.0.0.1:88"
#kkdcp = "/KdcProxy KERBEROS.REALM tcp@127.0.0.1:88"
#kkdcp = "/KdcProxy KERBEROS.REALM tcp@[::1]:88"
# Client profile xml. This can be used to advertise alternative servers
# to the client. A minimal file can be:
# <?xml version="1.0" encoding="UTF-8"?>
# <AnyConnectProfile xmlns="http://schemas.xmlsoap.org/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://schemas.xmlsoap.org/encoding/ AnyConnectProfile.xsd">
# <ServerList>
# <HostEntry>
# <HostName>VPN Server name</HostName>
# <HostAddress>localhost</HostAddress>
# </HostEntry>
# </ServerList>
# </AnyConnectProfile>
#
# Other fields may be used by some of the CISCO clients.
# This file must be accessible from inside the worker's chroot.
# Note that enabling this option is not recommended as it will allow
# the worker processes to open arbitrary files (when isolate-workers is
# set to true).
#user-profile = profile.xml
2013-12-06 13:24:37 +00:00
#
# The following options are for (experimental) AnyConnect client
# compatibility.
2016-09-23 08:54:38 +00:00
# This option will enable the pre-draft-DTLS version of DTLS, and
# will not require clients to present their certificate on every TLS
# connection. It must be set to true to support legacy CISCO clients
# and openconnect clients < 7.08. When set to true, it implies dtls-legacy = true.
2015-01-22 10:41:49 +00:00
cisco-client-compat = true
# This option allows one to disable the DTLS-PSK negotiation (enabled by default).
2016-09-23 08:54:38 +00:00
# The DTLS-PSK negotiation was introduced in ocserv 0.11.5 to deprecate
# the pre-draft-DTLS negotiation inherited from AnyConnect. It allows the
# DTLS channel to negotiate its ciphers and the DTLS protocol version.
#dtls-psk = false
# This option allows one to disable the legacy DTLS negotiation (enabled by default,
2016-09-23 08:54:38 +00:00
# but that may change in the future).
# The legacy DTLS uses a pre-draft version of the DTLS protocol and was
# from AnyConnect protocol. It has several limitations, that are addressed
# by the dtls-psk protocol supported by openconnect 7.08+.
dtls-legacy = true
2014-05-02 11:59:37 +00:00
#Advanced options
# Option to allow sending arbitrary custom headers to the client after
2015-01-22 10:41:49 +00:00
# authentication and prior to VPN tunnel establishment. You shouldn't
# need to use this option normally; if you do and you think that
# this may help others, please send your settings and reason to
# the openconnect mailing list. The special keywords '%{U}'
# and '%{G}', if present will be replaced by the username and group name.
2014-05-02 11:59:37 +00:00
#custom-header = "X-My-Header: hi there"
2015-01-22 10:41:49 +00:00
## An example virtual host with different authentication methods serviced
## by this server.
#[vhost:www.example.com]
#auth = "certificate"
#ca-cert = /etc/ocserv/ca.pem
# The certificate set here must include a 'dns_name' corresponding to
# the virtual host name.
#server-cert = /etc/pki/ocserv/public/server.crt
#server-key = /etc/pki/ocserv/private/server.key
#ipv4-network = 192.168.2.0
#ipv4-netmask = 255.255.255.0
#cert-user-oid = 0.9.2342.19200300.100.1.1