2016-02-01 Jakub Jelinek PR rtl-optimization/69592 * rtlanal.c (nonzero_bits_binary_arith_p): New inline function. (cached_nonzero_bits): Use it instead of ARITHMETIC_P. (num_sign_bit_copies_binary_arith_p): New inline function. (cached_num_sign_bit_copies): Use it instead of ARITHMETIC_P. * gcc.dg/pr69592.c: New test. --- gcc/rtlanal.c.jj 2016-01-21 21:27:57.000000000 +0100 +++ gcc/rtlanal.c 2016-02-01 18:53:06.130934333 +0100 @@ -4163,6 +4163,36 @@ num_sign_bit_copies (const_rtx x, machin return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0); } +/* Return true if nonzero_bits1 might recurse into both operands + of X. */ + +static inline bool +nonzero_bits_binary_arith_p (const_rtx x) +{ + if (!ARITHMETIC_P (x)) + return false; + switch (GET_CODE (x)) + { + case AND: + case XOR: + case IOR: + case UMIN: + case UMAX: + case SMIN: + case SMAX: + case PLUS: + case MINUS: + case MULT: + case DIV: + case UDIV: + case MOD: + case UMOD: + return true; + default: + return false; + } +} + /* The function cached_nonzero_bits is a wrapper around nonzero_bits1. It avoids exponential behavior in nonzero_bits1 when X has identical subexpressions on the first or the second level. */ @@ -4179,7 +4209,7 @@ cached_nonzero_bits (const_rtx x, machin nonzero_bits1 on X with the subexpressions as KNOWN_X and the precomputed value for the subexpression as KNOWN_RET. */ - if (ARITHMETIC_P (x)) + if (nonzero_bits_binary_arith_p (x)) { rtx x0 = XEXP (x, 0); rtx x1 = XEXP (x, 1); @@ -4191,13 +4221,13 @@ cached_nonzero_bits (const_rtx x, machin known_mode, known_ret)); /* Check the second level. */ - if (ARITHMETIC_P (x0) + if (nonzero_bits_binary_arith_p (x0) && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1))) return nonzero_bits1 (x, mode, x1, mode, cached_nonzero_bits (x1, mode, known_x, known_mode, known_ret)); - if (ARITHMETIC_P (x1) + if (nonzero_bits_binary_arith_p (x1) && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1))) return nonzero_bits1 (x, mode, x0, mode, cached_nonzero_bits (x0, mode, known_x, @@ -4672,6 +4702,33 @@ nonzero_bits1 (const_rtx x, machine_mode #undef cached_num_sign_bit_copies +/* Return true if num_sign_bit_copies1 might recurse into both operands + of X. */ + +static inline bool +num_sign_bit_copies_binary_arith_p (const_rtx x) +{ + if (!ARITHMETIC_P (x)) + return false; + switch (GET_CODE (x)) + { + case IOR: + case AND: + case XOR: + case SMIN: + case SMAX: + case UMIN: + case UMAX: + case PLUS: + case MINUS: + case MULT: + return true; + default: + return false; + } +} + + /* The function cached_num_sign_bit_copies is a wrapper around num_sign_bit_copies1. It avoids exponential behavior in num_sign_bit_copies1 when X has identical subexpressions on the @@ -4689,7 +4746,7 @@ cached_num_sign_bit_copies (const_rtx x, num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and the precomputed value for the subexpression as KNOWN_RET. */ - if (ARITHMETIC_P (x)) + if (num_sign_bit_copies_binary_arith_p (x)) { rtx x0 = XEXP (x, 0); rtx x1 = XEXP (x, 1); @@ -4703,7 +4760,7 @@ cached_num_sign_bit_copies (const_rtx x, known_ret)); /* Check the second level. */ - if (ARITHMETIC_P (x0) + if (num_sign_bit_copies_binary_arith_p (x0) && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1))) return num_sign_bit_copies1 (x, mode, x1, mode, @@ -4711,7 +4768,7 @@ cached_num_sign_bit_copies (const_rtx x, known_mode, known_ret)); - if (ARITHMETIC_P (x1) + if (num_sign_bit_copies_binary_arith_p (x1) && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1))) return num_sign_bit_copies1 (x, mode, x0, mode, --- gcc/testsuite/gcc.dg/pr69592.c.jj 2016-02-01 19:02:23.122251761 +0100 +++ gcc/testsuite/gcc.dg/pr69592.c 2016-02-01 19:00:30.000000000 +0100 @@ -0,0 +1,16 @@ +/* PR rtl-optimization/69592 */ +/* { dg-do compile } */ +/* { dg-options "-O2" } */ + +unsigned int +foo (unsigned int a, unsigned int *b, unsigned int c) +{ + unsigned int d; +#define A(n) d = a + b[n]; if (d < a) c++; a = d; +#define B(n) A(n##0) A(n##1) A(n##2) A(n##3) A(n##4) A(n##5) A(n##6) A(n##7) A(n##8) A(n##9) +#define C(n) B(n##0) B(n##1) B(n##2) B(n##3) B(n##4) B(n##5) B(n##6) B(n##7) B(n##8) B(n##9) +#define D(n) C(n##0) C(n##1) C(n##2) C(n##3) C(n##4) C(n##5) C(n##6) C(n##7) C(n##8) C(n##9) +#define E(n) D(n##0) D(n##1) D(n##2) D(n##3) D(n##4) D(n##5) D(n##6) D(n##7) D(n##8) D(n##9) + C(1) C(2) C(3) C(4) C(5) C(6) + return d + c; +}