e041c68341
The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1810 lines
40 KiB
C
1810 lines
40 KiB
C
/*
|
|
* NETLINK Kernel-user communication protocol.
|
|
*
|
|
* Authors: Alan Cox <alan@redhat.com>
|
|
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
|
|
* added netlink_proto_exit
|
|
* Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
|
|
* use nlk_sk, as sk->protinfo is on a diet 8)
|
|
* Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
|
|
* - inc module use count of module that owns
|
|
* the kernel socket in case userspace opens
|
|
* socket of same protocol
|
|
* - remove all module support, since netlink is
|
|
* mandatory if CONFIG_NET=y these days
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/un.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/termios.h>
|
|
#include <linux/sockios.h>
|
|
#include <linux/net.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/uaccess.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/rtnetlink.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/security.h>
|
|
#include <linux/jhash.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/random.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/types.h>
|
|
#include <linux/audit.h>
|
|
|
|
#include <net/sock.h>
|
|
#include <net/scm.h>
|
|
#include <net/netlink.h>
|
|
|
|
#define Nprintk(a...)
|
|
#define NLGRPSZ(x) (ALIGN(x, sizeof(unsigned long) * 8) / 8)
|
|
|
|
struct netlink_sock {
|
|
/* struct sock has to be the first member of netlink_sock */
|
|
struct sock sk;
|
|
u32 pid;
|
|
u32 dst_pid;
|
|
u32 dst_group;
|
|
u32 flags;
|
|
u32 subscriptions;
|
|
u32 ngroups;
|
|
unsigned long *groups;
|
|
unsigned long state;
|
|
wait_queue_head_t wait;
|
|
struct netlink_callback *cb;
|
|
spinlock_t cb_lock;
|
|
void (*data_ready)(struct sock *sk, int bytes);
|
|
struct module *module;
|
|
};
|
|
|
|
#define NETLINK_KERNEL_SOCKET 0x1
|
|
#define NETLINK_RECV_PKTINFO 0x2
|
|
|
|
static inline struct netlink_sock *nlk_sk(struct sock *sk)
|
|
{
|
|
return (struct netlink_sock *)sk;
|
|
}
|
|
|
|
struct nl_pid_hash {
|
|
struct hlist_head *table;
|
|
unsigned long rehash_time;
|
|
|
|
unsigned int mask;
|
|
unsigned int shift;
|
|
|
|
unsigned int entries;
|
|
unsigned int max_shift;
|
|
|
|
u32 rnd;
|
|
};
|
|
|
|
struct netlink_table {
|
|
struct nl_pid_hash hash;
|
|
struct hlist_head mc_list;
|
|
unsigned long *listeners;
|
|
unsigned int nl_nonroot;
|
|
unsigned int groups;
|
|
struct module *module;
|
|
int registered;
|
|
};
|
|
|
|
static struct netlink_table *nl_table;
|
|
|
|
static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
|
|
|
|
static int netlink_dump(struct sock *sk);
|
|
static void netlink_destroy_callback(struct netlink_callback *cb);
|
|
|
|
static DEFINE_RWLOCK(nl_table_lock);
|
|
static atomic_t nl_table_users = ATOMIC_INIT(0);
|
|
|
|
static ATOMIC_NOTIFIER_HEAD(netlink_chain);
|
|
|
|
static u32 netlink_group_mask(u32 group)
|
|
{
|
|
return group ? 1 << (group - 1) : 0;
|
|
}
|
|
|
|
static struct hlist_head *nl_pid_hashfn(struct nl_pid_hash *hash, u32 pid)
|
|
{
|
|
return &hash->table[jhash_1word(pid, hash->rnd) & hash->mask];
|
|
}
|
|
|
|
static void netlink_sock_destruct(struct sock *sk)
|
|
{
|
|
skb_queue_purge(&sk->sk_receive_queue);
|
|
|
|
if (!sock_flag(sk, SOCK_DEAD)) {
|
|
printk("Freeing alive netlink socket %p\n", sk);
|
|
return;
|
|
}
|
|
BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
|
|
BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
|
|
BUG_TRAP(!nlk_sk(sk)->cb);
|
|
BUG_TRAP(!nlk_sk(sk)->groups);
|
|
}
|
|
|
|
/* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on SMP.
|
|
* Look, when several writers sleep and reader wakes them up, all but one
|
|
* immediately hit write lock and grab all the cpus. Exclusive sleep solves
|
|
* this, _but_ remember, it adds useless work on UP machines.
|
|
*/
|
|
|
|
static void netlink_table_grab(void)
|
|
{
|
|
write_lock_bh(&nl_table_lock);
|
|
|
|
if (atomic_read(&nl_table_users)) {
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
add_wait_queue_exclusive(&nl_table_wait, &wait);
|
|
for(;;) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
if (atomic_read(&nl_table_users) == 0)
|
|
break;
|
|
write_unlock_bh(&nl_table_lock);
|
|
schedule();
|
|
write_lock_bh(&nl_table_lock);
|
|
}
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&nl_table_wait, &wait);
|
|
}
|
|
}
|
|
|
|
static __inline__ void netlink_table_ungrab(void)
|
|
{
|
|
write_unlock_bh(&nl_table_lock);
|
|
wake_up(&nl_table_wait);
|
|
}
|
|
|
|
static __inline__ void
|
|
netlink_lock_table(void)
|
|
{
|
|
/* read_lock() synchronizes us to netlink_table_grab */
|
|
|
|
read_lock(&nl_table_lock);
|
|
atomic_inc(&nl_table_users);
|
|
read_unlock(&nl_table_lock);
|
|
}
|
|
|
|
static __inline__ void
|
|
netlink_unlock_table(void)
|
|
{
|
|
if (atomic_dec_and_test(&nl_table_users))
|
|
wake_up(&nl_table_wait);
|
|
}
|
|
|
|
static __inline__ struct sock *netlink_lookup(int protocol, u32 pid)
|
|
{
|
|
struct nl_pid_hash *hash = &nl_table[protocol].hash;
|
|
struct hlist_head *head;
|
|
struct sock *sk;
|
|
struct hlist_node *node;
|
|
|
|
read_lock(&nl_table_lock);
|
|
head = nl_pid_hashfn(hash, pid);
|
|
sk_for_each(sk, node, head) {
|
|
if (nlk_sk(sk)->pid == pid) {
|
|
sock_hold(sk);
|
|
goto found;
|
|
}
|
|
}
|
|
sk = NULL;
|
|
found:
|
|
read_unlock(&nl_table_lock);
|
|
return sk;
|
|
}
|
|
|
|
static inline struct hlist_head *nl_pid_hash_alloc(size_t size)
|
|
{
|
|
if (size <= PAGE_SIZE)
|
|
return kmalloc(size, GFP_ATOMIC);
|
|
else
|
|
return (struct hlist_head *)
|
|
__get_free_pages(GFP_ATOMIC, get_order(size));
|
|
}
|
|
|
|
static inline void nl_pid_hash_free(struct hlist_head *table, size_t size)
|
|
{
|
|
if (size <= PAGE_SIZE)
|
|
kfree(table);
|
|
else
|
|
free_pages((unsigned long)table, get_order(size));
|
|
}
|
|
|
|
static int nl_pid_hash_rehash(struct nl_pid_hash *hash, int grow)
|
|
{
|
|
unsigned int omask, mask, shift;
|
|
size_t osize, size;
|
|
struct hlist_head *otable, *table;
|
|
int i;
|
|
|
|
omask = mask = hash->mask;
|
|
osize = size = (mask + 1) * sizeof(*table);
|
|
shift = hash->shift;
|
|
|
|
if (grow) {
|
|
if (++shift > hash->max_shift)
|
|
return 0;
|
|
mask = mask * 2 + 1;
|
|
size *= 2;
|
|
}
|
|
|
|
table = nl_pid_hash_alloc(size);
|
|
if (!table)
|
|
return 0;
|
|
|
|
memset(table, 0, size);
|
|
otable = hash->table;
|
|
hash->table = table;
|
|
hash->mask = mask;
|
|
hash->shift = shift;
|
|
get_random_bytes(&hash->rnd, sizeof(hash->rnd));
|
|
|
|
for (i = 0; i <= omask; i++) {
|
|
struct sock *sk;
|
|
struct hlist_node *node, *tmp;
|
|
|
|
sk_for_each_safe(sk, node, tmp, &otable[i])
|
|
__sk_add_node(sk, nl_pid_hashfn(hash, nlk_sk(sk)->pid));
|
|
}
|
|
|
|
nl_pid_hash_free(otable, osize);
|
|
hash->rehash_time = jiffies + 10 * 60 * HZ;
|
|
return 1;
|
|
}
|
|
|
|
static inline int nl_pid_hash_dilute(struct nl_pid_hash *hash, int len)
|
|
{
|
|
int avg = hash->entries >> hash->shift;
|
|
|
|
if (unlikely(avg > 1) && nl_pid_hash_rehash(hash, 1))
|
|
return 1;
|
|
|
|
if (unlikely(len > avg) && time_after(jiffies, hash->rehash_time)) {
|
|
nl_pid_hash_rehash(hash, 0);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct proto_ops netlink_ops;
|
|
|
|
static void
|
|
netlink_update_listeners(struct sock *sk)
|
|
{
|
|
struct netlink_table *tbl = &nl_table[sk->sk_protocol];
|
|
struct hlist_node *node;
|
|
unsigned long mask;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < NLGRPSZ(tbl->groups)/sizeof(unsigned long); i++) {
|
|
mask = 0;
|
|
sk_for_each_bound(sk, node, &tbl->mc_list)
|
|
mask |= nlk_sk(sk)->groups[i];
|
|
tbl->listeners[i] = mask;
|
|
}
|
|
/* this function is only called with the netlink table "grabbed", which
|
|
* makes sure updates are visible before bind or setsockopt return. */
|
|
}
|
|
|
|
static int netlink_insert(struct sock *sk, u32 pid)
|
|
{
|
|
struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
|
|
struct hlist_head *head;
|
|
int err = -EADDRINUSE;
|
|
struct sock *osk;
|
|
struct hlist_node *node;
|
|
int len;
|
|
|
|
netlink_table_grab();
|
|
head = nl_pid_hashfn(hash, pid);
|
|
len = 0;
|
|
sk_for_each(osk, node, head) {
|
|
if (nlk_sk(osk)->pid == pid)
|
|
break;
|
|
len++;
|
|
}
|
|
if (node)
|
|
goto err;
|
|
|
|
err = -EBUSY;
|
|
if (nlk_sk(sk)->pid)
|
|
goto err;
|
|
|
|
err = -ENOMEM;
|
|
if (BITS_PER_LONG > 32 && unlikely(hash->entries >= UINT_MAX))
|
|
goto err;
|
|
|
|
if (len && nl_pid_hash_dilute(hash, len))
|
|
head = nl_pid_hashfn(hash, pid);
|
|
hash->entries++;
|
|
nlk_sk(sk)->pid = pid;
|
|
sk_add_node(sk, head);
|
|
err = 0;
|
|
|
|
err:
|
|
netlink_table_ungrab();
|
|
return err;
|
|
}
|
|
|
|
static void netlink_remove(struct sock *sk)
|
|
{
|
|
netlink_table_grab();
|
|
if (sk_del_node_init(sk))
|
|
nl_table[sk->sk_protocol].hash.entries--;
|
|
if (nlk_sk(sk)->subscriptions)
|
|
__sk_del_bind_node(sk);
|
|
netlink_table_ungrab();
|
|
}
|
|
|
|
static struct proto netlink_proto = {
|
|
.name = "NETLINK",
|
|
.owner = THIS_MODULE,
|
|
.obj_size = sizeof(struct netlink_sock),
|
|
};
|
|
|
|
static int __netlink_create(struct socket *sock, int protocol)
|
|
{
|
|
struct sock *sk;
|
|
struct netlink_sock *nlk;
|
|
|
|
sock->ops = &netlink_ops;
|
|
|
|
sk = sk_alloc(PF_NETLINK, GFP_KERNEL, &netlink_proto, 1);
|
|
if (!sk)
|
|
return -ENOMEM;
|
|
|
|
sock_init_data(sock, sk);
|
|
|
|
nlk = nlk_sk(sk);
|
|
spin_lock_init(&nlk->cb_lock);
|
|
init_waitqueue_head(&nlk->wait);
|
|
|
|
sk->sk_destruct = netlink_sock_destruct;
|
|
sk->sk_protocol = protocol;
|
|
return 0;
|
|
}
|
|
|
|
static int netlink_create(struct socket *sock, int protocol)
|
|
{
|
|
struct module *module = NULL;
|
|
struct netlink_sock *nlk;
|
|
unsigned int groups;
|
|
int err = 0;
|
|
|
|
sock->state = SS_UNCONNECTED;
|
|
|
|
if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
|
|
return -ESOCKTNOSUPPORT;
|
|
|
|
if (protocol<0 || protocol >= MAX_LINKS)
|
|
return -EPROTONOSUPPORT;
|
|
|
|
netlink_lock_table();
|
|
#ifdef CONFIG_KMOD
|
|
if (!nl_table[protocol].registered) {
|
|
netlink_unlock_table();
|
|
request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
|
|
netlink_lock_table();
|
|
}
|
|
#endif
|
|
if (nl_table[protocol].registered &&
|
|
try_module_get(nl_table[protocol].module))
|
|
module = nl_table[protocol].module;
|
|
groups = nl_table[protocol].groups;
|
|
netlink_unlock_table();
|
|
|
|
if ((err = __netlink_create(sock, protocol)) < 0)
|
|
goto out_module;
|
|
|
|
nlk = nlk_sk(sock->sk);
|
|
nlk->module = module;
|
|
out:
|
|
return err;
|
|
|
|
out_module:
|
|
module_put(module);
|
|
goto out;
|
|
}
|
|
|
|
static int netlink_release(struct socket *sock)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct netlink_sock *nlk;
|
|
|
|
if (!sk)
|
|
return 0;
|
|
|
|
netlink_remove(sk);
|
|
nlk = nlk_sk(sk);
|
|
|
|
spin_lock(&nlk->cb_lock);
|
|
if (nlk->cb) {
|
|
if (nlk->cb->done)
|
|
nlk->cb->done(nlk->cb);
|
|
netlink_destroy_callback(nlk->cb);
|
|
nlk->cb = NULL;
|
|
}
|
|
spin_unlock(&nlk->cb_lock);
|
|
|
|
/* OK. Socket is unlinked, and, therefore,
|
|
no new packets will arrive */
|
|
|
|
sock_orphan(sk);
|
|
sock->sk = NULL;
|
|
wake_up_interruptible_all(&nlk->wait);
|
|
|
|
skb_queue_purge(&sk->sk_write_queue);
|
|
|
|
if (nlk->pid && !nlk->subscriptions) {
|
|
struct netlink_notify n = {
|
|
.protocol = sk->sk_protocol,
|
|
.pid = nlk->pid,
|
|
};
|
|
atomic_notifier_call_chain(&netlink_chain,
|
|
NETLINK_URELEASE, &n);
|
|
}
|
|
|
|
if (nlk->module)
|
|
module_put(nlk->module);
|
|
|
|
netlink_table_grab();
|
|
if (nlk->flags & NETLINK_KERNEL_SOCKET) {
|
|
kfree(nl_table[sk->sk_protocol].listeners);
|
|
nl_table[sk->sk_protocol].module = NULL;
|
|
nl_table[sk->sk_protocol].registered = 0;
|
|
} else if (nlk->subscriptions)
|
|
netlink_update_listeners(sk);
|
|
netlink_table_ungrab();
|
|
|
|
kfree(nlk->groups);
|
|
nlk->groups = NULL;
|
|
|
|
sock_put(sk);
|
|
return 0;
|
|
}
|
|
|
|
static int netlink_autobind(struct socket *sock)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct nl_pid_hash *hash = &nl_table[sk->sk_protocol].hash;
|
|
struct hlist_head *head;
|
|
struct sock *osk;
|
|
struct hlist_node *node;
|
|
s32 pid = current->tgid;
|
|
int err;
|
|
static s32 rover = -4097;
|
|
|
|
retry:
|
|
cond_resched();
|
|
netlink_table_grab();
|
|
head = nl_pid_hashfn(hash, pid);
|
|
sk_for_each(osk, node, head) {
|
|
if (nlk_sk(osk)->pid == pid) {
|
|
/* Bind collision, search negative pid values. */
|
|
pid = rover--;
|
|
if (rover > -4097)
|
|
rover = -4097;
|
|
netlink_table_ungrab();
|
|
goto retry;
|
|
}
|
|
}
|
|
netlink_table_ungrab();
|
|
|
|
err = netlink_insert(sk, pid);
|
|
if (err == -EADDRINUSE)
|
|
goto retry;
|
|
|
|
/* If 2 threads race to autobind, that is fine. */
|
|
if (err == -EBUSY)
|
|
err = 0;
|
|
|
|
return err;
|
|
}
|
|
|
|
static inline int netlink_capable(struct socket *sock, unsigned int flag)
|
|
{
|
|
return (nl_table[sock->sk->sk_protocol].nl_nonroot & flag) ||
|
|
capable(CAP_NET_ADMIN);
|
|
}
|
|
|
|
static void
|
|
netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
|
|
{
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
|
|
if (nlk->subscriptions && !subscriptions)
|
|
__sk_del_bind_node(sk);
|
|
else if (!nlk->subscriptions && subscriptions)
|
|
sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
|
|
nlk->subscriptions = subscriptions;
|
|
}
|
|
|
|
static int netlink_alloc_groups(struct sock *sk)
|
|
{
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
unsigned int groups;
|
|
int err = 0;
|
|
|
|
netlink_lock_table();
|
|
groups = nl_table[sk->sk_protocol].groups;
|
|
if (!nl_table[sk->sk_protocol].registered)
|
|
err = -ENOENT;
|
|
netlink_unlock_table();
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
nlk->groups = kmalloc(NLGRPSZ(groups), GFP_KERNEL);
|
|
if (nlk->groups == NULL)
|
|
return -ENOMEM;
|
|
memset(nlk->groups, 0, NLGRPSZ(groups));
|
|
nlk->ngroups = groups;
|
|
return 0;
|
|
}
|
|
|
|
static int netlink_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
|
|
int err;
|
|
|
|
if (nladdr->nl_family != AF_NETLINK)
|
|
return -EINVAL;
|
|
|
|
/* Only superuser is allowed to listen multicasts */
|
|
if (nladdr->nl_groups) {
|
|
if (!netlink_capable(sock, NL_NONROOT_RECV))
|
|
return -EPERM;
|
|
if (nlk->groups == NULL) {
|
|
err = netlink_alloc_groups(sk);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
if (nlk->pid) {
|
|
if (nladdr->nl_pid != nlk->pid)
|
|
return -EINVAL;
|
|
} else {
|
|
err = nladdr->nl_pid ?
|
|
netlink_insert(sk, nladdr->nl_pid) :
|
|
netlink_autobind(sock);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (!nladdr->nl_groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
|
|
return 0;
|
|
|
|
netlink_table_grab();
|
|
netlink_update_subscriptions(sk, nlk->subscriptions +
|
|
hweight32(nladdr->nl_groups) -
|
|
hweight32(nlk->groups[0]));
|
|
nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | nladdr->nl_groups;
|
|
netlink_update_listeners(sk);
|
|
netlink_table_ungrab();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int netlink_connect(struct socket *sock, struct sockaddr *addr,
|
|
int alen, int flags)
|
|
{
|
|
int err = 0;
|
|
struct sock *sk = sock->sk;
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
struct sockaddr_nl *nladdr=(struct sockaddr_nl*)addr;
|
|
|
|
if (addr->sa_family == AF_UNSPEC) {
|
|
sk->sk_state = NETLINK_UNCONNECTED;
|
|
nlk->dst_pid = 0;
|
|
nlk->dst_group = 0;
|
|
return 0;
|
|
}
|
|
if (addr->sa_family != AF_NETLINK)
|
|
return -EINVAL;
|
|
|
|
/* Only superuser is allowed to send multicasts */
|
|
if (nladdr->nl_groups && !netlink_capable(sock, NL_NONROOT_SEND))
|
|
return -EPERM;
|
|
|
|
if (!nlk->pid)
|
|
err = netlink_autobind(sock);
|
|
|
|
if (err == 0) {
|
|
sk->sk_state = NETLINK_CONNECTED;
|
|
nlk->dst_pid = nladdr->nl_pid;
|
|
nlk->dst_group = ffs(nladdr->nl_groups);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int netlink_getname(struct socket *sock, struct sockaddr *addr, int *addr_len, int peer)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
struct sockaddr_nl *nladdr=(struct sockaddr_nl *)addr;
|
|
|
|
nladdr->nl_family = AF_NETLINK;
|
|
nladdr->nl_pad = 0;
|
|
*addr_len = sizeof(*nladdr);
|
|
|
|
if (peer) {
|
|
nladdr->nl_pid = nlk->dst_pid;
|
|
nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
|
|
} else {
|
|
nladdr->nl_pid = nlk->pid;
|
|
nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void netlink_overrun(struct sock *sk)
|
|
{
|
|
if (!test_and_set_bit(0, &nlk_sk(sk)->state)) {
|
|
sk->sk_err = ENOBUFS;
|
|
sk->sk_error_report(sk);
|
|
}
|
|
}
|
|
|
|
static struct sock *netlink_getsockbypid(struct sock *ssk, u32 pid)
|
|
{
|
|
int protocol = ssk->sk_protocol;
|
|
struct sock *sock;
|
|
struct netlink_sock *nlk;
|
|
|
|
sock = netlink_lookup(protocol, pid);
|
|
if (!sock)
|
|
return ERR_PTR(-ECONNREFUSED);
|
|
|
|
/* Don't bother queuing skb if kernel socket has no input function */
|
|
nlk = nlk_sk(sock);
|
|
if ((nlk->pid == 0 && !nlk->data_ready) ||
|
|
(sock->sk_state == NETLINK_CONNECTED &&
|
|
nlk->dst_pid != nlk_sk(ssk)->pid)) {
|
|
sock_put(sock);
|
|
return ERR_PTR(-ECONNREFUSED);
|
|
}
|
|
return sock;
|
|
}
|
|
|
|
struct sock *netlink_getsockbyfilp(struct file *filp)
|
|
{
|
|
struct inode *inode = filp->f_dentry->d_inode;
|
|
struct sock *sock;
|
|
|
|
if (!S_ISSOCK(inode->i_mode))
|
|
return ERR_PTR(-ENOTSOCK);
|
|
|
|
sock = SOCKET_I(inode)->sk;
|
|
if (sock->sk_family != AF_NETLINK)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
sock_hold(sock);
|
|
return sock;
|
|
}
|
|
|
|
/*
|
|
* Attach a skb to a netlink socket.
|
|
* The caller must hold a reference to the destination socket. On error, the
|
|
* reference is dropped. The skb is not send to the destination, just all
|
|
* all error checks are performed and memory in the queue is reserved.
|
|
* Return values:
|
|
* < 0: error. skb freed, reference to sock dropped.
|
|
* 0: continue
|
|
* 1: repeat lookup - reference dropped while waiting for socket memory.
|
|
*/
|
|
int netlink_attachskb(struct sock *sk, struct sk_buff *skb, int nonblock,
|
|
long timeo, struct sock *ssk)
|
|
{
|
|
struct netlink_sock *nlk;
|
|
|
|
nlk = nlk_sk(sk);
|
|
|
|
if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
|
|
test_bit(0, &nlk->state)) {
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
if (!timeo) {
|
|
if (!ssk || nlk_sk(ssk)->pid == 0)
|
|
netlink_overrun(sk);
|
|
sock_put(sk);
|
|
kfree_skb(skb);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
__set_current_state(TASK_INTERRUPTIBLE);
|
|
add_wait_queue(&nlk->wait, &wait);
|
|
|
|
if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
|
|
test_bit(0, &nlk->state)) &&
|
|
!sock_flag(sk, SOCK_DEAD))
|
|
timeo = schedule_timeout(timeo);
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&nlk->wait, &wait);
|
|
sock_put(sk);
|
|
|
|
if (signal_pending(current)) {
|
|
kfree_skb(skb);
|
|
return sock_intr_errno(timeo);
|
|
}
|
|
return 1;
|
|
}
|
|
skb_set_owner_r(skb, sk);
|
|
return 0;
|
|
}
|
|
|
|
int netlink_sendskb(struct sock *sk, struct sk_buff *skb, int protocol)
|
|
{
|
|
int len = skb->len;
|
|
|
|
skb_queue_tail(&sk->sk_receive_queue, skb);
|
|
sk->sk_data_ready(sk, len);
|
|
sock_put(sk);
|
|
return len;
|
|
}
|
|
|
|
void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
kfree_skb(skb);
|
|
sock_put(sk);
|
|
}
|
|
|
|
static inline struct sk_buff *netlink_trim(struct sk_buff *skb,
|
|
gfp_t allocation)
|
|
{
|
|
int delta;
|
|
|
|
skb_orphan(skb);
|
|
|
|
delta = skb->end - skb->tail;
|
|
if (delta * 2 < skb->truesize)
|
|
return skb;
|
|
|
|
if (skb_shared(skb)) {
|
|
struct sk_buff *nskb = skb_clone(skb, allocation);
|
|
if (!nskb)
|
|
return skb;
|
|
kfree_skb(skb);
|
|
skb = nskb;
|
|
}
|
|
|
|
if (!pskb_expand_head(skb, 0, -delta, allocation))
|
|
skb->truesize -= delta;
|
|
|
|
return skb;
|
|
}
|
|
|
|
int netlink_unicast(struct sock *ssk, struct sk_buff *skb, u32 pid, int nonblock)
|
|
{
|
|
struct sock *sk;
|
|
int err;
|
|
long timeo;
|
|
|
|
skb = netlink_trim(skb, gfp_any());
|
|
|
|
timeo = sock_sndtimeo(ssk, nonblock);
|
|
retry:
|
|
sk = netlink_getsockbypid(ssk, pid);
|
|
if (IS_ERR(sk)) {
|
|
kfree_skb(skb);
|
|
return PTR_ERR(sk);
|
|
}
|
|
err = netlink_attachskb(sk, skb, nonblock, timeo, ssk);
|
|
if (err == 1)
|
|
goto retry;
|
|
if (err)
|
|
return err;
|
|
|
|
return netlink_sendskb(sk, skb, ssk->sk_protocol);
|
|
}
|
|
|
|
int netlink_has_listeners(struct sock *sk, unsigned int group)
|
|
{
|
|
int res = 0;
|
|
|
|
BUG_ON(!(nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET));
|
|
if (group - 1 < nl_table[sk->sk_protocol].groups)
|
|
res = test_bit(group - 1, nl_table[sk->sk_protocol].listeners);
|
|
return res;
|
|
}
|
|
EXPORT_SYMBOL_GPL(netlink_has_listeners);
|
|
|
|
static __inline__ int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
|
|
{
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
|
|
if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
|
|
!test_bit(0, &nlk->state)) {
|
|
skb_set_owner_r(skb, sk);
|
|
skb_queue_tail(&sk->sk_receive_queue, skb);
|
|
sk->sk_data_ready(sk, skb->len);
|
|
return atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
struct netlink_broadcast_data {
|
|
struct sock *exclude_sk;
|
|
u32 pid;
|
|
u32 group;
|
|
int failure;
|
|
int congested;
|
|
int delivered;
|
|
gfp_t allocation;
|
|
struct sk_buff *skb, *skb2;
|
|
};
|
|
|
|
static inline int do_one_broadcast(struct sock *sk,
|
|
struct netlink_broadcast_data *p)
|
|
{
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
int val;
|
|
|
|
if (p->exclude_sk == sk)
|
|
goto out;
|
|
|
|
if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
|
|
!test_bit(p->group - 1, nlk->groups))
|
|
goto out;
|
|
|
|
if (p->failure) {
|
|
netlink_overrun(sk);
|
|
goto out;
|
|
}
|
|
|
|
sock_hold(sk);
|
|
if (p->skb2 == NULL) {
|
|
if (skb_shared(p->skb)) {
|
|
p->skb2 = skb_clone(p->skb, p->allocation);
|
|
} else {
|
|
p->skb2 = skb_get(p->skb);
|
|
/*
|
|
* skb ownership may have been set when
|
|
* delivered to a previous socket.
|
|
*/
|
|
skb_orphan(p->skb2);
|
|
}
|
|
}
|
|
if (p->skb2 == NULL) {
|
|
netlink_overrun(sk);
|
|
/* Clone failed. Notify ALL listeners. */
|
|
p->failure = 1;
|
|
} else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
|
|
netlink_overrun(sk);
|
|
} else {
|
|
p->congested |= val;
|
|
p->delivered = 1;
|
|
p->skb2 = NULL;
|
|
}
|
|
sock_put(sk);
|
|
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 pid,
|
|
u32 group, gfp_t allocation)
|
|
{
|
|
struct netlink_broadcast_data info;
|
|
struct hlist_node *node;
|
|
struct sock *sk;
|
|
|
|
skb = netlink_trim(skb, allocation);
|
|
|
|
info.exclude_sk = ssk;
|
|
info.pid = pid;
|
|
info.group = group;
|
|
info.failure = 0;
|
|
info.congested = 0;
|
|
info.delivered = 0;
|
|
info.allocation = allocation;
|
|
info.skb = skb;
|
|
info.skb2 = NULL;
|
|
|
|
/* While we sleep in clone, do not allow to change socket list */
|
|
|
|
netlink_lock_table();
|
|
|
|
sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
|
|
do_one_broadcast(sk, &info);
|
|
|
|
kfree_skb(skb);
|
|
|
|
netlink_unlock_table();
|
|
|
|
if (info.skb2)
|
|
kfree_skb(info.skb2);
|
|
|
|
if (info.delivered) {
|
|
if (info.congested && (allocation & __GFP_WAIT))
|
|
yield();
|
|
return 0;
|
|
}
|
|
if (info.failure)
|
|
return -ENOBUFS;
|
|
return -ESRCH;
|
|
}
|
|
|
|
struct netlink_set_err_data {
|
|
struct sock *exclude_sk;
|
|
u32 pid;
|
|
u32 group;
|
|
int code;
|
|
};
|
|
|
|
static inline int do_one_set_err(struct sock *sk,
|
|
struct netlink_set_err_data *p)
|
|
{
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
|
|
if (sk == p->exclude_sk)
|
|
goto out;
|
|
|
|
if (nlk->pid == p->pid || p->group - 1 >= nlk->ngroups ||
|
|
!test_bit(p->group - 1, nlk->groups))
|
|
goto out;
|
|
|
|
sk->sk_err = p->code;
|
|
sk->sk_error_report(sk);
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
void netlink_set_err(struct sock *ssk, u32 pid, u32 group, int code)
|
|
{
|
|
struct netlink_set_err_data info;
|
|
struct hlist_node *node;
|
|
struct sock *sk;
|
|
|
|
info.exclude_sk = ssk;
|
|
info.pid = pid;
|
|
info.group = group;
|
|
info.code = code;
|
|
|
|
read_lock(&nl_table_lock);
|
|
|
|
sk_for_each_bound(sk, node, &nl_table[ssk->sk_protocol].mc_list)
|
|
do_one_set_err(sk, &info);
|
|
|
|
read_unlock(&nl_table_lock);
|
|
}
|
|
|
|
static int netlink_setsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, int optlen)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
int val = 0, err;
|
|
|
|
if (level != SOL_NETLINK)
|
|
return -ENOPROTOOPT;
|
|
|
|
if (optlen >= sizeof(int) &&
|
|
get_user(val, (int __user *)optval))
|
|
return -EFAULT;
|
|
|
|
switch (optname) {
|
|
case NETLINK_PKTINFO:
|
|
if (val)
|
|
nlk->flags |= NETLINK_RECV_PKTINFO;
|
|
else
|
|
nlk->flags &= ~NETLINK_RECV_PKTINFO;
|
|
err = 0;
|
|
break;
|
|
case NETLINK_ADD_MEMBERSHIP:
|
|
case NETLINK_DROP_MEMBERSHIP: {
|
|
unsigned int subscriptions;
|
|
int old, new = optname == NETLINK_ADD_MEMBERSHIP ? 1 : 0;
|
|
|
|
if (!netlink_capable(sock, NL_NONROOT_RECV))
|
|
return -EPERM;
|
|
if (nlk->groups == NULL) {
|
|
err = netlink_alloc_groups(sk);
|
|
if (err)
|
|
return err;
|
|
}
|
|
if (!val || val - 1 >= nlk->ngroups)
|
|
return -EINVAL;
|
|
netlink_table_grab();
|
|
old = test_bit(val - 1, nlk->groups);
|
|
subscriptions = nlk->subscriptions - old + new;
|
|
if (new)
|
|
__set_bit(val - 1, nlk->groups);
|
|
else
|
|
__clear_bit(val - 1, nlk->groups);
|
|
netlink_update_subscriptions(sk, subscriptions);
|
|
netlink_update_listeners(sk);
|
|
netlink_table_ungrab();
|
|
err = 0;
|
|
break;
|
|
}
|
|
default:
|
|
err = -ENOPROTOOPT;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int netlink_getsockopt(struct socket *sock, int level, int optname,
|
|
char __user *optval, int __user *optlen)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
int len, val, err;
|
|
|
|
if (level != SOL_NETLINK)
|
|
return -ENOPROTOOPT;
|
|
|
|
if (get_user(len, optlen))
|
|
return -EFAULT;
|
|
if (len < 0)
|
|
return -EINVAL;
|
|
|
|
switch (optname) {
|
|
case NETLINK_PKTINFO:
|
|
if (len < sizeof(int))
|
|
return -EINVAL;
|
|
len = sizeof(int);
|
|
val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
|
|
put_user(len, optlen);
|
|
put_user(val, optval);
|
|
err = 0;
|
|
break;
|
|
default:
|
|
err = -ENOPROTOOPT;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
|
|
{
|
|
struct nl_pktinfo info;
|
|
|
|
info.group = NETLINK_CB(skb).dst_group;
|
|
put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
|
|
}
|
|
|
|
static inline void netlink_rcv_wake(struct sock *sk)
|
|
{
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
|
|
if (skb_queue_empty(&sk->sk_receive_queue))
|
|
clear_bit(0, &nlk->state);
|
|
if (!test_bit(0, &nlk->state))
|
|
wake_up_interruptible(&nlk->wait);
|
|
}
|
|
|
|
static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock,
|
|
struct msghdr *msg, size_t len)
|
|
{
|
|
struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
|
|
struct sock *sk = sock->sk;
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
struct sockaddr_nl *addr=msg->msg_name;
|
|
u32 dst_pid;
|
|
u32 dst_group;
|
|
struct sk_buff *skb;
|
|
int err;
|
|
struct scm_cookie scm;
|
|
|
|
if (msg->msg_flags&MSG_OOB)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (NULL == siocb->scm)
|
|
siocb->scm = &scm;
|
|
err = scm_send(sock, msg, siocb->scm);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
if (msg->msg_namelen) {
|
|
if (addr->nl_family != AF_NETLINK)
|
|
return -EINVAL;
|
|
dst_pid = addr->nl_pid;
|
|
dst_group = ffs(addr->nl_groups);
|
|
if (dst_group && !netlink_capable(sock, NL_NONROOT_SEND))
|
|
return -EPERM;
|
|
} else {
|
|
dst_pid = nlk->dst_pid;
|
|
dst_group = nlk->dst_group;
|
|
}
|
|
|
|
if (!nlk->pid) {
|
|
err = netlink_autobind(sock);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
err = -EMSGSIZE;
|
|
if (len > sk->sk_sndbuf - 32)
|
|
goto out;
|
|
err = -ENOBUFS;
|
|
skb = alloc_skb(len, GFP_KERNEL);
|
|
if (skb==NULL)
|
|
goto out;
|
|
|
|
NETLINK_CB(skb).pid = nlk->pid;
|
|
NETLINK_CB(skb).dst_pid = dst_pid;
|
|
NETLINK_CB(skb).dst_group = dst_group;
|
|
NETLINK_CB(skb).loginuid = audit_get_loginuid(current->audit_context);
|
|
memcpy(NETLINK_CREDS(skb), &siocb->scm->creds, sizeof(struct ucred));
|
|
|
|
/* What can I do? Netlink is asynchronous, so that
|
|
we will have to save current capabilities to
|
|
check them, when this message will be delivered
|
|
to corresponding kernel module. --ANK (980802)
|
|
*/
|
|
|
|
err = -EFAULT;
|
|
if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len)) {
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
|
|
err = security_netlink_send(sk, skb);
|
|
if (err) {
|
|
kfree_skb(skb);
|
|
goto out;
|
|
}
|
|
|
|
if (dst_group) {
|
|
atomic_inc(&skb->users);
|
|
netlink_broadcast(sk, skb, dst_pid, dst_group, GFP_KERNEL);
|
|
}
|
|
err = netlink_unicast(sk, skb, dst_pid, msg->msg_flags&MSG_DONTWAIT);
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock,
|
|
struct msghdr *msg, size_t len,
|
|
int flags)
|
|
{
|
|
struct sock_iocb *siocb = kiocb_to_siocb(kiocb);
|
|
struct scm_cookie scm;
|
|
struct sock *sk = sock->sk;
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
int noblock = flags&MSG_DONTWAIT;
|
|
size_t copied;
|
|
struct sk_buff *skb;
|
|
int err;
|
|
|
|
if (flags&MSG_OOB)
|
|
return -EOPNOTSUPP;
|
|
|
|
copied = 0;
|
|
|
|
skb = skb_recv_datagram(sk,flags,noblock,&err);
|
|
if (skb==NULL)
|
|
goto out;
|
|
|
|
msg->msg_namelen = 0;
|
|
|
|
copied = skb->len;
|
|
if (len < copied) {
|
|
msg->msg_flags |= MSG_TRUNC;
|
|
copied = len;
|
|
}
|
|
|
|
skb->h.raw = skb->data;
|
|
err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
|
|
|
|
if (msg->msg_name) {
|
|
struct sockaddr_nl *addr = (struct sockaddr_nl*)msg->msg_name;
|
|
addr->nl_family = AF_NETLINK;
|
|
addr->nl_pad = 0;
|
|
addr->nl_pid = NETLINK_CB(skb).pid;
|
|
addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
|
|
msg->msg_namelen = sizeof(*addr);
|
|
}
|
|
|
|
if (nlk->flags & NETLINK_RECV_PKTINFO)
|
|
netlink_cmsg_recv_pktinfo(msg, skb);
|
|
|
|
if (NULL == siocb->scm) {
|
|
memset(&scm, 0, sizeof(scm));
|
|
siocb->scm = &scm;
|
|
}
|
|
siocb->scm->creds = *NETLINK_CREDS(skb);
|
|
skb_free_datagram(sk, skb);
|
|
|
|
if (nlk->cb && atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2)
|
|
netlink_dump(sk);
|
|
|
|
scm_recv(sock, msg, siocb->scm, flags);
|
|
|
|
out:
|
|
netlink_rcv_wake(sk);
|
|
return err ? : copied;
|
|
}
|
|
|
|
static void netlink_data_ready(struct sock *sk, int len)
|
|
{
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
|
|
if (nlk->data_ready)
|
|
nlk->data_ready(sk, len);
|
|
netlink_rcv_wake(sk);
|
|
}
|
|
|
|
/*
|
|
* We export these functions to other modules. They provide a
|
|
* complete set of kernel non-blocking support for message
|
|
* queueing.
|
|
*/
|
|
|
|
struct sock *
|
|
netlink_kernel_create(int unit, unsigned int groups,
|
|
void (*input)(struct sock *sk, int len),
|
|
struct module *module)
|
|
{
|
|
struct socket *sock;
|
|
struct sock *sk;
|
|
struct netlink_sock *nlk;
|
|
unsigned long *listeners = NULL;
|
|
|
|
if (!nl_table)
|
|
return NULL;
|
|
|
|
if (unit<0 || unit>=MAX_LINKS)
|
|
return NULL;
|
|
|
|
if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
|
|
return NULL;
|
|
|
|
if (__netlink_create(sock, unit) < 0)
|
|
goto out_sock_release;
|
|
|
|
if (groups < 32)
|
|
groups = 32;
|
|
|
|
listeners = kzalloc(NLGRPSZ(groups), GFP_KERNEL);
|
|
if (!listeners)
|
|
goto out_sock_release;
|
|
|
|
sk = sock->sk;
|
|
sk->sk_data_ready = netlink_data_ready;
|
|
if (input)
|
|
nlk_sk(sk)->data_ready = input;
|
|
|
|
if (netlink_insert(sk, 0))
|
|
goto out_sock_release;
|
|
|
|
nlk = nlk_sk(sk);
|
|
nlk->flags |= NETLINK_KERNEL_SOCKET;
|
|
|
|
netlink_table_grab();
|
|
nl_table[unit].groups = groups;
|
|
nl_table[unit].listeners = listeners;
|
|
nl_table[unit].module = module;
|
|
nl_table[unit].registered = 1;
|
|
netlink_table_ungrab();
|
|
|
|
return sk;
|
|
|
|
out_sock_release:
|
|
kfree(listeners);
|
|
sock_release(sock);
|
|
return NULL;
|
|
}
|
|
|
|
void netlink_set_nonroot(int protocol, unsigned int flags)
|
|
{
|
|
if ((unsigned int)protocol < MAX_LINKS)
|
|
nl_table[protocol].nl_nonroot = flags;
|
|
}
|
|
|
|
static void netlink_destroy_callback(struct netlink_callback *cb)
|
|
{
|
|
if (cb->skb)
|
|
kfree_skb(cb->skb);
|
|
kfree(cb);
|
|
}
|
|
|
|
/*
|
|
* It looks a bit ugly.
|
|
* It would be better to create kernel thread.
|
|
*/
|
|
|
|
static int netlink_dump(struct sock *sk)
|
|
{
|
|
struct netlink_sock *nlk = nlk_sk(sk);
|
|
struct netlink_callback *cb;
|
|
struct sk_buff *skb;
|
|
struct nlmsghdr *nlh;
|
|
int len;
|
|
|
|
skb = sock_rmalloc(sk, NLMSG_GOODSIZE, 0, GFP_KERNEL);
|
|
if (!skb)
|
|
return -ENOBUFS;
|
|
|
|
spin_lock(&nlk->cb_lock);
|
|
|
|
cb = nlk->cb;
|
|
if (cb == NULL) {
|
|
spin_unlock(&nlk->cb_lock);
|
|
kfree_skb(skb);
|
|
return -EINVAL;
|
|
}
|
|
|
|
len = cb->dump(skb, cb);
|
|
|
|
if (len > 0) {
|
|
spin_unlock(&nlk->cb_lock);
|
|
skb_queue_tail(&sk->sk_receive_queue, skb);
|
|
sk->sk_data_ready(sk, len);
|
|
return 0;
|
|
}
|
|
|
|
nlh = NLMSG_NEW_ANSWER(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
|
|
memcpy(NLMSG_DATA(nlh), &len, sizeof(len));
|
|
skb_queue_tail(&sk->sk_receive_queue, skb);
|
|
sk->sk_data_ready(sk, skb->len);
|
|
|
|
if (cb->done)
|
|
cb->done(cb);
|
|
nlk->cb = NULL;
|
|
spin_unlock(&nlk->cb_lock);
|
|
|
|
netlink_destroy_callback(cb);
|
|
return 0;
|
|
|
|
nlmsg_failure:
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
int netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
|
|
struct nlmsghdr *nlh,
|
|
int (*dump)(struct sk_buff *skb, struct netlink_callback*),
|
|
int (*done)(struct netlink_callback*))
|
|
{
|
|
struct netlink_callback *cb;
|
|
struct sock *sk;
|
|
struct netlink_sock *nlk;
|
|
|
|
cb = kmalloc(sizeof(*cb), GFP_KERNEL);
|
|
if (cb == NULL)
|
|
return -ENOBUFS;
|
|
|
|
memset(cb, 0, sizeof(*cb));
|
|
cb->dump = dump;
|
|
cb->done = done;
|
|
cb->nlh = nlh;
|
|
atomic_inc(&skb->users);
|
|
cb->skb = skb;
|
|
|
|
sk = netlink_lookup(ssk->sk_protocol, NETLINK_CB(skb).pid);
|
|
if (sk == NULL) {
|
|
netlink_destroy_callback(cb);
|
|
return -ECONNREFUSED;
|
|
}
|
|
nlk = nlk_sk(sk);
|
|
/* A dump is in progress... */
|
|
spin_lock(&nlk->cb_lock);
|
|
if (nlk->cb) {
|
|
spin_unlock(&nlk->cb_lock);
|
|
netlink_destroy_callback(cb);
|
|
sock_put(sk);
|
|
return -EBUSY;
|
|
}
|
|
nlk->cb = cb;
|
|
spin_unlock(&nlk->cb_lock);
|
|
|
|
netlink_dump(sk);
|
|
sock_put(sk);
|
|
return 0;
|
|
}
|
|
|
|
void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
|
|
{
|
|
struct sk_buff *skb;
|
|
struct nlmsghdr *rep;
|
|
struct nlmsgerr *errmsg;
|
|
int size;
|
|
|
|
if (err == 0)
|
|
size = NLMSG_SPACE(sizeof(struct nlmsgerr));
|
|
else
|
|
size = NLMSG_SPACE(4 + NLMSG_ALIGN(nlh->nlmsg_len));
|
|
|
|
skb = alloc_skb(size, GFP_KERNEL);
|
|
if (!skb) {
|
|
struct sock *sk;
|
|
|
|
sk = netlink_lookup(in_skb->sk->sk_protocol,
|
|
NETLINK_CB(in_skb).pid);
|
|
if (sk) {
|
|
sk->sk_err = ENOBUFS;
|
|
sk->sk_error_report(sk);
|
|
sock_put(sk);
|
|
}
|
|
return;
|
|
}
|
|
|
|
rep = __nlmsg_put(skb, NETLINK_CB(in_skb).pid, nlh->nlmsg_seq,
|
|
NLMSG_ERROR, sizeof(struct nlmsgerr), 0);
|
|
errmsg = NLMSG_DATA(rep);
|
|
errmsg->error = err;
|
|
memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(struct nlmsghdr));
|
|
netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).pid, MSG_DONTWAIT);
|
|
}
|
|
|
|
static int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
|
|
struct nlmsghdr *, int *))
|
|
{
|
|
unsigned int total_len;
|
|
struct nlmsghdr *nlh;
|
|
int err;
|
|
|
|
while (skb->len >= nlmsg_total_size(0)) {
|
|
nlh = (struct nlmsghdr *) skb->data;
|
|
|
|
if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
|
|
return 0;
|
|
|
|
total_len = min(NLMSG_ALIGN(nlh->nlmsg_len), skb->len);
|
|
|
|
if (cb(skb, nlh, &err) < 0) {
|
|
/* Not an error, but we have to interrupt processing
|
|
* here. Note: that in this case we do not pull
|
|
* message from skb, it will be processed later.
|
|
*/
|
|
if (err == 0)
|
|
return -1;
|
|
netlink_ack(skb, nlh, err);
|
|
} else if (nlh->nlmsg_flags & NLM_F_ACK)
|
|
netlink_ack(skb, nlh, 0);
|
|
|
|
skb_pull(skb, total_len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nelink_run_queue - Process netlink receive queue.
|
|
* @sk: Netlink socket containing the queue
|
|
* @qlen: Place to store queue length upon entry
|
|
* @cb: Callback function invoked for each netlink message found
|
|
*
|
|
* Processes as much as there was in the queue upon entry and invokes
|
|
* a callback function for each netlink message found. The callback
|
|
* function may refuse a message by returning a negative error code
|
|
* but setting the error pointer to 0 in which case this function
|
|
* returns with a qlen != 0.
|
|
*
|
|
* qlen must be initialized to 0 before the initial entry, afterwards
|
|
* the function may be called repeatedly until qlen reaches 0.
|
|
*/
|
|
void netlink_run_queue(struct sock *sk, unsigned int *qlen,
|
|
int (*cb)(struct sk_buff *, struct nlmsghdr *, int *))
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
if (!*qlen || *qlen > skb_queue_len(&sk->sk_receive_queue))
|
|
*qlen = skb_queue_len(&sk->sk_receive_queue);
|
|
|
|
for (; *qlen; (*qlen)--) {
|
|
skb = skb_dequeue(&sk->sk_receive_queue);
|
|
if (netlink_rcv_skb(skb, cb)) {
|
|
if (skb->len)
|
|
skb_queue_head(&sk->sk_receive_queue, skb);
|
|
else {
|
|
kfree_skb(skb);
|
|
(*qlen)--;
|
|
}
|
|
break;
|
|
}
|
|
|
|
kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* netlink_queue_skip - Skip netlink message while processing queue.
|
|
* @nlh: Netlink message to be skipped
|
|
* @skb: Socket buffer containing the netlink messages.
|
|
*
|
|
* Pulls the given netlink message off the socket buffer so the next
|
|
* call to netlink_queue_run() will not reconsider the message.
|
|
*/
|
|
void netlink_queue_skip(struct nlmsghdr *nlh, struct sk_buff *skb)
|
|
{
|
|
int msglen = NLMSG_ALIGN(nlh->nlmsg_len);
|
|
|
|
if (msglen > skb->len)
|
|
msglen = skb->len;
|
|
|
|
skb_pull(skb, msglen);
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
struct nl_seq_iter {
|
|
int link;
|
|
int hash_idx;
|
|
};
|
|
|
|
static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos)
|
|
{
|
|
struct nl_seq_iter *iter = seq->private;
|
|
int i, j;
|
|
struct sock *s;
|
|
struct hlist_node *node;
|
|
loff_t off = 0;
|
|
|
|
for (i=0; i<MAX_LINKS; i++) {
|
|
struct nl_pid_hash *hash = &nl_table[i].hash;
|
|
|
|
for (j = 0; j <= hash->mask; j++) {
|
|
sk_for_each(s, node, &hash->table[j]) {
|
|
if (off == pos) {
|
|
iter->link = i;
|
|
iter->hash_idx = j;
|
|
return s;
|
|
}
|
|
++off;
|
|
}
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void *netlink_seq_start(struct seq_file *seq, loff_t *pos)
|
|
{
|
|
read_lock(&nl_table_lock);
|
|
return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN;
|
|
}
|
|
|
|
static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
|
|
{
|
|
struct sock *s;
|
|
struct nl_seq_iter *iter;
|
|
int i, j;
|
|
|
|
++*pos;
|
|
|
|
if (v == SEQ_START_TOKEN)
|
|
return netlink_seq_socket_idx(seq, 0);
|
|
|
|
s = sk_next(v);
|
|
if (s)
|
|
return s;
|
|
|
|
iter = seq->private;
|
|
i = iter->link;
|
|
j = iter->hash_idx + 1;
|
|
|
|
do {
|
|
struct nl_pid_hash *hash = &nl_table[i].hash;
|
|
|
|
for (; j <= hash->mask; j++) {
|
|
s = sk_head(&hash->table[j]);
|
|
if (s) {
|
|
iter->link = i;
|
|
iter->hash_idx = j;
|
|
return s;
|
|
}
|
|
}
|
|
|
|
j = 0;
|
|
} while (++i < MAX_LINKS);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void netlink_seq_stop(struct seq_file *seq, void *v)
|
|
{
|
|
read_unlock(&nl_table_lock);
|
|
}
|
|
|
|
|
|
static int netlink_seq_show(struct seq_file *seq, void *v)
|
|
{
|
|
if (v == SEQ_START_TOKEN)
|
|
seq_puts(seq,
|
|
"sk Eth Pid Groups "
|
|
"Rmem Wmem Dump Locks\n");
|
|
else {
|
|
struct sock *s = v;
|
|
struct netlink_sock *nlk = nlk_sk(s);
|
|
|
|
seq_printf(seq, "%p %-3d %-6d %08x %-8d %-8d %p %d\n",
|
|
s,
|
|
s->sk_protocol,
|
|
nlk->pid,
|
|
nlk->groups ? (u32)nlk->groups[0] : 0,
|
|
atomic_read(&s->sk_rmem_alloc),
|
|
atomic_read(&s->sk_wmem_alloc),
|
|
nlk->cb,
|
|
atomic_read(&s->sk_refcnt)
|
|
);
|
|
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct seq_operations netlink_seq_ops = {
|
|
.start = netlink_seq_start,
|
|
.next = netlink_seq_next,
|
|
.stop = netlink_seq_stop,
|
|
.show = netlink_seq_show,
|
|
};
|
|
|
|
|
|
static int netlink_seq_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct seq_file *seq;
|
|
struct nl_seq_iter *iter;
|
|
int err;
|
|
|
|
iter = kmalloc(sizeof(*iter), GFP_KERNEL);
|
|
if (!iter)
|
|
return -ENOMEM;
|
|
|
|
err = seq_open(file, &netlink_seq_ops);
|
|
if (err) {
|
|
kfree(iter);
|
|
return err;
|
|
}
|
|
|
|
memset(iter, 0, sizeof(*iter));
|
|
seq = file->private_data;
|
|
seq->private = iter;
|
|
return 0;
|
|
}
|
|
|
|
static struct file_operations netlink_seq_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = netlink_seq_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
#endif
|
|
|
|
int netlink_register_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_register(&netlink_chain, nb);
|
|
}
|
|
|
|
int netlink_unregister_notifier(struct notifier_block *nb)
|
|
{
|
|
return atomic_notifier_chain_unregister(&netlink_chain, nb);
|
|
}
|
|
|
|
static const struct proto_ops netlink_ops = {
|
|
.family = PF_NETLINK,
|
|
.owner = THIS_MODULE,
|
|
.release = netlink_release,
|
|
.bind = netlink_bind,
|
|
.connect = netlink_connect,
|
|
.socketpair = sock_no_socketpair,
|
|
.accept = sock_no_accept,
|
|
.getname = netlink_getname,
|
|
.poll = datagram_poll,
|
|
.ioctl = sock_no_ioctl,
|
|
.listen = sock_no_listen,
|
|
.shutdown = sock_no_shutdown,
|
|
.setsockopt = netlink_setsockopt,
|
|
.getsockopt = netlink_getsockopt,
|
|
.sendmsg = netlink_sendmsg,
|
|
.recvmsg = netlink_recvmsg,
|
|
.mmap = sock_no_mmap,
|
|
.sendpage = sock_no_sendpage,
|
|
};
|
|
|
|
static struct net_proto_family netlink_family_ops = {
|
|
.family = PF_NETLINK,
|
|
.create = netlink_create,
|
|
.owner = THIS_MODULE, /* for consistency 8) */
|
|
};
|
|
|
|
extern void netlink_skb_parms_too_large(void);
|
|
|
|
static int __init netlink_proto_init(void)
|
|
{
|
|
struct sk_buff *dummy_skb;
|
|
int i;
|
|
unsigned long max;
|
|
unsigned int order;
|
|
int err = proto_register(&netlink_proto, 0);
|
|
|
|
if (err != 0)
|
|
goto out;
|
|
|
|
if (sizeof(struct netlink_skb_parms) > sizeof(dummy_skb->cb))
|
|
netlink_skb_parms_too_large();
|
|
|
|
nl_table = kmalloc(sizeof(*nl_table) * MAX_LINKS, GFP_KERNEL);
|
|
if (!nl_table) {
|
|
enomem:
|
|
printk(KERN_CRIT "netlink_init: Cannot allocate nl_table\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
memset(nl_table, 0, sizeof(*nl_table) * MAX_LINKS);
|
|
|
|
if (num_physpages >= (128 * 1024))
|
|
max = num_physpages >> (21 - PAGE_SHIFT);
|
|
else
|
|
max = num_physpages >> (23 - PAGE_SHIFT);
|
|
|
|
order = get_bitmask_order(max) - 1 + PAGE_SHIFT;
|
|
max = (1UL << order) / sizeof(struct hlist_head);
|
|
order = get_bitmask_order(max > UINT_MAX ? UINT_MAX : max) - 1;
|
|
|
|
for (i = 0; i < MAX_LINKS; i++) {
|
|
struct nl_pid_hash *hash = &nl_table[i].hash;
|
|
|
|
hash->table = nl_pid_hash_alloc(1 * sizeof(*hash->table));
|
|
if (!hash->table) {
|
|
while (i-- > 0)
|
|
nl_pid_hash_free(nl_table[i].hash.table,
|
|
1 * sizeof(*hash->table));
|
|
kfree(nl_table);
|
|
goto enomem;
|
|
}
|
|
memset(hash->table, 0, 1 * sizeof(*hash->table));
|
|
hash->max_shift = order;
|
|
hash->shift = 0;
|
|
hash->mask = 0;
|
|
hash->rehash_time = jiffies;
|
|
}
|
|
|
|
sock_register(&netlink_family_ops);
|
|
#ifdef CONFIG_PROC_FS
|
|
proc_net_fops_create("netlink", 0, &netlink_seq_fops);
|
|
#endif
|
|
/* The netlink device handler may be needed early. */
|
|
rtnetlink_init();
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
core_initcall(netlink_proto_init);
|
|
|
|
EXPORT_SYMBOL(netlink_ack);
|
|
EXPORT_SYMBOL(netlink_run_queue);
|
|
EXPORT_SYMBOL(netlink_queue_skip);
|
|
EXPORT_SYMBOL(netlink_broadcast);
|
|
EXPORT_SYMBOL(netlink_dump_start);
|
|
EXPORT_SYMBOL(netlink_kernel_create);
|
|
EXPORT_SYMBOL(netlink_register_notifier);
|
|
EXPORT_SYMBOL(netlink_set_err);
|
|
EXPORT_SYMBOL(netlink_set_nonroot);
|
|
EXPORT_SYMBOL(netlink_unicast);
|
|
EXPORT_SYMBOL(netlink_unregister_notifier);
|
|
|