cvc4/th_base.plf
2014-02-03 07:53:17 -07:00

108 lines
2.7 KiB
Plaintext

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Atomization / Clausification
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; binding between an LF var and an (atomic) formula
(declare atom (! v var (! p formula type)))
(declare decl_atom
(! f formula
(! u (! v var
(! a (atom v f)
(holds cln)))
(holds cln))))
; direct clausify
(declare clausify_form
(! f formula
(! v var
(! a (atom v f)
(! u (th_holds f)
(holds (clc (pos v) cln)))))))
(declare clausify_form_not
(! f formula
(! v var
(! a (atom v f)
(! u (th_holds (not f))
(holds (clc (neg v) cln)))))))
(declare clausify_false
(! u (th_holds false)
(holds cln)))
(declare th_let_pf
(! f formula
(! u (th_holds f)
(! u2 (! v (th_holds f) (holds cln))
(holds cln)))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Theory reasoning
; - make a series of assumptions and then derive a contradiction (or false)
; - then the assumptions yield a formula like "v1 -> v2 -> ... -> vn -> false"
; - In CNF, it becomes a clause: "~v1, ~v2, ..., ~vn"
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(declare ast
(! v var
(! f formula
(! C clause
(! r (atom v f) ;this is specified
(! u (! o (th_holds f)
(holds C))
(holds (clc (neg v) C))))))))
(declare asf
(! v var
(! f formula
(! C clause
(! r (atom v f)
(! u (! o (th_holds (not f))
(holds C))
(holds (clc (pos v) C))))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;
; Theory of Equality and Congruence Closure
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; temporary :
(declare trust (th_holds false))
(declare refl
(! s sort
(! t (term s)
(th_holds (= s t t)))))
(declare symm (! s sort
(! x (term s)
(! y (term s)
(! u (th_holds (= _ x y))
(th_holds (= _ y x)))))))
(declare trans (! s sort
(! x (term s)
(! y (term s)
(! z (term s)
(! u (th_holds (= _ x y))
(! u (th_holds (= _ y z))
(th_holds (= _ x z)))))))))
(declare cong (! s1 sort
(! s2 sort
(! a1 (term (arrow s1 s2))
(! b1 (term (arrow s1 s2))
(! a2 (term s1)
(! b2 (term s1)
(! u1 (th_holds (= _ a1 b1))
(! u2 (th_holds (= _ a2 b2))
(th_holds (= _ (apply _ _ a1 a2) (apply _ _ b1 b2))))))))))))