ntl/ntl-loadtime-cpu.patch
2016-10-20 22:54:40 -06:00

2279 lines
77 KiB
Diff

--- doc/config.txt.orig 2016-10-14 07:53:33.000000000 -0600
+++ doc/config.txt 2016-10-19 19:06:48.837854327 -0600
@@ -300,6 +300,7 @@ NTL_AVOID_BRANCHING=off
NTL_GF2X_NOINLINE=off
NTL_GF2X_ALTCODE=off
NTL_GF2X_ALTCODE1=off
+NTL_LOADTIME_CPU=off
GMP_INCDIR=$(GMP_PREFIX)/include
GMP_LIBDIR=$(GMP_PREFIX)/lib
@@ -597,6 +598,10 @@ NTL_GF2X_ALTCODE1=off
# Yet another alternative implementation for GF2X multiplication.
+NTL_LOADTIME_CPU=off
+
+# switch to check CPU characteristics at load time and use routines
+# optimized for the executing CPU.
########## More GMP Options:
--- include/NTL/config.h.orig 2016-10-14 07:53:33.000000000 -0600
+++ include/NTL/config.h 2016-10-19 19:03:46.635500859 -0600
@@ -475,6 +475,20 @@ using the configure script.
#endif
+#if 0
+#define NTL_LOADTIME_CPU
+
+/*
+ * With this flag enabled, detect advanced CPU features at load time instead
+ * of at compile time. This flag is intended for distributions, so that they
+ * can compile for the lowest common denominator CPU, but still support newer
+ * CPUs.
+ *
+ * This flag is useful only on x86_64 platforms with gcc 4.8 or later.
+ */
+
+#endif
+
--- include/NTL/ctools.h.orig 2016-10-14 07:53:32.000000000 -0600
+++ include/NTL/ctools.h 2016-10-19 19:03:46.636500779 -0600
@@ -447,6 +447,136 @@ char *_ntl_make_aligned(char *p, long al
// and it should also be as big as a cache line
+/* Determine CPU characteristics at runtime */
+#ifdef NTL_LOADTIME_CPU
+#if !defined(__x86_64__)
+#error Runtime CPU support is only available on x86_64.
+#endif
+#ifndef __GNUC__
+#error Runtime CPU support is only available with GCC.
+#endif
+#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 6)
+#error Runtime CPU support is only available with GCC 4.6 or later.
+#endif
+
+#include <cpuid.h>
+#ifndef bit_PCLMUL
+#define bit_PCLMUL (1 << 1)
+#endif
+#ifndef bit_AVX
+#define bit_AVX (1 << 28)
+#endif
+#ifndef bit_FMA
+#define bit_FMA (1 << 12)
+#endif
+#ifndef bit_AVX2
+#define bit_AVX2 (1 << 5)
+#endif
+
+#define BASE_FUNC(type,name) static type name##_base
+#define TARGET_FUNC(arch,suffix,type,name) \
+ static type __attribute__((target (arch))) name##_##suffix
+#define PCLMUL_FUNC(type,name) TARGET_FUNC("pclmul",pclmul,type,name)
+#define AVX_FUNC(type,name) TARGET_FUNC("avx,pclmul",avx,type,name)
+#define FMA_FUNC(type,name) TARGET_FUNC("fma,avx,pclmul",fma,type,name)
+#define AVX2_FUNC(type,name) TARGET_FUNC("avx2,fma,avx,pclmul",avx2,type,name)
+#define PCLMUL_RESOLVER(type,name,params) \
+ extern "C" { \
+ static void __attribute__((optimize ("O0"))) \
+ (*resolve_##name (void))(void) { \
+ if (__builtin_expect(have_pclmul, 0) < 0) { \
+ unsigned int eax, ebx, ecx, edx; \
+ if (__get_cpuid(1, &eax, &ebx, &ecx, &edx)) { \
+ have_pclmul = ((ecx & bit_PCLMUL) != 0); \
+ have_avx = ((ecx & bit_AVX) != 0); \
+ have_fma = ((ecx & bit_FMA) != 0); \
+ } else { \
+ have_pclmul = 0; \
+ have_avx = 0; \
+ have_fma = 0; \
+ } \
+ } \
+ if (have_avx) return (void (*)(void))&name##_avx; \
+ if (have_pclmul) return (void (*)(void))&name##_pclmul; \
+ return (void (*)(void))&name##_base; \
+ } \
+ } \
+ type __attribute__((ifunc ("resolve_" #name))) name params
+#define AVX_RESOLVER(type,name,params) \
+ extern "C" { \
+ static void __attribute__((optimize ("O0"))) \
+ (*resolve_##name (void))(void) { \
+ if (__builtin_expect(have_pclmul, 0) < 0) { \
+ unsigned int eax, ebx, ecx, edx; \
+ if (__get_cpuid(1, &eax, &ebx, &ecx, &edx)) { \
+ have_pclmul = ((ecx & bit_PCLMUL) != 0); \
+ have_avx = ((ecx & bit_AVX) != 0); \
+ have_fma = ((ecx & bit_FMA) != 0); \
+ } else { \
+ have_pclmul = 0; \
+ have_avx = 0; \
+ have_fma = 0; \
+ } \
+ } \
+ return have_avx \
+ ? (void (*)(void))&name##_avx \
+ : (void (*)(void))&name##_base; \
+ } \
+ } \
+ type __attribute__((ifunc ("resolve_" #name))) name params
+#define FMA_RESOLVER(type,name,params) \
+ extern "C" { \
+ static void __attribute__((optimize ("O0"))) \
+ (*resolve_##name (void))(void) { \
+ if (__builtin_expect(have_pclmul, 0) < 0) { \
+ unsigned int eax, ebx, ecx, edx; \
+ if (__get_cpuid(1, &eax, &ebx, &ecx, &edx)) { \
+ have_pclmul = ((ecx & bit_PCLMUL) != 0); \
+ have_avx = ((ecx & bit_AVX) != 0); \
+ have_fma = ((ecx & bit_FMA) != 0); \
+ } else { \
+ have_pclmul = 0; \
+ have_avx = 0; \
+ have_fma = 0; \
+ } \
+ } \
+ return have_fma \
+ ? (void (*)(void))&name##_fma \
+ : (void (*)(void))&name##_avx; \
+ } \
+ } \
+ type __attribute__((ifunc ("resolve_" #name))) name params
+#define AVX2_RESOLVER(type,name,params) \
+ extern "C" { \
+ static void __attribute__((optimize ("O0"))) \
+ (*resolve_##name (void))(void) { \
+ if (__builtin_expect(have_avx2, 0) < 0) { \
+ unsigned int eax, ebx, ecx, edx; \
+ if (__get_cpuid(7, &eax, &ebx, &ecx, &edx)) { \
+ have_avx2 = ((ebx & bit_AVX2) != 0); \
+ } else { \
+ have_avx2 = 0; \
+ } \
+ } \
+ if (__builtin_expect(have_pclmul, 0) < 0) { \
+ unsigned int eax, ebx, ecx, edx; \
+ if (__get_cpuid(1, &eax, &ebx, &ecx, &edx)) { \
+ have_pclmul = ((ecx & bit_PCLMUL) != 0); \
+ have_avx = ((ecx & bit_AVX) != 0); \
+ have_fma = ((ecx & bit_FMA) != 0); \
+ } else { \
+ have_pclmul = 0; \
+ have_avx = 0; \
+ have_fma = 0; \
+ } \
+ } \
+ return have_avx2 \
+ ? (void (*)(void))&name##_avx2 \
+ : (void (*)(void))&name##_fma; \
+ } \
+ } \
+ type __attribute__((ifunc ("resolve_" #name))) name params
+#endif
#ifdef NTL_HAVE_BUILTIN_CLZL
--- include/NTL/def_config.h.orig 2016-10-14 07:53:33.000000000 -0600
+++ include/NTL/def_config.h 2016-10-19 19:03:46.637500698 -0600
@@ -475,6 +475,19 @@ using the configure script.
#endif
+#if 0
+#define NTL_LOADTIME_CPU
+
+/*
+ * With this flag enabled, detect advanced CPU features at load time instead
+ * of at compile time. This flag is intended for distributions, so that they
+ * can compile for the lowest common denominator CPU, but still support newer
+ * CPUs.
+ *
+ * This flag is useful only on x86_64 platforms with gcc 4.8 or later.
+ */
+
+#endif
--- src/cfile.orig 2016-10-14 07:53:32.000000000 -0600
+++ src/cfile 2016-10-19 19:03:46.637500698 -0600
@@ -475,6 +475,20 @@ using the configure script.
#endif
+#if @{NTL_LOADTIME_CPU}
+#define NTL_LOADTIME_CPU
+
+/*
+ * With this flag enabled, detect advanced CPU features at load time instead
+ * of at compile time. This flag is intended for distributions, so that they
+ * can compile for the lowest common denominator CPU, but still support newer
+ * CPUs.
+ *
+ * This flag is useful only on x86_64 platforms with gcc 4.8 or later.
+ */
+
+#endif
+
@{WIZARD_HACK}
--- src/DispSettings.cpp.orig 2016-10-14 07:53:32.000000000 -0600
+++ src/DispSettings.cpp 2016-10-19 19:03:46.637500698 -0600
@@ -164,6 +164,10 @@ cout << "Performance Options:\n";
cout << "NTL_GF2X_NOINLINE\n";
#endif
+#ifdef NTL_LOADTIME_CPU
+ cout << "NTL_LOADTIME_CPU\n";
+#endif
+
cout << "***************************/\n";
cout << "\n\n";
--- src/DoConfig.orig 2016-10-14 07:53:32.000000000 -0600
+++ src/DoConfig 2016-10-19 19:09:03.299035983 -0600
@@ -1,7 +1,7 @@
# This is a perl script, invoked from a shell
# use warnings; # this doesn't work on older versions of perl
-
+use Config;
%MakeFlag = (
@@ -82,6 +82,7 @@
'NTL_GF2X_NOINLINE' => 'off',
'NTL_GF2X_ALTCODE' => 'off',
'NTL_GF2X_ALTCODE1' => 'off',
+'NTL_LOADTIME_CPU' => 'off',
);
@@ -191,6 +192,15 @@ if ($ConfigFlag{'NTL_THREAD_BOOST'} eq '
}
+# special processing: NTL_LOADTIME_CPU on x86/x86_64 only and => NTL_GF2X_NOINLINE
+
+if ($ConfigFlag{'NTL_LOADTIME_CPU'} eq 'on') {
+ if (!$Config{archname} =~ /x86_64/) {
+ die "Error: NTL_LOADTIME_CPU currently only available with x86_64...sorry\n";
+ }
+ $ConfigFlag{'NTL_GF2X_NOINLINE'} = 'on';
+}
+
# some special MakeVal values that are determined by SHARED
--- src/GF2X1.cpp.orig 2016-10-19 19:03:46.640500457 -0600
+++ src/GF2X1.cpp 2016-10-19 19:10:34.740694338 -0600
@@ -19,7 +19,7 @@
// simple scaling factor for some crossover points:
// we use a lower crossover of the underlying multiplication
// is faster
-#if (defined(NTL_GF2X_LIB) || defined(NTL_HAVE_PCLMUL))
+#if (defined(NTL_GF2X_LIB) || defined(NTL_HAVE_PCLMUL) || defined(NTL_LOADTIME_CPU))
#define XOVER_SCALE (1L)
#else
#define XOVER_SCALE (2L)
--- src/GF2X.cpp.orig 2016-10-14 07:53:31.000000000 -0600
+++ src/GF2X.cpp 2016-10-19 19:46:20.799482817 -0600
@@ -28,6 +28,22 @@ pclmul_mul1 (unsigned long *c, unsigned
_mm_storeu_si128((__m128i*)c, _mm_clmulepi64_si128(aa, bb, 0));
}
+#elif defined (NTL_LOADTIME_CPU)
+
+#include <wmmintrin.h>
+
+static int have_pclmul = -1;
+static int have_avx = -1;
+static int have_fma = -1;
+
+#define NTL_INLINE inline
+
+#define pclmul_mul1(c,a,b) do { \
+ __m128i aa = _mm_setr_epi64( _mm_cvtsi64_m64(a), _mm_cvtsi64_m64(0)); \
+ __m128i bb = _mm_setr_epi64( _mm_cvtsi64_m64(b), _mm_cvtsi64_m64(0)); \
+ _mm_storeu_si128((__m128i*)(c), _mm_clmulepi64_si128(aa, bb, 0)); \
+} while (0)
+
#else
@@ -576,6 +592,27 @@ void add(GF2X& x, const GF2X& a, const G
+#ifdef NTL_LOADTIME_CPU
+
+BASE_FUNC(void,mul1)(_ntl_ulong *c, _ntl_ulong a, _ntl_ulong b)
+{
+ NTL_EFF_BB_MUL_CODE0
+}
+
+PCLMUL_FUNC(void,mul1)(_ntl_ulong *c, _ntl_ulong a, _ntl_ulong b)
+{
+ pclmul_mul1(c, a, b);
+}
+
+AVX_FUNC(void,mul1)(_ntl_ulong *c, _ntl_ulong a, _ntl_ulong b)
+{
+ pclmul_mul1(c, a, b);
+}
+
+PCLMUL_RESOLVER(static void,mul1,(_ntl_ulong *c, _ntl_ulong a, _ntl_ulong b));
+
+#else
+
static NTL_INLINE
void mul1(_ntl_ulong *c, _ntl_ulong a, _ntl_ulong b)
{
@@ -588,6 +625,7 @@ NTL_EFF_BB_MUL_CODE0
}
+#endif
#ifdef NTL_GF2X_NOINLINE
@@ -612,6 +650,51 @@ NTL_EFF_BB_MUL_CODE0
#endif
+#ifdef NTL_LOADTIME_CPU
+
+BASE_FUNC(void,Mul1)
+(_ntl_ulong *cp, const _ntl_ulong *bp, long sb, _ntl_ulong a)
+{
+ NTL_EFF_BB_MUL_CODE1
+}
+
+PCLMUL_FUNC(void,Mul1)
+(_ntl_ulong *cp, const _ntl_ulong *bp, long sb, _ntl_ulong a)
+{
+ long i;
+ unsigned long carry, prod[2];
+
+ carry = 0;
+ for (i = 0; i < sb; i++) {
+ pclmul_mul1(prod, bp[i], a);
+ cp[i] = carry ^ prod[0];
+ carry = prod[1];
+ }
+
+ cp[sb] = carry;
+}
+
+AVX_FUNC(void,Mul1)
+(_ntl_ulong *cp, const _ntl_ulong *bp, long sb, _ntl_ulong a)
+{
+ long i;
+ unsigned long carry, prod[2];
+
+ carry = 0;
+ for (i = 0; i < sb; i++) {
+ pclmul_mul1(prod, bp[i], a);
+ cp[i] = carry ^ prod[0];
+ carry = prod[1];
+ }
+
+ cp[sb] = carry;
+}
+
+PCLMUL_RESOLVER(static void,Mul1,
+ (_ntl_ulong *cp, const _ntl_ulong *bp, long sb, _ntl_ulong a));
+
+#else
+
static
void Mul1(_ntl_ulong *cp, const _ntl_ulong *bp, long sb, _ntl_ulong a)
{
@@ -639,6 +722,53 @@ NTL_EFF_BB_MUL_CODE1
}
+#endif
+
+#ifdef NTL_LOADTIME_CPU
+
+BASE_FUNC(void,AddMul1)
+(_ntl_ulong *cp, const _ntl_ulong* bp, long sb, _ntl_ulong a)
+{
+ NTL_EFF_BB_MUL_CODE2
+}
+
+PCLMUL_FUNC(void,AddMul1)
+(_ntl_ulong *cp, const _ntl_ulong* bp, long sb, _ntl_ulong a)
+{
+ long i;
+ unsigned long carry, prod[2];
+
+ carry = 0;
+ for (i = 0; i < sb; i++) {
+ pclmul_mul1(prod, bp[i], a);
+ cp[i] ^= carry ^ prod[0];
+ carry = prod[1];
+ }
+
+ cp[sb] ^= carry;
+}
+
+AVX_FUNC(void,AddMul1)
+(_ntl_ulong *cp, const _ntl_ulong* bp, long sb, _ntl_ulong a)
+{
+ long i;
+ unsigned long carry, prod[2];
+
+ carry = 0;
+ for (i = 0; i < sb; i++) {
+ pclmul_mul1(prod, bp[i], a);
+ cp[i] ^= carry ^ prod[0];
+ carry = prod[1];
+ }
+
+ cp[sb] ^= carry;
+}
+
+PCLMUL_RESOLVER(static void,AddMul1,
+ (_ntl_ulong *cp, const _ntl_ulong* bp, long sb, _ntl_ulong a));
+
+#else
+
static
void AddMul1(_ntl_ulong *cp, const _ntl_ulong* bp, long sb, _ntl_ulong a)
{
@@ -667,6 +797,52 @@ NTL_EFF_BB_MUL_CODE2
}
+#endif
+
+#ifdef NTL_LOADTIME_CPU
+
+BASE_FUNC(void,Mul1_short)
+(_ntl_ulong *cp, const _ntl_ulong *bp, long sb, _ntl_ulong a)
+{
+ NTL_EFF_SHORT_BB_MUL_CODE1
+}
+
+PCLMUL_FUNC(void,Mul1_short)
+(_ntl_ulong *cp, const _ntl_ulong *bp, long sb, _ntl_ulong a)
+{
+ long i;
+ unsigned long carry, prod[2];
+
+ carry = 0;
+ for (i = 0; i < sb; i++) {
+ pclmul_mul1(prod, bp[i], a);
+ cp[i] = carry ^ prod[0];
+ carry = prod[1];
+ }
+
+ cp[sb] = carry;
+}
+
+AVX_FUNC(void,Mul1_short)
+(_ntl_ulong *cp, const _ntl_ulong *bp, long sb, _ntl_ulong a)
+{
+ long i;
+ unsigned long carry, prod[2];
+
+ carry = 0;
+ for (i = 0; i < sb; i++) {
+ pclmul_mul1(prod, bp[i], a);
+ cp[i] = carry ^ prod[0];
+ carry = prod[1];
+ }
+
+ cp[sb] = carry;
+}
+
+PCLMUL_RESOLVER(static void,Mul1_short,
+ (_ntl_ulong *cp, const _ntl_ulong *bp, long sb, _ntl_ulong a));
+
+#else
static
void Mul1_short(_ntl_ulong *cp, const _ntl_ulong *bp, long sb, _ntl_ulong a)
@@ -695,10 +871,31 @@ NTL_EFF_SHORT_BB_MUL_CODE1
}
+#endif
+#ifdef NTL_LOADTIME_CPU
+BASE_FUNC(void,mul_half)(_ntl_ulong *c, _ntl_ulong a, _ntl_ulong b)
+{
+ NTL_EFF_HALF_BB_MUL_CODE0
+}
+
+PCLMUL_FUNC(void,mul_half)(_ntl_ulong *c, _ntl_ulong a, _ntl_ulong b)
+{
+ pclmul_mul1(c, a, b);
+}
+
+AVX_FUNC(void,mul_half)(_ntl_ulong *c, _ntl_ulong a, _ntl_ulong b)
+{
+ pclmul_mul1(c, a, b);
+}
+
+PCLMUL_RESOLVER(static void,mul_half,(_ntl_ulong *c, _ntl_ulong a, _ntl_ulong b));
+
+#else
+
static
void mul_half(_ntl_ulong *c, _ntl_ulong a, _ntl_ulong b)
{
@@ -712,6 +909,7 @@ NTL_EFF_HALF_BB_MUL_CODE0
}
+#endif
// mul2...mul8 hard-code 2x2...8x8 word multiplies.
// I adapted these routines from LiDIA (except mul3, see below).
@@ -1623,6 +1821,77 @@ static const _ntl_ulong sqrtab[256] = {
+#ifdef NTL_LOADTIME_CPU
+
+BASE_FUNC(void,sqr)(GF2X& c, const GF2X& a)
+{
+ long sa = a.xrep.length();
+ if (sa <= 0) {
+ clear(c);
+ return;
+ }
+
+ c.xrep.SetLength(sa << 1);
+ _ntl_ulong *cp = c.xrep.elts();
+ const _ntl_ulong *ap = a.xrep.elts();
+
+ for (long i = sa-1; i >= 0; i--) {
+ _ntl_ulong *c = cp + (i << 1);
+ _ntl_ulong a = ap[i];
+ _ntl_ulong hi, lo;
+
+ NTL_BB_SQR_CODE
+
+ c[0] = lo;
+ c[1] = hi;
+ }
+
+ c.normalize();
+ return;
+}
+
+PCLMUL_FUNC(void,sqr)(GF2X& c, const GF2X& a)
+{
+ long sa = a.xrep.length();
+ if (sa <= 0) {
+ clear(c);
+ return;
+ }
+
+ c.xrep.SetLength(sa << 1);
+ _ntl_ulong *cp = c.xrep.elts();
+ const _ntl_ulong *ap = a.xrep.elts();
+
+ for (long i = sa-1; i >= 0; i--)
+ pclmul_mul1 (cp + (i << 1), ap[i], ap[i]);
+
+ c.normalize();
+ return;
+}
+
+AVX_FUNC(void,sqr)(GF2X& c, const GF2X& a)
+{
+ long sa = a.xrep.length();
+ if (sa <= 0) {
+ clear(c);
+ return;
+ }
+
+ c.xrep.SetLength(sa << 1);
+ _ntl_ulong *cp = c.xrep.elts();
+ const _ntl_ulong *ap = a.xrep.elts();
+
+ for (long i = sa-1; i >= 0; i--)
+ pclmul_mul1 (cp + (i << 1), ap[i], ap[i]);
+
+ c.normalize();
+ return;
+}
+
+PCLMUL_RESOLVER(void,sqr,(GF2X& c, const GF2X& a));
+
+#else
+
static inline
void sqr1(_ntl_ulong *c, _ntl_ulong a)
{
@@ -1663,6 +1932,7 @@ void sqr(GF2X& c, const GF2X& a)
return;
}
+#endif
void LeftShift(GF2X& c, const GF2X& a, long n)
--- src/InitSettings.cpp.orig 2016-10-14 07:53:32.000000000 -0600
+++ src/InitSettings.cpp 2016-10-19 19:03:46.643500216 -0600
@@ -148,6 +148,11 @@ int main()
cout << "NTL_RANGE_CHECK=0\n";
#endif
+#ifdef NTL_LOADTIME_CPU
+ cout << "NTL_LOADTIME_CPU=1\n";
+#else
+ cout << "NTL_LOADTIME_CPU=0\n";
+#endif
// the following are not actual config flags, but help
// in the Wizard logic
--- src/lzz_pX1.cpp.orig 2016-10-14 07:53:32.000000000 -0600
+++ src/lzz_pX1.cpp 2016-10-19 19:03:46.644500136 -0600
@@ -4,6 +4,12 @@
#ifdef NTL_HAVE_AVX
#include <immintrin.h>
+#elif defined(NTL_LOADTIME_CPU)
+#include <immintrin.h>
+
+static int have_pclmul = -1;
+static int have_avx = -1;
+static int have_fma = -1;
#endif
@@ -1076,6 +1082,175 @@ void Comp3Mod(zz_pX& x1, zz_pX& x2, zz_p
+#ifdef NTL_LOADTIME_CPU
+
+BASE_FUNC(void,build)
+(zz_pXAltArgument& altH, const zz_pXArgument& H, const zz_pXModulus& F)
+{
+ altH.orig = &H;
+ altH.mem.kill();
+ altH.row.kill();
+
+ if (H.H.length() < 10 || F.n < 50) { altH.strategy = 0; return; }
+
+ altH.n = F.n;
+ altH.m = H.H.length()-1;
+
+ long p = zz_p::modulus();
+ long n = altH.n;
+ long m = altH.m;
+
+
+ if (cast_unsigned(m) <= (~(0UL))/cast_unsigned(p-1) &&
+ cast_unsigned(m)*cast_unsigned(p-1) <= (~(0UL))/cast_unsigned(p-1)) {
+ altH.strategy = 1;
+ altH.pinv_L = sp_PrepRem(p);
+ }
+ else {
+ altH.strategy = 2;
+ altH.pinv_LL = make_sp_ll_reduce_struct(p);
+ }
+
+
+ if (altH.strategy == 1 || altH.strategy == 2) {
+
+ altH.row.SetLength(n);
+ long **row = altH.row.elts();
+
+ const long AllocAmt = 1L << 18;
+
+ long BlockSize = (AllocAmt + m - 1)/m;
+ long NumBlocks = (n + BlockSize - 1)/BlockSize;
+
+ altH.mem.SetLength(NumBlocks);
+
+ for (long i = 0; i < NumBlocks; i++) {
+ long first = i*BlockSize;
+ long last = min(n, first + BlockSize);
+ altH.mem[i].SetLength((last-first)*m);
+ for (long j = first; j < last; j++) {
+ row[j] = altH.mem[i].elts() + (j-first)*m;
+ }
+ }
+
+ for (long i = 0; i < m; i++) {
+ const zz_p* ptr = H.H[i].rep.elts();
+ long len = H.H[i].rep.length();
+ for (long j = 0; j < len; j++)
+ row[j][i] = rep(ptr[j]);
+ for (long j = len; j < n; j++)
+ row[j][i] = 0;
+ }
+ }
+}
+
+AVX_FUNC(void,build)
+(zz_pXAltArgument& altH, const zz_pXArgument& H, const zz_pXModulus& F)
+{
+ altH.orig = &H;
+ altH.mem.kill();
+ altH.row.kill();
+ altH.dmem.kill();
+ altH.drow.kill();
+
+ if (H.H.length() < 10 || F.n < 50) { altH.strategy = 0; return; }
+
+ altH.n = F.n;
+ altH.m = H.H.length()-1;
+
+ long p = zz_p::modulus();
+ long n = altH.n;
+ long m = altH.m;
+
+ if (n >= 128 && m <= ((1L << NTL_DOUBLE_PRECISION)-1)/(p-1) &&
+ m*(p-1) <= ((1L << NTL_DOUBLE_PRECISION)-1)/(p-1)) {
+ altH.strategy = 3;
+ altH.pinv_L = sp_PrepRem(p);
+ }
+ else if (cast_unsigned(m) <= (~(0UL))/cast_unsigned(p-1) &&
+ cast_unsigned(m)*cast_unsigned(p-1) <= (~(0UL))/cast_unsigned(p-1)) {
+ altH.strategy = 1;
+ altH.pinv_L = sp_PrepRem(p);
+ }
+ else {
+ altH.strategy = 2;
+ altH.pinv_LL = make_sp_ll_reduce_struct(p);
+ }
+
+
+ if (altH.strategy == 1 || altH.strategy == 2) {
+
+ altH.row.SetLength(n);
+ long **row = altH.row.elts();
+
+ const long AllocAmt = 1L << 18;
+
+ long BlockSize = (AllocAmt + m - 1)/m;
+ long NumBlocks = (n + BlockSize - 1)/BlockSize;
+
+ altH.mem.SetLength(NumBlocks);
+
+ for (long i = 0; i < NumBlocks; i++) {
+ long first = i*BlockSize;
+ long last = min(n, first + BlockSize);
+ altH.mem[i].SetLength((last-first)*m);
+ for (long j = first; j < last; j++) {
+ row[j] = altH.mem[i].elts() + (j-first)*m;
+ }
+ }
+
+ for (long i = 0; i < m; i++) {
+ const zz_p* ptr = H.H[i].rep.elts();
+ long len = H.H[i].rep.length();
+ for (long j = 0; j < len; j++)
+ row[j][i] = rep(ptr[j]);
+ for (long j = len; j < n; j++)
+ row[j][i] = 0;
+ }
+ } else {
+
+ // sanity check
+ if (m >= (1L << (NTL_BITS_PER_LONG-8))) ResourceError("zz_pXAltArgument: overflow");
+
+ long npanels = (n+15)/16;
+ long panel_size = 16*m;
+
+ const long AllocAmt = 1L << 18;
+
+ long BlockSize = (AllocAmt + panel_size - 1)/panel_size;
+ long NumBlocks = (npanels + BlockSize - 1)/BlockSize;
+
+ altH.dmem.SetLength(NumBlocks);
+ altH.drow.SetLength(npanels);
+ double **drow = altH.drow.elts();
+
+ for (long i = 0; i < NumBlocks; i++) {
+ long first = i*BlockSize;
+ long last = min(npanels, first + BlockSize);
+ altH.dmem[i].SetLength((last-first)*panel_size);
+
+ double *ptr = altH.dmem[i].get();
+
+ for (long j = first; j < last; j++)
+ drow[j] = ptr + (j-first)*panel_size;
+ }
+
+ for (long i = 0; i < m; i++) {
+ const zz_p *ptr = H.H[i].rep.elts();
+ long len = H.H[i].rep.length();
+ for (long j = 0; j < len; j++)
+ drow[j/16][(i*16) + (j%16)] = rep(ptr[j]);
+ for (long j = len; j < npanels*16; j++)
+ drow[j/16][(i*16) + (j%16)] = 0;
+ }
+ }
+}
+
+AVX_RESOLVER(void,build,
+ (zz_pXAltArgument& altH, const zz_pXArgument& H, const zz_pXModulus& F));
+
+#else
+
void build(zz_pXAltArgument& altH, const zz_pXArgument& H, const zz_pXModulus& F)
{
altH.orig = &H;
@@ -1194,11 +1369,82 @@ void build(zz_pXAltArgument& altH, const
#endif
}
+#endif
+
#ifdef NTL_HAVE_LL_TYPE
+#ifdef NTL_LOADTIME_CPU
+
+AVX_FUNC(void,mul16rowsD)
+(double *x, const double *a, const double *b, long n)
+{
+ __m256d avec0, avec1, avec2, avec3;
+
+ __m256d acc0 = _mm256_setzero_pd();
+ __m256d acc1 = _mm256_setzero_pd();
+ __m256d acc2 = _mm256_setzero_pd();
+ __m256d acc3 = _mm256_setzero_pd();
+
+ __m256d bvec;
+
+ for (long i = 0; i < n; i++) {
+ bvec = _mm256_broadcast_sd(&b[i]);
+
+ avec0 = _mm256_load_pd(a); a += 4;
+ avec1 = _mm256_load_pd(a); a += 4;
+ avec2 = _mm256_load_pd(a); a += 4;
+ avec3 = _mm256_load_pd(a); a += 4;
+
+ acc0 = _mm256_add_pd(_mm256_mul_pd(avec0, bvec), acc0);
+ acc1 = _mm256_add_pd(_mm256_mul_pd(avec1, bvec), acc1);
+ acc2 = _mm256_add_pd(_mm256_mul_pd(avec2, bvec), acc2);
+ acc3 = _mm256_add_pd(_mm256_mul_pd(avec3, bvec), acc3);
+ }
+
+ _mm256_store_pd(x + 0*4, acc0);
+ _mm256_store_pd(x + 1*4, acc1);
+ _mm256_store_pd(x + 2*4, acc2);
+ _mm256_store_pd(x + 3*4, acc3);
+}
+
+FMA_FUNC(void,mul16rowsD)
+(double *x, const double *a, const double *b, long n)
+{
+ __m256d avec0, avec1, avec2, avec3;
+
+ __m256d acc0 = _mm256_setzero_pd();
+ __m256d acc1 = _mm256_setzero_pd();
+ __m256d acc2 = _mm256_setzero_pd();
+ __m256d acc3 = _mm256_setzero_pd();
+
+ __m256d bvec;
+
+ for (long i = 0; i < n; i++) {
+ bvec = _mm256_broadcast_sd(&b[i]);
+
+ avec0 = _mm256_load_pd(a); a += 4;
+ avec1 = _mm256_load_pd(a); a += 4;
+ avec2 = _mm256_load_pd(a); a += 4;
+ avec3 = _mm256_load_pd(a); a += 4;
+
+ acc0 = _mm256_fmadd_pd(avec0, bvec, acc0);
+ acc1 = _mm256_fmadd_pd(avec1, bvec, acc1);
+ acc2 = _mm256_fmadd_pd(avec2, bvec, acc2);
+ acc3 = _mm256_fmadd_pd(avec3, bvec, acc3);
+ }
+
+ _mm256_store_pd(x + 0*4, acc0);
+ _mm256_store_pd(x + 1*4, acc1);
+ _mm256_store_pd(x + 2*4, acc2);
+ _mm256_store_pd(x + 3*4, acc3);
+}
+
+FMA_RESOLVER(static void,mul16rowsD,
+ (double *x, const double *a, const double *b, long n));
+
+#elif defined(NTL_HAVE_AVX)
-#ifdef NTL_HAVE_AVX
static
void mul16rowsD(double *x, const double *a, const double *b, long n)
{
@@ -1243,6 +1489,114 @@ void mul16rowsD(double *x, const double
_mm256_store_pd(x + 3*4, acc3);
}
+#endif
+
+#ifdef NTL_LOADTIME_CPU
+
+AVX_FUNC(void,mul16rows2D)
+(double *x, double *x_, const double *a, const double *b, const double *b_, long n)
+{
+ __m256d avec0, avec1, avec2, avec3;
+
+ __m256d acc0 = _mm256_setzero_pd();
+ __m256d acc1 = _mm256_setzero_pd();
+ __m256d acc2 = _mm256_setzero_pd();
+ __m256d acc3 = _mm256_setzero_pd();
+
+ __m256d acc0_ = _mm256_setzero_pd();
+ __m256d acc1_ = _mm256_setzero_pd();
+ __m256d acc2_ = _mm256_setzero_pd();
+ __m256d acc3_ = _mm256_setzero_pd();
+
+
+ __m256d bvec;
+ __m256d bvec_;
+
+ for (long i = 0; i < n; i++) {
+ bvec = _mm256_broadcast_sd(&b[i]);
+ bvec_ = _mm256_broadcast_sd(&b_[i]);
+
+ avec0 = _mm256_load_pd(a); a += 4;
+ avec1 = _mm256_load_pd(a); a += 4;
+ avec2 = _mm256_load_pd(a); a += 4;
+ avec3 = _mm256_load_pd(a); a += 4;
+
+ acc0 = _mm256_add_pd(_mm256_mul_pd(avec0, bvec), acc0);
+ acc1 = _mm256_add_pd(_mm256_mul_pd(avec1, bvec), acc1);
+ acc2 = _mm256_add_pd(_mm256_mul_pd(avec2, bvec), acc2);
+ acc3 = _mm256_add_pd(_mm256_mul_pd(avec3, bvec), acc3);
+
+ acc0_ = _mm256_add_pd(_mm256_mul_pd(avec0, bvec_), acc0_);
+ acc1_ = _mm256_add_pd(_mm256_mul_pd(avec1, bvec_), acc1_);
+ acc2_ = _mm256_add_pd(_mm256_mul_pd(avec2, bvec_), acc2_);
+ acc3_ = _mm256_add_pd(_mm256_mul_pd(avec3, bvec_), acc3_);
+ }
+
+ _mm256_store_pd(x + 0*4, acc0);
+ _mm256_store_pd(x + 1*4, acc1);
+ _mm256_store_pd(x + 2*4, acc2);
+ _mm256_store_pd(x + 3*4, acc3);
+
+ _mm256_store_pd(x_ + 0*4, acc0_);
+ _mm256_store_pd(x_ + 1*4, acc1_);
+ _mm256_store_pd(x_ + 2*4, acc2_);
+ _mm256_store_pd(x_ + 3*4, acc3_);
+}
+
+FMA_FUNC(void,mul16rows2D)
+(double *x, double *x_, const double *a, const double *b, const double *b_, long n)
+{
+ __m256d avec0, avec1, avec2, avec3;
+
+ __m256d acc0 = _mm256_setzero_pd();
+ __m256d acc1 = _mm256_setzero_pd();
+ __m256d acc2 = _mm256_setzero_pd();
+ __m256d acc3 = _mm256_setzero_pd();
+
+ __m256d acc0_ = _mm256_setzero_pd();
+ __m256d acc1_ = _mm256_setzero_pd();
+ __m256d acc2_ = _mm256_setzero_pd();
+ __m256d acc3_ = _mm256_setzero_pd();
+
+
+ __m256d bvec;
+ __m256d bvec_;
+
+ for (long i = 0; i < n; i++) {
+ bvec = _mm256_broadcast_sd(&b[i]);
+ bvec_ = _mm256_broadcast_sd(&b_[i]);
+
+ avec0 = _mm256_load_pd(a); a += 4;
+ avec1 = _mm256_load_pd(a); a += 4;
+ avec2 = _mm256_load_pd(a); a += 4;
+ avec3 = _mm256_load_pd(a); a += 4;
+
+ acc0 = _mm256_fmadd_pd(avec0, bvec, acc0);
+ acc1 = _mm256_fmadd_pd(avec1, bvec, acc1);
+ acc2 = _mm256_fmadd_pd(avec2, bvec, acc2);
+ acc3 = _mm256_fmadd_pd(avec3, bvec, acc3);
+
+ acc0_ = _mm256_fmadd_pd(avec0, bvec_, acc0_);
+ acc1_ = _mm256_fmadd_pd(avec1, bvec_, acc1_);
+ acc2_ = _mm256_fmadd_pd(avec2, bvec_, acc2_);
+ acc3_ = _mm256_fmadd_pd(avec3, bvec_, acc3_);
+ }
+
+ _mm256_store_pd(x + 0*4, acc0);
+ _mm256_store_pd(x + 1*4, acc1);
+ _mm256_store_pd(x + 2*4, acc2);
+ _mm256_store_pd(x + 3*4, acc3);
+
+ _mm256_store_pd(x_ + 0*4, acc0_);
+ _mm256_store_pd(x_ + 1*4, acc1_);
+ _mm256_store_pd(x_ + 2*4, acc2_);
+ _mm256_store_pd(x_ + 3*4, acc3_);
+}
+
+FMA_RESOLVER(static void,mul16rows2D,
+ (double *x, double *x_, const double *a, const double *b, const double *b_, long n));
+
+#elif defined(NTL_HAVE_AVX)
static
void mul16rows2D(double *x, double *x_, const double *a, const double *b, const double *b_, long n)
{
@@ -1309,6 +1663,7 @@ void mul16rows2D(double *x, double *x_,
_mm256_store_pd(x_ + 3*4, acc3_);
}
+#endif
#endif
@@ -1422,7 +1777,7 @@ void CompMod_L(zz_pX& x, const zz_pX& g,
}
-#ifdef NTL_HAVE_AVX
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
static
void InnerProduct_AVX(zz_pX& x, const Vec<double>& v, long low, long high,
@@ -1534,7 +1889,6 @@ void CompMod_AVX(zz_pX& x, const zz_pX&
x = t;
}
-#endif
@@ -1570,6 +1924,14 @@ void CompMod(zz_pX& x, const zz_pX& g, c
break;
#endif
+#ifdef NTL_LOADTIME_CPU
+ case 3:
+ if (have_avx) {
+ CompMod_AVX(x, g, A, F);
+ break;
+ }
+ /* FALLTHRU */
+#endif
default:
LogicError("CompMod: bad strategy");
--- src/mat_lzz_p.cpp.orig 2016-10-14 07:53:32.000000000 -0600
+++ src/mat_lzz_p.cpp 2016-10-19 19:03:46.647499895 -0600
@@ -10,6 +10,15 @@
#ifdef NTL_HAVE_AVX
#include <immintrin.h>
+#define AVX_ACTIVE 1
+#elif defined(NTL_LOADTIME_CPU)
+#include <immintrin.h>
+#define AVX_ACTIVE have_avx
+
+static int have_pclmul = -1;
+static int have_avx = -1;
+static int have_fma = -1;
+static int have_avx2 = -1;
#endif
NTL_START_IMPL
@@ -626,7 +635,7 @@ void mul(mat_zz_p& X, const mat_zz_p& A,
#ifdef NTL_HAVE_LL_TYPE
-#ifdef NTL_HAVE_AVX
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
#define MAX_DBL_INT ((1L << NTL_DOUBLE_PRECISION)-1)
// max int representable exactly as a double
@@ -640,19 +649,120 @@ void mul(mat_zz_p& X, const mat_zz_p& A,
// MUL_ADD(a, b, c): a += b*c
+#define FMA_MUL_ADD(a, b, c) a = _mm256_fmadd_pd(b, c, a)
+#define AVX_MUL_ADD(a, b, c) a = _mm256_add_pd(a, _mm256_mul_pd(b, c))
#ifdef NTL_HAVE_FMA
-#define MUL_ADD(a, b, c) a = _mm256_fmadd_pd(b, c, a)
+#define MUL_ADD(a, b, c) FMA_MUL_ADD(a, b, c)
#else
-#define MUL_ADD(a, b, c) a = _mm256_add_pd(a, _mm256_mul_pd(b, c))
+#define MUL_ADD(a, b, c) AVX_MUL_ADD(a, b, c)
#endif
-#if 0
-static
-void muladd1_by_32(double *x, const double *a, const double *b, long n)
+#ifdef NTL_LOADTIME_CPU
+
+AVX_FUNC(void,muladd1_by_32)
+(double *x, const double *a, const double *b, long n)
{
- __m256d avec, bvec;
+ __m256d acc0=_mm256_load_pd(x + 0*4);
+ __m256d acc1=_mm256_load_pd(x + 1*4);
+ __m256d acc2=_mm256_load_pd(x + 2*4);
+ __m256d acc3=_mm256_load_pd(x + 3*4);
+ __m256d acc4=_mm256_load_pd(x + 4*4);
+ __m256d acc5=_mm256_load_pd(x + 5*4);
+ __m256d acc6=_mm256_load_pd(x + 6*4);
+ __m256d acc7=_mm256_load_pd(x + 7*4);
+
+ long i = 0;
+ for (; i <= n-4; i +=4) {
+
+ // the following code sequences are a bit faster than
+ // just doing 4 _mm256_broadcast_sd's
+ // it requires a to point to aligned storage, however
+
+#if 1
+ // this one seems slightly faster
+ __m256d a0101 = _mm256_broadcast_pd((const __m128d*)(a+0));
+ __m256d a2323 = _mm256_broadcast_pd((const __m128d*)(a+2));
+#else
+ __m256d avec = _mm256_load_pd(a);
+ __m256d a0101 = _mm256_permute2f128_pd(avec, avec, 0);
+ __m256d a2323 = _mm256_permute2f128_pd(avec, avec, 0x11);
+
+#endif
+
+ __m256d avec0 = _mm256_permute_pd(a0101, 0);
+ __m256d avec1 = _mm256_permute_pd(a0101, 0xf);
+ __m256d avec2 = _mm256_permute_pd(a2323, 0);
+ __m256d avec3 = _mm256_permute_pd(a2323, 0xf);
+
+ a += 4;
+
+ __m256d bvec;
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc0, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc1, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc2, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc3, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc4, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc5, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc6, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc7, avec0, bvec);
+
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc0, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc1, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc2, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc3, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc4, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc5, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc6, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc7, avec1, bvec);
+
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc0, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc1, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc2, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc3, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc4, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc5, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc6, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc7, avec2, bvec);
+
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc0, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc1, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc2, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc3, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc4, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc5, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc6, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc7, avec3, bvec);
+ }
+
+ for (; i < n; i++) {
+ __m256d avec = _mm256_broadcast_sd(a); a++;
+ __m256d bvec;
+
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc0, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc1, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc2, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc3, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc4, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc5, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc6, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; AVX_MUL_ADD(acc7, avec, bvec);
+ }
+
+
+ _mm256_store_pd(x + 0*4, acc0);
+ _mm256_store_pd(x + 1*4, acc1);
+ _mm256_store_pd(x + 2*4, acc2);
+ _mm256_store_pd(x + 3*4, acc3);
+ _mm256_store_pd(x + 4*4, acc4);
+ _mm256_store_pd(x + 5*4, acc5);
+ _mm256_store_pd(x + 6*4, acc6);
+ _mm256_store_pd(x + 7*4, acc7);
+}
+FMA_FUNC(void,muladd1_by_32)
+(double *x, const double *a, const double *b, long n)
+{
__m256d acc0=_mm256_load_pd(x + 0*4);
__m256d acc1=_mm256_load_pd(x + 1*4);
__m256d acc2=_mm256_load_pd(x + 2*4);
@@ -662,19 +772,82 @@ void muladd1_by_32(double *x, const doub
__m256d acc6=_mm256_load_pd(x + 6*4);
__m256d acc7=_mm256_load_pd(x + 7*4);
+ long i = 0;
+ for (; i <= n-4; i +=4) {
- for (long i = 0; i < n; i++) {
- avec = _mm256_broadcast_sd(a); a++;
+ // the following code sequences are a bit faster than
+ // just doing 4 _mm256_broadcast_sd's
+ // it requires a to point to aligned storage, however
+
+#if 1
+ // this one seems slightly faster
+ __m256d a0101 = _mm256_broadcast_pd((const __m128d*)(a+0));
+ __m256d a2323 = _mm256_broadcast_pd((const __m128d*)(a+2));
+#else
+ __m256d avec = _mm256_load_pd(a);
+ __m256d a0101 = _mm256_permute2f128_pd(avec, avec, 0);
+ __m256d a2323 = _mm256_permute2f128_pd(avec, avec, 0x11);
+#endif
- bvec = _mm256_load_pd(b); b += 4; MUL_ADD(acc0, avec, bvec);
- bvec = _mm256_load_pd(b); b += 4; MUL_ADD(acc1, avec, bvec);
- bvec = _mm256_load_pd(b); b += 4; MUL_ADD(acc2, avec, bvec);
- bvec = _mm256_load_pd(b); b += 4; MUL_ADD(acc3, avec, bvec);
- bvec = _mm256_load_pd(b); b += 4; MUL_ADD(acc4, avec, bvec);
- bvec = _mm256_load_pd(b); b += 4; MUL_ADD(acc5, avec, bvec);
- bvec = _mm256_load_pd(b); b += 4; MUL_ADD(acc6, avec, bvec);
- bvec = _mm256_load_pd(b); b += 4; MUL_ADD(acc7, avec, bvec);
+ __m256d avec0 = _mm256_permute_pd(a0101, 0);
+ __m256d avec1 = _mm256_permute_pd(a0101, 0xf);
+ __m256d avec2 = _mm256_permute_pd(a2323, 0);
+ __m256d avec3 = _mm256_permute_pd(a2323, 0xf);
+
+ a += 4;
+
+ __m256d bvec;
+
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc0, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc1, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc2, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc3, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc4, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc5, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc6, avec0, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc7, avec0, bvec);
+
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc0, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc1, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc2, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc3, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc4, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc5, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc6, avec1, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc7, avec1, bvec);
+
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc0, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc1, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc2, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc3, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc4, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc5, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc6, avec2, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc7, avec2, bvec);
+
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc0, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc1, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc2, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc3, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc4, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc5, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc6, avec3, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc7, avec3, bvec);
+ }
+
+ for (; i < n; i++) {
+ __m256d avec = _mm256_broadcast_sd(a); a++;
+ __m256d bvec;
+
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc0, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc1, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc2, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc3, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc4, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc5, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc6, avec, bvec);
+ bvec = _mm256_load_pd(b); b += 4; FMA_MUL_ADD(acc7, avec, bvec);
}
@@ -688,6 +861,9 @@ void muladd1_by_32(double *x, const doub
_mm256_store_pd(x + 7*4, acc7);
}
+FMA_RESOLVER(static void,muladd1_by_32,
+ (double *x, const double *a, const double *b, long n));
+
#else
static
@@ -794,7 +970,164 @@ void muladd1_by_32(double *x, const doub
#endif
// experiment: process two rows at a time
-#if 1
+#ifdef NTL_LOADTIME_CPU
+AVX_FUNC(void,muladd2_by_32)
+(double *x, const double *a, const double *b, long n)
+{
+ __m256d avec0, avec1, bvec;
+ __m256d acc00, acc01, acc02, acc03;
+ __m256d acc10, acc11, acc12, acc13;
+
+
+ // round 0
+
+ acc00=_mm256_load_pd(x + 0*4 + 0*MAT_BLK_SZ);
+ acc01=_mm256_load_pd(x + 1*4 + 0*MAT_BLK_SZ);
+ acc02=_mm256_load_pd(x + 2*4 + 0*MAT_BLK_SZ);
+ acc03=_mm256_load_pd(x + 3*4 + 0*MAT_BLK_SZ);
+
+ acc10=_mm256_load_pd(x + 0*4 + 1*MAT_BLK_SZ);
+ acc11=_mm256_load_pd(x + 1*4 + 1*MAT_BLK_SZ);
+ acc12=_mm256_load_pd(x + 2*4 + 1*MAT_BLK_SZ);
+ acc13=_mm256_load_pd(x + 3*4 + 1*MAT_BLK_SZ);
+
+ for (long i = 0; i < n; i++) {
+ avec0 = _mm256_broadcast_sd(&a[i]);
+ avec1 = _mm256_broadcast_sd(&a[i+MAT_BLK_SZ]);
+
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+0*4]); AVX_MUL_ADD(acc00, avec0, bvec); AVX_MUL_ADD(acc10, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+1*4]); AVX_MUL_ADD(acc01, avec0, bvec); AVX_MUL_ADD(acc11, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+2*4]); AVX_MUL_ADD(acc02, avec0, bvec); AVX_MUL_ADD(acc12, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+3*4]); AVX_MUL_ADD(acc03, avec0, bvec); AVX_MUL_ADD(acc13, avec1, bvec);
+ }
+
+
+ _mm256_store_pd(x + 0*4 + 0*MAT_BLK_SZ, acc00);
+ _mm256_store_pd(x + 1*4 + 0*MAT_BLK_SZ, acc01);
+ _mm256_store_pd(x + 2*4 + 0*MAT_BLK_SZ, acc02);
+ _mm256_store_pd(x + 3*4 + 0*MAT_BLK_SZ, acc03);
+
+ _mm256_store_pd(x + 0*4 + 1*MAT_BLK_SZ, acc10);
+ _mm256_store_pd(x + 1*4 + 1*MAT_BLK_SZ, acc11);
+ _mm256_store_pd(x + 2*4 + 1*MAT_BLK_SZ, acc12);
+ _mm256_store_pd(x + 3*4 + 1*MAT_BLK_SZ, acc13);
+
+ // round 1
+
+ acc00=_mm256_load_pd(x + 4*4 + 0*MAT_BLK_SZ);
+ acc01=_mm256_load_pd(x + 5*4 + 0*MAT_BLK_SZ);
+ acc02=_mm256_load_pd(x + 6*4 + 0*MAT_BLK_SZ);
+ acc03=_mm256_load_pd(x + 7*4 + 0*MAT_BLK_SZ);
+
+ acc10=_mm256_load_pd(x + 4*4 + 1*MAT_BLK_SZ);
+ acc11=_mm256_load_pd(x + 5*4 + 1*MAT_BLK_SZ);
+ acc12=_mm256_load_pd(x + 6*4 + 1*MAT_BLK_SZ);
+ acc13=_mm256_load_pd(x + 7*4 + 1*MAT_BLK_SZ);
+
+ for (long i = 0; i < n; i++) {
+ avec0 = _mm256_broadcast_sd(&a[i]);
+ avec1 = _mm256_broadcast_sd(&a[i+MAT_BLK_SZ]);
+
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+0*4+MAT_BLK_SZ/2]); AVX_MUL_ADD(acc00, avec0, bvec); AVX_MUL_ADD(acc10, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+1*4+MAT_BLK_SZ/2]); AVX_MUL_ADD(acc01, avec0, bvec); AVX_MUL_ADD(acc11, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+2*4+MAT_BLK_SZ/2]); AVX_MUL_ADD(acc02, avec0, bvec); AVX_MUL_ADD(acc12, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+3*4+MAT_BLK_SZ/2]); AVX_MUL_ADD(acc03, avec0, bvec); AVX_MUL_ADD(acc13, avec1, bvec);
+ }
+
+
+ _mm256_store_pd(x + 4*4 + 0*MAT_BLK_SZ, acc00);
+ _mm256_store_pd(x + 5*4 + 0*MAT_BLK_SZ, acc01);
+ _mm256_store_pd(x + 6*4 + 0*MAT_BLK_SZ, acc02);
+ _mm256_store_pd(x + 7*4 + 0*MAT_BLK_SZ, acc03);
+
+ _mm256_store_pd(x + 4*4 + 1*MAT_BLK_SZ, acc10);
+ _mm256_store_pd(x + 5*4 + 1*MAT_BLK_SZ, acc11);
+ _mm256_store_pd(x + 6*4 + 1*MAT_BLK_SZ, acc12);
+ _mm256_store_pd(x + 7*4 + 1*MAT_BLK_SZ, acc13);
+
+}
+
+FMA_FUNC(void,muladd2_by_32)
+(double *x, const double *a, const double *b, long n)
+{
+ __m256d avec0, avec1, bvec;
+ __m256d acc00, acc01, acc02, acc03;
+ __m256d acc10, acc11, acc12, acc13;
+
+
+ // round 0
+
+ acc00=_mm256_load_pd(x + 0*4 + 0*MAT_BLK_SZ);
+ acc01=_mm256_load_pd(x + 1*4 + 0*MAT_BLK_SZ);
+ acc02=_mm256_load_pd(x + 2*4 + 0*MAT_BLK_SZ);
+ acc03=_mm256_load_pd(x + 3*4 + 0*MAT_BLK_SZ);
+
+ acc10=_mm256_load_pd(x + 0*4 + 1*MAT_BLK_SZ);
+ acc11=_mm256_load_pd(x + 1*4 + 1*MAT_BLK_SZ);
+ acc12=_mm256_load_pd(x + 2*4 + 1*MAT_BLK_SZ);
+ acc13=_mm256_load_pd(x + 3*4 + 1*MAT_BLK_SZ);
+
+ for (long i = 0; i < n; i++) {
+ avec0 = _mm256_broadcast_sd(&a[i]);
+ avec1 = _mm256_broadcast_sd(&a[i+MAT_BLK_SZ]);
+
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+0*4]); FMA_MUL_ADD(acc00, avec0, bvec); FMA_MUL_ADD(acc10, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+1*4]); FMA_MUL_ADD(acc01, avec0, bvec); FMA_MUL_ADD(acc11, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+2*4]); FMA_MUL_ADD(acc02, avec0, bvec); FMA_MUL_ADD(acc12, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+3*4]); FMA_MUL_ADD(acc03, avec0, bvec); FMA_MUL_ADD(acc13, avec1, bvec);
+ }
+
+
+ _mm256_store_pd(x + 0*4 + 0*MAT_BLK_SZ, acc00);
+ _mm256_store_pd(x + 1*4 + 0*MAT_BLK_SZ, acc01);
+ _mm256_store_pd(x + 2*4 + 0*MAT_BLK_SZ, acc02);
+ _mm256_store_pd(x + 3*4 + 0*MAT_BLK_SZ, acc03);
+
+ _mm256_store_pd(x + 0*4 + 1*MAT_BLK_SZ, acc10);
+ _mm256_store_pd(x + 1*4 + 1*MAT_BLK_SZ, acc11);
+ _mm256_store_pd(x + 2*4 + 1*MAT_BLK_SZ, acc12);
+ _mm256_store_pd(x + 3*4 + 1*MAT_BLK_SZ, acc13);
+
+ // round 1
+
+ acc00=_mm256_load_pd(x + 4*4 + 0*MAT_BLK_SZ);
+ acc01=_mm256_load_pd(x + 5*4 + 0*MAT_BLK_SZ);
+ acc02=_mm256_load_pd(x + 6*4 + 0*MAT_BLK_SZ);
+ acc03=_mm256_load_pd(x + 7*4 + 0*MAT_BLK_SZ);
+
+ acc10=_mm256_load_pd(x + 4*4 + 1*MAT_BLK_SZ);
+ acc11=_mm256_load_pd(x + 5*4 + 1*MAT_BLK_SZ);
+ acc12=_mm256_load_pd(x + 6*4 + 1*MAT_BLK_SZ);
+ acc13=_mm256_load_pd(x + 7*4 + 1*MAT_BLK_SZ);
+
+ for (long i = 0; i < n; i++) {
+ avec0 = _mm256_broadcast_sd(&a[i]);
+ avec1 = _mm256_broadcast_sd(&a[i+MAT_BLK_SZ]);
+
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+0*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc00, avec0, bvec); FMA_MUL_ADD(acc10, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+1*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc01, avec0, bvec); FMA_MUL_ADD(acc11, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+2*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc02, avec0, bvec); FMA_MUL_ADD(acc12, avec1, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+3*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc03, avec0, bvec); FMA_MUL_ADD(acc13, avec1, bvec);
+ }
+
+
+ _mm256_store_pd(x + 4*4 + 0*MAT_BLK_SZ, acc00);
+ _mm256_store_pd(x + 5*4 + 0*MAT_BLK_SZ, acc01);
+ _mm256_store_pd(x + 6*4 + 0*MAT_BLK_SZ, acc02);
+ _mm256_store_pd(x + 7*4 + 0*MAT_BLK_SZ, acc03);
+
+ _mm256_store_pd(x + 4*4 + 1*MAT_BLK_SZ, acc10);
+ _mm256_store_pd(x + 5*4 + 1*MAT_BLK_SZ, acc11);
+ _mm256_store_pd(x + 6*4 + 1*MAT_BLK_SZ, acc12);
+ _mm256_store_pd(x + 7*4 + 1*MAT_BLK_SZ, acc13);
+
+}
+
+FMA_RESOLVER(static void,muladd2_by_32,
+ (double *x, const double *a, const double *b, long n));
+
+#else
+
static
void muladd2_by_32(double *x, const double *a, const double *b, long n)
{
@@ -870,96 +1203,217 @@ void muladd2_by_32(double *x, const doub
_mm256_store_pd(x + 7*4 + 1*MAT_BLK_SZ, acc13);
}
+#endif
-#else
-static
-void muladd2_by_32(double *x, const double *a, const double *b, long n)
+
+// experiment: process three rows at a time
+// NOTE: this makes things slower on an AVX1 platform --- not enough registers
+// it could be faster on AVX2/FMA, where there should be enough registers
+
+#ifdef NTL_LOADTIME_CPU
+FMA_FUNC(void,muladd3_by_32)
+(double *x, const double *a, const double *b, long n)
{
- long i, j;
- __m256d bvec;
+ __m256d avec0, avec1, avec2, bvec;
__m256d acc00, acc01, acc02, acc03;
__m256d acc10, acc11, acc12, acc13;
+ __m256d acc20, acc21, acc22, acc23;
+
+ // round 0
- for (j = 0; j < 2; j++) {
+ acc00=_mm256_load_pd(x + 0*4 + 0*MAT_BLK_SZ);
+ acc01=_mm256_load_pd(x + 1*4 + 0*MAT_BLK_SZ);
+ acc02=_mm256_load_pd(x + 2*4 + 0*MAT_BLK_SZ);
+ acc03=_mm256_load_pd(x + 3*4 + 0*MAT_BLK_SZ);
- acc00=_mm256_load_pd(x + 0*4 + 0*MAT_BLK_SZ + j*(MAT_BLK_SZ/2));
- acc01=_mm256_load_pd(x + 1*4 + 0*MAT_BLK_SZ + j*(MAT_BLK_SZ/2));
- acc02=_mm256_load_pd(x + 2*4 + 0*MAT_BLK_SZ + j*(MAT_BLK_SZ/2));
- acc03=_mm256_load_pd(x + 3*4 + 0*MAT_BLK_SZ + j*(MAT_BLK_SZ/2));
+ acc10=_mm256_load_pd(x + 0*4 + 1*MAT_BLK_SZ);
+ acc11=_mm256_load_pd(x + 1*4 + 1*MAT_BLK_SZ);
+ acc12=_mm256_load_pd(x + 2*4 + 1*MAT_BLK_SZ);
+ acc13=_mm256_load_pd(x + 3*4 + 1*MAT_BLK_SZ);
- acc10=_mm256_load_pd(x + 0*4 + 1*MAT_BLK_SZ + j*(MAT_BLK_SZ/2));
- acc11=_mm256_load_pd(x + 1*4 + 1*MAT_BLK_SZ + j*(MAT_BLK_SZ/2));
- acc12=_mm256_load_pd(x + 2*4 + 1*MAT_BLK_SZ + j*(MAT_BLK_SZ/2));
- acc13=_mm256_load_pd(x + 3*4 + 1*MAT_BLK_SZ + j*(MAT_BLK_SZ/2));
+ acc20=_mm256_load_pd(x + 0*4 + 2*MAT_BLK_SZ);
+ acc21=_mm256_load_pd(x + 1*4 + 2*MAT_BLK_SZ);
+ acc22=_mm256_load_pd(x + 2*4 + 2*MAT_BLK_SZ);
+ acc23=_mm256_load_pd(x + 3*4 + 2*MAT_BLK_SZ);
- for (i = 0; i <= n-4; i+=4) {
- __m256d a0_0101 = _mm256_broadcast_pd((const __m128d*)(a+i+0));
- __m256d a0_2323 = _mm256_broadcast_pd((const __m128d*)(a+i+2));
- __m256d avec00 = _mm256_permute_pd(a0_0101, 0);
- __m256d avec01 = _mm256_permute_pd(a0_0101, 0xf);
- __m256d avec02 = _mm256_permute_pd(a0_2323, 0);
- __m256d avec03 = _mm256_permute_pd(a0_2323, 0xf);
+ for (long i = 0; i < n; i++) {
+ avec0 = _mm256_broadcast_sd(&a[i]);
+ avec1 = _mm256_broadcast_sd(&a[i+MAT_BLK_SZ]);
+ avec2 = _mm256_broadcast_sd(&a[i+2*MAT_BLK_SZ]);
- __m256d a1_0101 = _mm256_broadcast_pd((const __m128d*)(a+i+0+MAT_BLK_SZ));
- __m256d a1_2323 = _mm256_broadcast_pd((const __m128d*)(a+i+2+MAT_BLK_SZ));
- __m256d avec10 = _mm256_permute_pd(a1_0101, 0);
- __m256d avec11 = _mm256_permute_pd(a1_0101, 0xf);
- __m256d avec12 = _mm256_permute_pd(a1_2323, 0);
- __m256d avec13 = _mm256_permute_pd(a1_2323, 0xf);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+0*4]); FMA_MUL_ADD(acc00, avec0, bvec); FMA_MUL_ADD(acc10, avec1, bvec); FMA_MUL_ADD(acc20, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+1*4]); FMA_MUL_ADD(acc01, avec0, bvec); FMA_MUL_ADD(acc11, avec1, bvec); FMA_MUL_ADD(acc21, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+2*4]); FMA_MUL_ADD(acc02, avec0, bvec); FMA_MUL_ADD(acc12, avec1, bvec); FMA_MUL_ADD(acc22, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+3*4]); FMA_MUL_ADD(acc03, avec0, bvec); FMA_MUL_ADD(acc13, avec1, bvec); FMA_MUL_ADD(acc23, avec2, bvec);
+ }
- bvec = _mm256_load_pd(&b[(i+0)*MAT_BLK_SZ+0*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc00, avec00, bvec); MUL_ADD(acc10, avec10, bvec);
- bvec = _mm256_load_pd(&b[(i+0)*MAT_BLK_SZ+1*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc01, avec00, bvec); MUL_ADD(acc11, avec10, bvec);
- bvec = _mm256_load_pd(&b[(i+0)*MAT_BLK_SZ+2*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc02, avec00, bvec); MUL_ADD(acc12, avec10, bvec);
- bvec = _mm256_load_pd(&b[(i+0)*MAT_BLK_SZ+3*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc03, avec00, bvec); MUL_ADD(acc13, avec10, bvec);
- bvec = _mm256_load_pd(&b[(i+1)*MAT_BLK_SZ+0*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc00, avec01, bvec); MUL_ADD(acc10, avec11, bvec);
- bvec = _mm256_load_pd(&b[(i+1)*MAT_BLK_SZ+1*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc01, avec01, bvec); MUL_ADD(acc11, avec11, bvec);
- bvec = _mm256_load_pd(&b[(i+1)*MAT_BLK_SZ+2*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc02, avec01, bvec); MUL_ADD(acc12, avec11, bvec);
- bvec = _mm256_load_pd(&b[(i+1)*MAT_BLK_SZ+3*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc03, avec01, bvec); MUL_ADD(acc13, avec11, bvec);
+ _mm256_store_pd(x + 0*4 + 0*MAT_BLK_SZ, acc00);
+ _mm256_store_pd(x + 1*4 + 0*MAT_BLK_SZ, acc01);
+ _mm256_store_pd(x + 2*4 + 0*MAT_BLK_SZ, acc02);
+ _mm256_store_pd(x + 3*4 + 0*MAT_BLK_SZ, acc03);
- bvec = _mm256_load_pd(&b[(i+2)*MAT_BLK_SZ+0*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc00, avec02, bvec); MUL_ADD(acc10, avec12, bvec);
- bvec = _mm256_load_pd(&b[(i+2)*MAT_BLK_SZ+1*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc01, avec02, bvec); MUL_ADD(acc11, avec12, bvec);
- bvec = _mm256_load_pd(&b[(i+2)*MAT_BLK_SZ+2*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc02, avec02, bvec); MUL_ADD(acc12, avec12, bvec);
- bvec = _mm256_load_pd(&b[(i+2)*MAT_BLK_SZ+3*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc03, avec02, bvec); MUL_ADD(acc13, avec12, bvec);
+ _mm256_store_pd(x + 0*4 + 1*MAT_BLK_SZ, acc10);
+ _mm256_store_pd(x + 1*4 + 1*MAT_BLK_SZ, acc11);
+ _mm256_store_pd(x + 2*4 + 1*MAT_BLK_SZ, acc12);
+ _mm256_store_pd(x + 3*4 + 1*MAT_BLK_SZ, acc13);
- bvec = _mm256_load_pd(&b[(i+3)*MAT_BLK_SZ+0*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc00, avec03, bvec); MUL_ADD(acc10, avec13, bvec);
- bvec = _mm256_load_pd(&b[(i+3)*MAT_BLK_SZ+1*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc01, avec03, bvec); MUL_ADD(acc11, avec13, bvec);
- bvec = _mm256_load_pd(&b[(i+3)*MAT_BLK_SZ+2*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc02, avec03, bvec); MUL_ADD(acc12, avec13, bvec);
- bvec = _mm256_load_pd(&b[(i+3)*MAT_BLK_SZ+3*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc03, avec03, bvec); MUL_ADD(acc13, avec13, bvec);
- }
+ _mm256_store_pd(x + 0*4 + 2*MAT_BLK_SZ, acc20);
+ _mm256_store_pd(x + 1*4 + 2*MAT_BLK_SZ, acc21);
+ _mm256_store_pd(x + 2*4 + 2*MAT_BLK_SZ, acc22);
+ _mm256_store_pd(x + 3*4 + 2*MAT_BLK_SZ, acc23);
- for (; i < n; i++) {
- __m256d avec0 = _mm256_broadcast_sd(&a[i]);
- __m256d avec1 = _mm256_broadcast_sd(&a[i+MAT_BLK_SZ]);
+ // round 1
- bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+0*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc00, avec0, bvec); MUL_ADD(acc10, avec1, bvec);
- bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+1*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc01, avec0, bvec); MUL_ADD(acc11, avec1, bvec);
- bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+2*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc02, avec0, bvec); MUL_ADD(acc12, avec1, bvec);
- bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+3*4+j*(MAT_BLK_SZ/2)]); MUL_ADD(acc03, avec0, bvec); MUL_ADD(acc13, avec1, bvec);
- }
+ acc00=_mm256_load_pd(x + 4*4 + 0*MAT_BLK_SZ);
+ acc01=_mm256_load_pd(x + 5*4 + 0*MAT_BLK_SZ);
+ acc02=_mm256_load_pd(x + 6*4 + 0*MAT_BLK_SZ);
+ acc03=_mm256_load_pd(x + 7*4 + 0*MAT_BLK_SZ);
+ acc10=_mm256_load_pd(x + 4*4 + 1*MAT_BLK_SZ);
+ acc11=_mm256_load_pd(x + 5*4 + 1*MAT_BLK_SZ);
+ acc12=_mm256_load_pd(x + 6*4 + 1*MAT_BLK_SZ);
+ acc13=_mm256_load_pd(x + 7*4 + 1*MAT_BLK_SZ);
- _mm256_store_pd(x + 0*4 + 0*MAT_BLK_SZ + j*(MAT_BLK_SZ/2), acc00);
- _mm256_store_pd(x + 1*4 + 0*MAT_BLK_SZ + j*(MAT_BLK_SZ/2), acc01);
- _mm256_store_pd(x + 2*4 + 0*MAT_BLK_SZ + j*(MAT_BLK_SZ/2), acc02);
- _mm256_store_pd(x + 3*4 + 0*MAT_BLK_SZ + j*(MAT_BLK_SZ/2), acc03);
+ acc20=_mm256_load_pd(x + 4*4 + 2*MAT_BLK_SZ);
+ acc21=_mm256_load_pd(x + 5*4 + 2*MAT_BLK_SZ);
+ acc22=_mm256_load_pd(x + 6*4 + 2*MAT_BLK_SZ);
+ acc23=_mm256_load_pd(x + 7*4 + 2*MAT_BLK_SZ);
- _mm256_store_pd(x + 0*4 + 1*MAT_BLK_SZ + j*(MAT_BLK_SZ/2), acc10);
- _mm256_store_pd(x + 1*4 + 1*MAT_BLK_SZ + j*(MAT_BLK_SZ/2), acc11);
- _mm256_store_pd(x + 2*4 + 1*MAT_BLK_SZ + j*(MAT_BLK_SZ/2), acc12);
- _mm256_store_pd(x + 3*4 + 1*MAT_BLK_SZ + j*(MAT_BLK_SZ/2), acc13);
+ for (long i = 0; i < n; i++) {
+ avec0 = _mm256_broadcast_sd(&a[i]);
+ avec1 = _mm256_broadcast_sd(&a[i+MAT_BLK_SZ]);
+ avec2 = _mm256_broadcast_sd(&a[i+2*MAT_BLK_SZ]);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+0*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc00, avec0, bvec); FMA_MUL_ADD(acc10, avec1, bvec); FMA_MUL_ADD(acc20, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+1*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc01, avec0, bvec); FMA_MUL_ADD(acc11, avec1, bvec); FMA_MUL_ADD(acc21, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+2*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc02, avec0, bvec); FMA_MUL_ADD(acc12, avec1, bvec); FMA_MUL_ADD(acc22, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+3*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc03, avec0, bvec); FMA_MUL_ADD(acc13, avec1, bvec); FMA_MUL_ADD(acc23, avec2, bvec);
}
+
+
+ _mm256_store_pd(x + 4*4 + 0*MAT_BLK_SZ, acc00);
+ _mm256_store_pd(x + 5*4 + 0*MAT_BLK_SZ, acc01);
+ _mm256_store_pd(x + 6*4 + 0*MAT_BLK_SZ, acc02);
+ _mm256_store_pd(x + 7*4 + 0*MAT_BLK_SZ, acc03);
+
+ _mm256_store_pd(x + 4*4 + 1*MAT_BLK_SZ, acc10);
+ _mm256_store_pd(x + 5*4 + 1*MAT_BLK_SZ, acc11);
+ _mm256_store_pd(x + 6*4 + 1*MAT_BLK_SZ, acc12);
+ _mm256_store_pd(x + 7*4 + 1*MAT_BLK_SZ, acc13);
+
+ _mm256_store_pd(x + 4*4 + 2*MAT_BLK_SZ, acc20);
+ _mm256_store_pd(x + 5*4 + 2*MAT_BLK_SZ, acc21);
+ _mm256_store_pd(x + 6*4 + 2*MAT_BLK_SZ, acc22);
+ _mm256_store_pd(x + 7*4 + 2*MAT_BLK_SZ, acc23);
+
}
-#endif
+AVX2_FUNC(void,muladd3_by_32)
+(double *x, const double *a, const double *b, long n)
+{
+ __m256d avec0, avec1, avec2, bvec;
+ __m256d acc00, acc01, acc02, acc03;
+ __m256d acc10, acc11, acc12, acc13;
+ __m256d acc20, acc21, acc22, acc23;
+
+
+ // round 0
+ acc00=_mm256_load_pd(x + 0*4 + 0*MAT_BLK_SZ);
+ acc01=_mm256_load_pd(x + 1*4 + 0*MAT_BLK_SZ);
+ acc02=_mm256_load_pd(x + 2*4 + 0*MAT_BLK_SZ);
+ acc03=_mm256_load_pd(x + 3*4 + 0*MAT_BLK_SZ);
-// experiment: process three rows at a time
-// NOTE: this makes things slower on an AVX1 platform --- not enough registers
-// it could be faster on AVX2/FMA, where there should be enough registers
+ acc10=_mm256_load_pd(x + 0*4 + 1*MAT_BLK_SZ);
+ acc11=_mm256_load_pd(x + 1*4 + 1*MAT_BLK_SZ);
+ acc12=_mm256_load_pd(x + 2*4 + 1*MAT_BLK_SZ);
+ acc13=_mm256_load_pd(x + 3*4 + 1*MAT_BLK_SZ);
+
+ acc20=_mm256_load_pd(x + 0*4 + 2*MAT_BLK_SZ);
+ acc21=_mm256_load_pd(x + 1*4 + 2*MAT_BLK_SZ);
+ acc22=_mm256_load_pd(x + 2*4 + 2*MAT_BLK_SZ);
+ acc23=_mm256_load_pd(x + 3*4 + 2*MAT_BLK_SZ);
+
+ for (long i = 0; i < n; i++) {
+ avec0 = _mm256_broadcast_sd(&a[i]);
+ avec1 = _mm256_broadcast_sd(&a[i+MAT_BLK_SZ]);
+ avec2 = _mm256_broadcast_sd(&a[i+2*MAT_BLK_SZ]);
+
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+0*4]); FMA_MUL_ADD(acc00, avec0, bvec); FMA_MUL_ADD(acc10, avec1, bvec); FMA_MUL_ADD(acc20, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+1*4]); FMA_MUL_ADD(acc01, avec0, bvec); FMA_MUL_ADD(acc11, avec1, bvec); FMA_MUL_ADD(acc21, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+2*4]); FMA_MUL_ADD(acc02, avec0, bvec); FMA_MUL_ADD(acc12, avec1, bvec); FMA_MUL_ADD(acc22, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+3*4]); FMA_MUL_ADD(acc03, avec0, bvec); FMA_MUL_ADD(acc13, avec1, bvec); FMA_MUL_ADD(acc23, avec2, bvec);
+ }
+
+
+ _mm256_store_pd(x + 0*4 + 0*MAT_BLK_SZ, acc00);
+ _mm256_store_pd(x + 1*4 + 0*MAT_BLK_SZ, acc01);
+ _mm256_store_pd(x + 2*4 + 0*MAT_BLK_SZ, acc02);
+ _mm256_store_pd(x + 3*4 + 0*MAT_BLK_SZ, acc03);
+
+ _mm256_store_pd(x + 0*4 + 1*MAT_BLK_SZ, acc10);
+ _mm256_store_pd(x + 1*4 + 1*MAT_BLK_SZ, acc11);
+ _mm256_store_pd(x + 2*4 + 1*MAT_BLK_SZ, acc12);
+ _mm256_store_pd(x + 3*4 + 1*MAT_BLK_SZ, acc13);
+
+ _mm256_store_pd(x + 0*4 + 2*MAT_BLK_SZ, acc20);
+ _mm256_store_pd(x + 1*4 + 2*MAT_BLK_SZ, acc21);
+ _mm256_store_pd(x + 2*4 + 2*MAT_BLK_SZ, acc22);
+ _mm256_store_pd(x + 3*4 + 2*MAT_BLK_SZ, acc23);
+
+ // round 1
+
+ acc00=_mm256_load_pd(x + 4*4 + 0*MAT_BLK_SZ);
+ acc01=_mm256_load_pd(x + 5*4 + 0*MAT_BLK_SZ);
+ acc02=_mm256_load_pd(x + 6*4 + 0*MAT_BLK_SZ);
+ acc03=_mm256_load_pd(x + 7*4 + 0*MAT_BLK_SZ);
+
+ acc10=_mm256_load_pd(x + 4*4 + 1*MAT_BLK_SZ);
+ acc11=_mm256_load_pd(x + 5*4 + 1*MAT_BLK_SZ);
+ acc12=_mm256_load_pd(x + 6*4 + 1*MAT_BLK_SZ);
+ acc13=_mm256_load_pd(x + 7*4 + 1*MAT_BLK_SZ);
+
+ acc20=_mm256_load_pd(x + 4*4 + 2*MAT_BLK_SZ);
+ acc21=_mm256_load_pd(x + 5*4 + 2*MAT_BLK_SZ);
+ acc22=_mm256_load_pd(x + 6*4 + 2*MAT_BLK_SZ);
+ acc23=_mm256_load_pd(x + 7*4 + 2*MAT_BLK_SZ);
+
+ for (long i = 0; i < n; i++) {
+ avec0 = _mm256_broadcast_sd(&a[i]);
+ avec1 = _mm256_broadcast_sd(&a[i+MAT_BLK_SZ]);
+ avec2 = _mm256_broadcast_sd(&a[i+2*MAT_BLK_SZ]);
+
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+0*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc00, avec0, bvec); FMA_MUL_ADD(acc10, avec1, bvec); FMA_MUL_ADD(acc20, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+1*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc01, avec0, bvec); FMA_MUL_ADD(acc11, avec1, bvec); FMA_MUL_ADD(acc21, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+2*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc02, avec0, bvec); FMA_MUL_ADD(acc12, avec1, bvec); FMA_MUL_ADD(acc22, avec2, bvec);
+ bvec = _mm256_load_pd(&b[i*MAT_BLK_SZ+3*4+MAT_BLK_SZ/2]); FMA_MUL_ADD(acc03, avec0, bvec); FMA_MUL_ADD(acc13, avec1, bvec); FMA_MUL_ADD(acc23, avec2, bvec);
+ }
+
+
+ _mm256_store_pd(x + 4*4 + 0*MAT_BLK_SZ, acc00);
+ _mm256_store_pd(x + 5*4 + 0*MAT_BLK_SZ, acc01);
+ _mm256_store_pd(x + 6*4 + 0*MAT_BLK_SZ, acc02);
+ _mm256_store_pd(x + 7*4 + 0*MAT_BLK_SZ, acc03);
+
+ _mm256_store_pd(x + 4*4 + 1*MAT_BLK_SZ, acc10);
+ _mm256_store_pd(x + 5*4 + 1*MAT_BLK_SZ, acc11);
+ _mm256_store_pd(x + 6*4 + 1*MAT_BLK_SZ, acc12);
+ _mm256_store_pd(x + 7*4 + 1*MAT_BLK_SZ, acc13);
+
+ _mm256_store_pd(x + 4*4 + 2*MAT_BLK_SZ, acc20);
+ _mm256_store_pd(x + 5*4 + 2*MAT_BLK_SZ, acc21);
+ _mm256_store_pd(x + 6*4 + 2*MAT_BLK_SZ, acc22);
+ _mm256_store_pd(x + 7*4 + 2*MAT_BLK_SZ, acc23);
+
+}
+
+AVX2_RESOLVER(static void,muladd3_by_32,
+ (double *x, const double *a, const double *b, long n));
+
+#else
static
void muladd3_by_32(double *x, const double *a, const double *b, long n)
@@ -1060,6 +1514,32 @@ void muladd3_by_32(double *x, const doub
}
+#endif
+
+#ifdef NTL_LOADTIME_CPU
+
+static inline
+void muladd_all_by_32(long first, long last, double *x, const double *a, const double *b, long n)
+{
+ long i = first;
+
+ if (have_fma) {
+ // processing three rows at a time is faster
+ for (; i <= last-3; i+=3)
+ muladd3_by_32(x + i*MAT_BLK_SZ, a + i*MAT_BLK_SZ, b, n);
+ for (; i < last; i++)
+ muladd1_by_32(x + i*MAT_BLK_SZ, a + i*MAT_BLK_SZ, b, n);
+ } else {
+ // process only two rows at a time: not enough registers :-(
+ for (; i <= last-2; i+=2)
+ muladd2_by_32(x + i*MAT_BLK_SZ, a + i*MAT_BLK_SZ, b, n);
+ for (; i < last; i++)
+ muladd1_by_32(x + i*MAT_BLK_SZ, a + i*MAT_BLK_SZ, b, n);
+ }
+}
+
+#else
+
static inline
void muladd_all_by_32(long first, long last, double *x, const double *a, const double *b, long n)
{
@@ -1079,8 +1559,79 @@ void muladd_all_by_32(long first, long l
#endif
}
+#endif
+
// this assumes n is a multiple of 16
+#ifdef NTL_LOADTIME_CPU
+
+AVX_FUNC(void,muladd_interval)
+(double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n)
+{
+ __m256d xvec0, xvec1, xvec2, xvec3;
+ __m256d yvec0, yvec1, yvec2, yvec3;
+
+ __m256d cvec = _mm256_broadcast_sd(&c);
+
+ for (long i = 0; i < n; i += 16, x += 16, y += 16) {
+ xvec0 = _mm256_load_pd(x+0*4);
+ xvec1 = _mm256_load_pd(x+1*4);
+ xvec2 = _mm256_load_pd(x+2*4);
+ xvec3 = _mm256_load_pd(x+3*4);
+
+ yvec0 = _mm256_load_pd(y+0*4);
+ yvec1 = _mm256_load_pd(y+1*4);
+ yvec2 = _mm256_load_pd(y+2*4);
+ yvec3 = _mm256_load_pd(y+3*4);
+
+ AVX_MUL_ADD(xvec0, yvec0, cvec);
+ AVX_MUL_ADD(xvec1, yvec1, cvec);
+ AVX_MUL_ADD(xvec2, yvec2, cvec);
+ AVX_MUL_ADD(xvec3, yvec3, cvec);
+
+ _mm256_store_pd(x + 0*4, xvec0);
+ _mm256_store_pd(x + 1*4, xvec1);
+ _mm256_store_pd(x + 2*4, xvec2);
+ _mm256_store_pd(x + 3*4, xvec3);
+ }
+}
+
+FMA_FUNC(void,muladd_interval)
+(double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n)
+{
+ __m256d xvec0, xvec1, xvec2, xvec3;
+ __m256d yvec0, yvec1, yvec2, yvec3;
+
+ __m256d cvec = _mm256_broadcast_sd(&c);
+
+ for (long i = 0; i < n; i += 16, x += 16, y += 16) {
+ xvec0 = _mm256_load_pd(x+0*4);
+ xvec1 = _mm256_load_pd(x+1*4);
+ xvec2 = _mm256_load_pd(x+2*4);
+ xvec3 = _mm256_load_pd(x+3*4);
+
+ yvec0 = _mm256_load_pd(y+0*4);
+ yvec1 = _mm256_load_pd(y+1*4);
+ yvec2 = _mm256_load_pd(y+2*4);
+ yvec3 = _mm256_load_pd(y+3*4);
+
+ FMA_MUL_ADD(xvec0, yvec0, cvec);
+ FMA_MUL_ADD(xvec1, yvec1, cvec);
+ FMA_MUL_ADD(xvec2, yvec2, cvec);
+ FMA_MUL_ADD(xvec3, yvec3, cvec);
+
+ _mm256_store_pd(x + 0*4, xvec0);
+ _mm256_store_pd(x + 1*4, xvec1);
+ _mm256_store_pd(x + 2*4, xvec2);
+ _mm256_store_pd(x + 3*4, xvec3);
+ }
+}
+
+FMA_RESOLVER(static void,muladd_interval,
+ (double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n));
+
+#else
+
static inline
void muladd_interval(double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n)
{
@@ -1111,9 +1662,109 @@ void muladd_interval(double * NTL_RESTRI
_mm256_store_pd(x + 3*4, xvec3);
}
}
+#endif
// this one is more general: does not assume that n is a
// multiple of 16
+#ifdef NTL_LOADTIME_CPU
+
+AVX_FUNC(void,muladd_interval1)
+(double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n)
+{
+
+ __m256d xvec0, xvec1, xvec2, xvec3;
+ __m256d yvec0, yvec1, yvec2, yvec3;
+ __m256d cvec;
+
+ if (n >= 4)
+ cvec = _mm256_broadcast_sd(&c);
+
+ long i=0;
+ for (; i <= n-16; i += 16, x += 16, y += 16) {
+ xvec0 = _mm256_load_pd(x+0*4);
+ xvec1 = _mm256_load_pd(x+1*4);
+ xvec2 = _mm256_load_pd(x+2*4);
+ xvec3 = _mm256_load_pd(x+3*4);
+
+ yvec0 = _mm256_load_pd(y+0*4);
+ yvec1 = _mm256_load_pd(y+1*4);
+ yvec2 = _mm256_load_pd(y+2*4);
+ yvec3 = _mm256_load_pd(y+3*4);
+
+ AVX_MUL_ADD(xvec0, yvec0, cvec);
+ AVX_MUL_ADD(xvec1, yvec1, cvec);
+ AVX_MUL_ADD(xvec2, yvec2, cvec);
+ AVX_MUL_ADD(xvec3, yvec3, cvec);
+
+ _mm256_store_pd(x + 0*4, xvec0);
+ _mm256_store_pd(x + 1*4, xvec1);
+ _mm256_store_pd(x + 2*4, xvec2);
+ _mm256_store_pd(x + 3*4, xvec3);
+ }
+
+ for (; i <= n-4; i += 4, x += 4, y += 4) {
+ xvec0 = _mm256_load_pd(x+0*4);
+ yvec0 = _mm256_load_pd(y+0*4);
+ AVX_MUL_ADD(xvec0, yvec0, cvec);
+ _mm256_store_pd(x + 0*4, xvec0);
+ }
+
+ for (; i < n; i++, x++, y++) {
+ *x += (*y)*c;
+ }
+}
+
+FMA_FUNC(void,muladd_interval1)
+(double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n)
+{
+
+ __m256d xvec0, xvec1, xvec2, xvec3;
+ __m256d yvec0, yvec1, yvec2, yvec3;
+ __m256d cvec;
+
+ if (n >= 4)
+ cvec = _mm256_broadcast_sd(&c);
+
+ long i=0;
+ for (; i <= n-16; i += 16, x += 16, y += 16) {
+ xvec0 = _mm256_load_pd(x+0*4);
+ xvec1 = _mm256_load_pd(x+1*4);
+ xvec2 = _mm256_load_pd(x+2*4);
+ xvec3 = _mm256_load_pd(x+3*4);
+
+ yvec0 = _mm256_load_pd(y+0*4);
+ yvec1 = _mm256_load_pd(y+1*4);
+ yvec2 = _mm256_load_pd(y+2*4);
+ yvec3 = _mm256_load_pd(y+3*4);
+
+ FMA_MUL_ADD(xvec0, yvec0, cvec);
+ FMA_MUL_ADD(xvec1, yvec1, cvec);
+ FMA_MUL_ADD(xvec2, yvec2, cvec);
+ FMA_MUL_ADD(xvec3, yvec3, cvec);
+
+ _mm256_store_pd(x + 0*4, xvec0);
+ _mm256_store_pd(x + 1*4, xvec1);
+ _mm256_store_pd(x + 2*4, xvec2);
+ _mm256_store_pd(x + 3*4, xvec3);
+ }
+
+ for (; i <= n-4; i += 4, x += 4, y += 4) {
+ xvec0 = _mm256_load_pd(x+0*4);
+ yvec0 = _mm256_load_pd(y+0*4);
+ FMA_MUL_ADD(xvec0, yvec0, cvec);
+ _mm256_store_pd(x + 0*4, xvec0);
+ }
+
+ for (; i < n; i++, x++, y++) {
+ *x += (*y)*c;
+ }
+}
+
+FMA_RESOLVER(static void,muladd_interval1,
+ (double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n));
+
+#else
+
static inline
void muladd_interval1(double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n)
{
@@ -1159,11 +1810,74 @@ void muladd_interval1(double * NTL_RESTR
*x += (*y)*c;
}
}
+#endif
#define AVX_PD_SZ (4)
// experimental: assumes n is a multiple of 4 in the range [0..32]
-#if 1
+#ifdef NTL_LOADTIME_CPU
+
+AVX_FUNC(void,muladd_interval2)
+(double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n)
+{
+ n /= 4;
+ if (n <= 0 || n > 8) return;
+
+ x += n*4;
+ y += n*4;
+
+ // n in [1..8]
+
+ __m256d xvec, yvec, cvec;
+
+ cvec = _mm256_broadcast_sd(&c);
+
+ switch (n) {
+ case 8: xvec = _mm256_load_pd(x-8*4); yvec = _mm256_load_pd(y-8*4); AVX_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-8*4, xvec);
+ case 7: xvec = _mm256_load_pd(x-7*4); yvec = _mm256_load_pd(y-7*4); AVX_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-7*4, xvec);
+ case 6: xvec = _mm256_load_pd(x-6*4); yvec = _mm256_load_pd(y-6*4); AVX_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-6*4, xvec);
+ case 5: xvec = _mm256_load_pd(x-5*4); yvec = _mm256_load_pd(y-5*4); AVX_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-5*4, xvec);
+ case 4: xvec = _mm256_load_pd(x-4*4); yvec = _mm256_load_pd(y-4*4); AVX_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-4*4, xvec);
+ case 3: xvec = _mm256_load_pd(x-3*4); yvec = _mm256_load_pd(y-3*4); AVX_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-3*4, xvec);
+ case 2: xvec = _mm256_load_pd(x-2*4); yvec = _mm256_load_pd(y-2*4); AVX_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-2*4, xvec);
+ case 1: xvec = _mm256_load_pd(x-1*4); yvec = _mm256_load_pd(y-1*4); AVX_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-1*4, xvec);
+ }
+
+}
+
+FMA_FUNC(void,muladd_interval2)
+(double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n)
+{
+ n /= 4;
+ if (n <= 0 || n > 8) return;
+
+ x += n*4;
+ y += n*4;
+
+ // n in [1..8]
+
+ __m256d xvec, yvec, cvec;
+
+ cvec = _mm256_broadcast_sd(&c);
+
+ switch (n) {
+ case 8: xvec = _mm256_load_pd(x-8*4); yvec = _mm256_load_pd(y-8*4); FMA_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-8*4, xvec);
+ case 7: xvec = _mm256_load_pd(x-7*4); yvec = _mm256_load_pd(y-7*4); FMA_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-7*4, xvec);
+ case 6: xvec = _mm256_load_pd(x-6*4); yvec = _mm256_load_pd(y-6*4); FMA_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-6*4, xvec);
+ case 5: xvec = _mm256_load_pd(x-5*4); yvec = _mm256_load_pd(y-5*4); FMA_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-5*4, xvec);
+ case 4: xvec = _mm256_load_pd(x-4*4); yvec = _mm256_load_pd(y-4*4); FMA_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-4*4, xvec);
+ case 3: xvec = _mm256_load_pd(x-3*4); yvec = _mm256_load_pd(y-3*4); FMA_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-3*4, xvec);
+ case 2: xvec = _mm256_load_pd(x-2*4); yvec = _mm256_load_pd(y-2*4); FMA_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-2*4, xvec);
+ case 1: xvec = _mm256_load_pd(x-1*4); yvec = _mm256_load_pd(y-1*4); FMA_MUL_ADD(xvec, yvec, cvec); _mm256_store_pd(x-1*4, xvec);
+ }
+
+}
+
+FMA_RESOLVER(static void,muladd_interval2,
+ (double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n));
+
+#else
+
static inline
void muladd_interval2(double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n)
{
@@ -1191,13 +1905,6 @@ void muladd_interval2(double * NTL_RESTR
}
}
-#else
-static inline
-void muladd_interval2(double * NTL_RESTRICT x, double * NTL_RESTRICT y, double c, long n)
-{
- for (long i = 0; i < n; i++)
- x[i] += y[i]*c;
-}
#endif
#endif
@@ -2031,10 +2738,10 @@ void alt_mul_LL(const mat_window_zz_p& X
}
-#ifdef NTL_HAVE_AVX
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
-static
-void blk_mul_DD(const mat_window_zz_p& X,
+static void __attribute__((target ("avx,pclmul")))
+blk_mul_DD(const mat_window_zz_p& X,
const const_mat_window_zz_p& A, const const_mat_window_zz_p& B)
{
long n = A.NumRows();
@@ -2401,8 +3108,9 @@ void mul_base (const mat_window_zz_p& X,
long V = MAT_BLK_SZ*4;
-#ifdef NTL_HAVE_AVX
- if (p-1 <= MAX_DBL_INT &&
+#if defined(NTL_HAVE_AVX) || defined (NTL_LOADTIME_CPU)
+ if (AVX_ACTIVE &&
+ p-1 <= MAX_DBL_INT &&
V <= (MAX_DBL_INT-(p-1))/(p-1) &&
V*(p-1) <= (MAX_DBL_INT-(p-1))/(p-1)) {
@@ -2466,7 +3174,8 @@ void mul_strassen(const mat_window_zz_p&
// this code determines if mul_base triggers blk_mul_DD,
// in which case a higher crossover is used
-#if (defined(NTL_HAVE_LL_TYPE) && defined(NTL_HAVE_AVX))
+#if (defined(NTL_HAVE_LL_TYPE) && (defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)))
+ if (AVX_ACTIVE)
{
long V = MAT_BLK_SZ*4;
long p = zz_p::modulus();
@@ -2966,10 +3675,10 @@ void alt_inv_L(zz_p& d, mat_zz_p& X, con
-#ifdef NTL_HAVE_AVX
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
-static
-void alt_inv_DD(zz_p& d, mat_zz_p& X, const mat_zz_p& A, bool relax)
+static void __attribute__((target ("avx,pclmul")))
+alt_inv_DD(zz_p& d, mat_zz_p& X, const mat_zz_p& A, bool relax)
{
long n = A.NumRows();
@@ -3135,10 +3844,10 @@ void alt_inv_DD(zz_p& d, mat_zz_p& X, co
-#ifdef NTL_HAVE_AVX
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
-static
-void blk_inv_DD(zz_p& d, mat_zz_p& X, const mat_zz_p& A, bool relax)
+static void __attribute__((target ("avx,pclmul")))
+blk_inv_DD(zz_p& d, mat_zz_p& X, const mat_zz_p& A, bool relax)
{
long n = A.NumRows();
@@ -3896,8 +4605,9 @@ void relaxed_inv(zz_p& d, mat_zz_p& X, c
else if (n/MAT_BLK_SZ < 4) {
long V = 64;
-#ifdef NTL_HAVE_AVX
- if (p-1 <= MAX_DBL_INT &&
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
+ if (AVX_ACTIVE &&
+ p-1 <= MAX_DBL_INT &&
V <= (MAX_DBL_INT-(p-1))/(p-1) &&
V*(p-1) <= (MAX_DBL_INT-(p-1))/(p-1)) {
@@ -3922,8 +4632,9 @@ void relaxed_inv(zz_p& d, mat_zz_p& X, c
else {
long V = 4*MAT_BLK_SZ;
-#ifdef NTL_HAVE_AVX
- if (p-1 <= MAX_DBL_INT &&
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
+ if (AVX_ACTIVE &&
+ p-1 <= MAX_DBL_INT &&
V <= (MAX_DBL_INT-(p-1))/(p-1) &&
V*(p-1) <= (MAX_DBL_INT-(p-1))/(p-1)) {
@@ -4329,10 +5040,10 @@ void alt_tri_L(zz_p& d, const mat_zz_p&
-#ifdef NTL_HAVE_AVX
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
-static
-void alt_tri_DD(zz_p& d, const mat_zz_p& A, const vec_zz_p *bp,
+static void __attribute__((target ("avx,pclmul")))
+alt_tri_DD(zz_p& d, const mat_zz_p& A, const vec_zz_p *bp,
vec_zz_p *xp, bool trans, bool relax)
{
long n = A.NumRows();
@@ -4519,10 +5230,10 @@ void alt_tri_DD(zz_p& d, const mat_zz_p&
-#ifdef NTL_HAVE_AVX
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
-static
-void blk_tri_DD(zz_p& d, const mat_zz_p& A, const vec_zz_p *bp,
+static void __attribute__((target ("avx,pclmul")))
+blk_tri_DD(zz_p& d, const mat_zz_p& A, const vec_zz_p *bp,
vec_zz_p *xp, bool trans, bool relax)
{
long n = A.NumRows();
@@ -5333,8 +6044,9 @@ void tri(zz_p& d, const mat_zz_p& A, con
else if (n/MAT_BLK_SZ < 4) {
long V = 64;
-#ifdef NTL_HAVE_AVX
- if (p-1 <= MAX_DBL_INT &&
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
+ if (AVX_ACTIVE &&
+ p-1 <= MAX_DBL_INT &&
V <= (MAX_DBL_INT-(p-1))/(p-1) &&
V*(p-1) <= (MAX_DBL_INT-(p-1))/(p-1)) {
@@ -5359,8 +6071,9 @@ void tri(zz_p& d, const mat_zz_p& A, con
else {
long V = 4*MAT_BLK_SZ;
-#ifdef NTL_HAVE_AVX
- if (p-1 <= MAX_DBL_INT &&
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
+ if (AVX_ACTIVE &&
+ p-1 <= MAX_DBL_INT &&
V <= (MAX_DBL_INT-(p-1))/(p-1) &&
V*(p-1) <= (MAX_DBL_INT-(p-1))/(p-1)) {
@@ -5606,7 +6319,7 @@ long elim_basic(const mat_zz_p& A, mat_z
#ifdef NTL_HAVE_LL_TYPE
-#ifdef NTL_HAVE_AVX
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
static inline
@@ -7059,8 +7772,9 @@ long elim(const mat_zz_p& A, mat_zz_p *i
else {
long V = 4*MAT_BLK_SZ;
-#ifdef NTL_HAVE_AVX
- if (p-1 <= MAX_DBL_INT &&
+#if defined(NTL_HAVE_AVX) || defined(NTL_LOADTIME_CPU)
+ if (AVX_ACTIVE &&
+ p-1 <= MAX_DBL_INT &&
V <= (MAX_DBL_INT-(p-1))/(p-1) &&
V*(p-1) <= (MAX_DBL_INT-(p-1))/(p-1)) {
--- src/QuickTest.cpp.orig 2016-10-14 07:53:32.000000000 -0600
+++ src/QuickTest.cpp 2016-10-19 19:03:46.647499895 -0600
@@ -316,6 +316,9 @@ cerr << "Performance Options:\n";
cerr << "NTL_GF2X_NOINLINE\n";
#endif
+#ifdef NTL_LOADTIME_CPU
+ cerr << "NTL_LOADTIME_CPU\n";
+#endif
cerr << "\n\n";
--- src/WizardAux.orig 2016-10-14 07:53:32.000000000 -0600
+++ src/WizardAux 2016-10-19 19:03:46.647499895 -0600
@@ -88,6 +88,7 @@ system("$ARGV[0] InitSettings");
'NTL_GF2X_NOINLINE' => 0,
'NTL_FFT_BIGTAB' => 0,
'NTL_FFT_LAZYMUL' => 0,
+'NTL_LOADTIME_CPU' => 0,
'WIZARD_HACK' => '#define NTL_WIZARD_HACK',