5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2122 lines
51 KiB
C
2122 lines
51 KiB
C
/*
|
|
* intelfb
|
|
*
|
|
* Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
|
|
*
|
|
* Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
|
|
* 2004 Sylvain Meyer
|
|
*
|
|
* This driver consists of two parts. The first part (intelfbdrv.c) provides
|
|
* the basic fbdev interfaces, is derived in part from the radeonfb and
|
|
* vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
|
|
* provides the code to program the hardware. Most of it is derived from
|
|
* the i810/i830 XFree86 driver. The HW-specific code is covered here
|
|
* under a dual license (GPL and MIT/XFree86 license).
|
|
*
|
|
* Author: David Dawes
|
|
*
|
|
*/
|
|
|
|
/* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/fb.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/init.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include "intelfb.h"
|
|
#include "intelfbhw.h"
|
|
|
|
struct pll_min_max {
|
|
int min_m, max_m, min_m1, max_m1;
|
|
int min_m2, max_m2, min_n, max_n;
|
|
int min_p, max_p, min_p1, max_p1;
|
|
int min_vco, max_vco, p_transition_clk, ref_clk;
|
|
int p_inc_lo, p_inc_hi;
|
|
};
|
|
|
|
#define PLLS_I8xx 0
|
|
#define PLLS_I9xx 1
|
|
#define PLLS_MAX 2
|
|
|
|
static struct pll_min_max plls[PLLS_MAX] = {
|
|
{ 108, 140, 18, 26,
|
|
6, 16, 3, 16,
|
|
4, 128, 0, 31,
|
|
930000, 1400000, 165000, 48000,
|
|
4, 2 }, /* I8xx */
|
|
|
|
{ 75, 120, 10, 20,
|
|
5, 9, 4, 7,
|
|
5, 80, 1, 8,
|
|
1400000, 2800000, 200000, 96000,
|
|
10, 5 } /* I9xx */
|
|
};
|
|
|
|
int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
|
|
{
|
|
u32 tmp;
|
|
if (!pdev || !dinfo)
|
|
return 1;
|
|
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_830M:
|
|
dinfo->name = "Intel(R) 830M";
|
|
dinfo->chipset = INTEL_830M;
|
|
dinfo->mobile = 1;
|
|
dinfo->pll_index = PLLS_I8xx;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_845G:
|
|
dinfo->name = "Intel(R) 845G";
|
|
dinfo->chipset = INTEL_845G;
|
|
dinfo->mobile = 0;
|
|
dinfo->pll_index = PLLS_I8xx;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_854:
|
|
dinfo->mobile = 1;
|
|
dinfo->name = "Intel(R) 854";
|
|
dinfo->chipset = INTEL_854;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_85XGM:
|
|
tmp = 0;
|
|
dinfo->mobile = 1;
|
|
dinfo->pll_index = PLLS_I8xx;
|
|
pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
|
|
switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
|
|
INTEL_85X_VARIANT_MASK) {
|
|
case INTEL_VAR_855GME:
|
|
dinfo->name = "Intel(R) 855GME";
|
|
dinfo->chipset = INTEL_855GME;
|
|
return 0;
|
|
case INTEL_VAR_855GM:
|
|
dinfo->name = "Intel(R) 855GM";
|
|
dinfo->chipset = INTEL_855GM;
|
|
return 0;
|
|
case INTEL_VAR_852GME:
|
|
dinfo->name = "Intel(R) 852GME";
|
|
dinfo->chipset = INTEL_852GME;
|
|
return 0;
|
|
case INTEL_VAR_852GM:
|
|
dinfo->name = "Intel(R) 852GM";
|
|
dinfo->chipset = INTEL_852GM;
|
|
return 0;
|
|
default:
|
|
dinfo->name = "Intel(R) 852GM/855GM";
|
|
dinfo->chipset = INTEL_85XGM;
|
|
return 0;
|
|
}
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_865G:
|
|
dinfo->name = "Intel(R) 865G";
|
|
dinfo->chipset = INTEL_865G;
|
|
dinfo->mobile = 0;
|
|
dinfo->pll_index = PLLS_I8xx;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_915G:
|
|
dinfo->name = "Intel(R) 915G";
|
|
dinfo->chipset = INTEL_915G;
|
|
dinfo->mobile = 0;
|
|
dinfo->pll_index = PLLS_I9xx;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_915GM:
|
|
dinfo->name = "Intel(R) 915GM";
|
|
dinfo->chipset = INTEL_915GM;
|
|
dinfo->mobile = 1;
|
|
dinfo->pll_index = PLLS_I9xx;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_945G:
|
|
dinfo->name = "Intel(R) 945G";
|
|
dinfo->chipset = INTEL_945G;
|
|
dinfo->mobile = 0;
|
|
dinfo->pll_index = PLLS_I9xx;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_945GM:
|
|
dinfo->name = "Intel(R) 945GM";
|
|
dinfo->chipset = INTEL_945GM;
|
|
dinfo->mobile = 1;
|
|
dinfo->pll_index = PLLS_I9xx;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_945GME:
|
|
dinfo->name = "Intel(R) 945GME";
|
|
dinfo->chipset = INTEL_945GME;
|
|
dinfo->mobile = 1;
|
|
dinfo->pll_index = PLLS_I9xx;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_965G:
|
|
dinfo->name = "Intel(R) 965G";
|
|
dinfo->chipset = INTEL_965G;
|
|
dinfo->mobile = 0;
|
|
dinfo->pll_index = PLLS_I9xx;
|
|
return 0;
|
|
case PCI_DEVICE_ID_INTEL_965GM:
|
|
dinfo->name = "Intel(R) 965GM";
|
|
dinfo->chipset = INTEL_965GM;
|
|
dinfo->mobile = 1;
|
|
dinfo->pll_index = PLLS_I9xx;
|
|
return 0;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
|
|
int *stolen_size)
|
|
{
|
|
struct pci_dev *bridge_dev;
|
|
u16 tmp;
|
|
int stolen_overhead;
|
|
|
|
if (!pdev || !aperture_size || !stolen_size)
|
|
return 1;
|
|
|
|
/* Find the bridge device. It is always 0:0.0 */
|
|
if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
|
|
ERR_MSG("cannot find bridge device\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Get the fb aperture size and "stolen" memory amount. */
|
|
tmp = 0;
|
|
pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
|
|
pci_dev_put(bridge_dev);
|
|
|
|
switch (pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_915G:
|
|
case PCI_DEVICE_ID_INTEL_915GM:
|
|
case PCI_DEVICE_ID_INTEL_945G:
|
|
case PCI_DEVICE_ID_INTEL_945GM:
|
|
case PCI_DEVICE_ID_INTEL_945GME:
|
|
case PCI_DEVICE_ID_INTEL_965G:
|
|
case PCI_DEVICE_ID_INTEL_965GM:
|
|
/* 915, 945 and 965 chipsets support a 256MB aperture.
|
|
Aperture size is determined by inspected the
|
|
base address of the aperture. */
|
|
if (pci_resource_start(pdev, 2) & 0x08000000)
|
|
*aperture_size = MB(128);
|
|
else
|
|
*aperture_size = MB(256);
|
|
break;
|
|
default:
|
|
if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
|
|
*aperture_size = MB(64);
|
|
else
|
|
*aperture_size = MB(128);
|
|
break;
|
|
}
|
|
|
|
/* Stolen memory size is reduced by the GTT and the popup.
|
|
GTT is 1K per MB of aperture size, and popup is 4K. */
|
|
stolen_overhead = (*aperture_size / MB(1)) + 4;
|
|
switch(pdev->device) {
|
|
case PCI_DEVICE_ID_INTEL_830M:
|
|
case PCI_DEVICE_ID_INTEL_845G:
|
|
switch (tmp & INTEL_830_GMCH_GMS_MASK) {
|
|
case INTEL_830_GMCH_GMS_STOLEN_512:
|
|
*stolen_size = KB(512) - KB(stolen_overhead);
|
|
return 0;
|
|
case INTEL_830_GMCH_GMS_STOLEN_1024:
|
|
*stolen_size = MB(1) - KB(stolen_overhead);
|
|
return 0;
|
|
case INTEL_830_GMCH_GMS_STOLEN_8192:
|
|
*stolen_size = MB(8) - KB(stolen_overhead);
|
|
return 0;
|
|
case INTEL_830_GMCH_GMS_LOCAL:
|
|
ERR_MSG("only local memory found\n");
|
|
return 1;
|
|
case INTEL_830_GMCH_GMS_DISABLED:
|
|
ERR_MSG("video memory is disabled\n");
|
|
return 1;
|
|
default:
|
|
ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
|
|
tmp & INTEL_830_GMCH_GMS_MASK);
|
|
return 1;
|
|
}
|
|
break;
|
|
default:
|
|
switch (tmp & INTEL_855_GMCH_GMS_MASK) {
|
|
case INTEL_855_GMCH_GMS_STOLEN_1M:
|
|
*stolen_size = MB(1) - KB(stolen_overhead);
|
|
return 0;
|
|
case INTEL_855_GMCH_GMS_STOLEN_4M:
|
|
*stolen_size = MB(4) - KB(stolen_overhead);
|
|
return 0;
|
|
case INTEL_855_GMCH_GMS_STOLEN_8M:
|
|
*stolen_size = MB(8) - KB(stolen_overhead);
|
|
return 0;
|
|
case INTEL_855_GMCH_GMS_STOLEN_16M:
|
|
*stolen_size = MB(16) - KB(stolen_overhead);
|
|
return 0;
|
|
case INTEL_855_GMCH_GMS_STOLEN_32M:
|
|
*stolen_size = MB(32) - KB(stolen_overhead);
|
|
return 0;
|
|
case INTEL_915G_GMCH_GMS_STOLEN_48M:
|
|
*stolen_size = MB(48) - KB(stolen_overhead);
|
|
return 0;
|
|
case INTEL_915G_GMCH_GMS_STOLEN_64M:
|
|
*stolen_size = MB(64) - KB(stolen_overhead);
|
|
return 0;
|
|
case INTEL_855_GMCH_GMS_DISABLED:
|
|
ERR_MSG("video memory is disabled\n");
|
|
return 0;
|
|
default:
|
|
ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
|
|
tmp & INTEL_855_GMCH_GMS_MASK);
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
|
|
{
|
|
int dvo = 0;
|
|
|
|
if (INREG(LVDS) & PORT_ENABLE)
|
|
dvo |= LVDS_PORT;
|
|
if (INREG(DVOA) & PORT_ENABLE)
|
|
dvo |= DVOA_PORT;
|
|
if (INREG(DVOB) & PORT_ENABLE)
|
|
dvo |= DVOB_PORT;
|
|
if (INREG(DVOC) & PORT_ENABLE)
|
|
dvo |= DVOC_PORT;
|
|
|
|
return dvo;
|
|
}
|
|
|
|
const char * intelfbhw_dvo_to_string(int dvo)
|
|
{
|
|
if (dvo & DVOA_PORT)
|
|
return "DVO port A";
|
|
else if (dvo & DVOB_PORT)
|
|
return "DVO port B";
|
|
else if (dvo & DVOC_PORT)
|
|
return "DVO port C";
|
|
else if (dvo & LVDS_PORT)
|
|
return "LVDS port";
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
|
|
int intelfbhw_validate_mode(struct intelfb_info *dinfo,
|
|
struct fb_var_screeninfo *var)
|
|
{
|
|
int bytes_per_pixel;
|
|
int tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_validate_mode\n");
|
|
#endif
|
|
|
|
bytes_per_pixel = var->bits_per_pixel / 8;
|
|
if (bytes_per_pixel == 3)
|
|
bytes_per_pixel = 4;
|
|
|
|
/* Check if enough video memory. */
|
|
tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
|
|
if (tmp > dinfo->fb.size) {
|
|
WRN_MSG("Not enough video ram for mode "
|
|
"(%d KByte vs %d KByte).\n",
|
|
BtoKB(tmp), BtoKB(dinfo->fb.size));
|
|
return 1;
|
|
}
|
|
|
|
/* Check if x/y limits are OK. */
|
|
if (var->xres - 1 > HACTIVE_MASK) {
|
|
WRN_MSG("X resolution too large (%d vs %d).\n",
|
|
var->xres, HACTIVE_MASK + 1);
|
|
return 1;
|
|
}
|
|
if (var->yres - 1 > VACTIVE_MASK) {
|
|
WRN_MSG("Y resolution too large (%d vs %d).\n",
|
|
var->yres, VACTIVE_MASK + 1);
|
|
return 1;
|
|
}
|
|
if (var->xres < 4) {
|
|
WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
|
|
return 1;
|
|
}
|
|
if (var->yres < 4) {
|
|
WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
|
|
return 1;
|
|
}
|
|
|
|
/* Check for doublescan modes. */
|
|
if (var->vmode & FB_VMODE_DOUBLE) {
|
|
WRN_MSG("Mode is double-scan.\n");
|
|
return 1;
|
|
}
|
|
|
|
if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
|
|
WRN_MSG("Odd number of lines in interlaced mode\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Check if clock is OK. */
|
|
tmp = 1000000000 / var->pixclock;
|
|
if (tmp < MIN_CLOCK) {
|
|
WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
|
|
(tmp + 500) / 1000, MIN_CLOCK / 1000);
|
|
return 1;
|
|
}
|
|
if (tmp > MAX_CLOCK) {
|
|
WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
|
|
(tmp + 500) / 1000, MAX_CLOCK / 1000);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
|
|
{
|
|
struct intelfb_info *dinfo = GET_DINFO(info);
|
|
u32 offset, xoffset, yoffset;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_pan_display\n");
|
|
#endif
|
|
|
|
xoffset = ROUND_DOWN_TO(var->xoffset, 8);
|
|
yoffset = var->yoffset;
|
|
|
|
if ((xoffset + var->xres > var->xres_virtual) ||
|
|
(yoffset + var->yres > var->yres_virtual))
|
|
return -EINVAL;
|
|
|
|
offset = (yoffset * dinfo->pitch) +
|
|
(xoffset * var->bits_per_pixel) / 8;
|
|
|
|
offset += dinfo->fb.offset << 12;
|
|
|
|
dinfo->vsync.pan_offset = offset;
|
|
if ((var->activate & FB_ACTIVATE_VBL) &&
|
|
!intelfbhw_enable_irq(dinfo))
|
|
dinfo->vsync.pan_display = 1;
|
|
else {
|
|
dinfo->vsync.pan_display = 0;
|
|
OUTREG(DSPABASE, offset);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Blank the screen. */
|
|
void intelfbhw_do_blank(int blank, struct fb_info *info)
|
|
{
|
|
struct intelfb_info *dinfo = GET_DINFO(info);
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
|
|
#endif
|
|
|
|
/* Turn plane A on or off */
|
|
tmp = INREG(DSPACNTR);
|
|
if (blank)
|
|
tmp &= ~DISPPLANE_PLANE_ENABLE;
|
|
else
|
|
tmp |= DISPPLANE_PLANE_ENABLE;
|
|
OUTREG(DSPACNTR, tmp);
|
|
/* Flush */
|
|
tmp = INREG(DSPABASE);
|
|
OUTREG(DSPABASE, tmp);
|
|
|
|
/* Turn off/on the HW cursor */
|
|
#if VERBOSE > 0
|
|
DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
|
|
#endif
|
|
if (dinfo->cursor_on) {
|
|
if (blank)
|
|
intelfbhw_cursor_hide(dinfo);
|
|
else
|
|
intelfbhw_cursor_show(dinfo);
|
|
dinfo->cursor_on = 1;
|
|
}
|
|
dinfo->cursor_blanked = blank;
|
|
|
|
/* Set DPMS level */
|
|
tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
|
|
switch (blank) {
|
|
case FB_BLANK_UNBLANK:
|
|
case FB_BLANK_NORMAL:
|
|
tmp |= ADPA_DPMS_D0;
|
|
break;
|
|
case FB_BLANK_VSYNC_SUSPEND:
|
|
tmp |= ADPA_DPMS_D1;
|
|
break;
|
|
case FB_BLANK_HSYNC_SUSPEND:
|
|
tmp |= ADPA_DPMS_D2;
|
|
break;
|
|
case FB_BLANK_POWERDOWN:
|
|
tmp |= ADPA_DPMS_D3;
|
|
break;
|
|
}
|
|
OUTREG(ADPA, tmp);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/* Check which pipe is connected to an active display plane. */
|
|
int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
|
|
{
|
|
int pipe = -1;
|
|
|
|
/* keep old default behaviour - prefer PIPE_A */
|
|
if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
|
|
pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
|
|
pipe &= PIPE_MASK;
|
|
if (unlikely(pipe == PIPE_A))
|
|
return PIPE_A;
|
|
}
|
|
if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
|
|
pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
|
|
pipe &= PIPE_MASK;
|
|
if (likely(pipe == PIPE_A))
|
|
return PIPE_A;
|
|
}
|
|
/* Impossible that no pipe is selected - return PIPE_A */
|
|
WARN_ON(pipe == -1);
|
|
if (unlikely(pipe == -1))
|
|
pipe = PIPE_A;
|
|
|
|
return pipe;
|
|
}
|
|
|
|
void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
|
|
unsigned red, unsigned green, unsigned blue,
|
|
unsigned transp)
|
|
{
|
|
u32 palette_reg = (dinfo->pipe == PIPE_A) ?
|
|
PALETTE_A : PALETTE_B;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
|
|
regno, red, green, blue);
|
|
#endif
|
|
|
|
OUTREG(palette_reg + (regno << 2),
|
|
(red << PALETTE_8_RED_SHIFT) |
|
|
(green << PALETTE_8_GREEN_SHIFT) |
|
|
(blue << PALETTE_8_BLUE_SHIFT));
|
|
}
|
|
|
|
|
|
int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
|
|
struct intelfb_hwstate *hw, int flag)
|
|
{
|
|
int i;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_read_hw_state\n");
|
|
#endif
|
|
|
|
if (!hw || !dinfo)
|
|
return -1;
|
|
|
|
/* Read in as much of the HW state as possible. */
|
|
hw->vga0_divisor = INREG(VGA0_DIVISOR);
|
|
hw->vga1_divisor = INREG(VGA1_DIVISOR);
|
|
hw->vga_pd = INREG(VGAPD);
|
|
hw->dpll_a = INREG(DPLL_A);
|
|
hw->dpll_b = INREG(DPLL_B);
|
|
hw->fpa0 = INREG(FPA0);
|
|
hw->fpa1 = INREG(FPA1);
|
|
hw->fpb0 = INREG(FPB0);
|
|
hw->fpb1 = INREG(FPB1);
|
|
|
|
if (flag == 1)
|
|
return flag;
|
|
|
|
#if 0
|
|
/* This seems to be a problem with the 852GM/855GM */
|
|
for (i = 0; i < PALETTE_8_ENTRIES; i++) {
|
|
hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
|
|
hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
|
|
}
|
|
#endif
|
|
|
|
if (flag == 2)
|
|
return flag;
|
|
|
|
hw->htotal_a = INREG(HTOTAL_A);
|
|
hw->hblank_a = INREG(HBLANK_A);
|
|
hw->hsync_a = INREG(HSYNC_A);
|
|
hw->vtotal_a = INREG(VTOTAL_A);
|
|
hw->vblank_a = INREG(VBLANK_A);
|
|
hw->vsync_a = INREG(VSYNC_A);
|
|
hw->src_size_a = INREG(SRC_SIZE_A);
|
|
hw->bclrpat_a = INREG(BCLRPAT_A);
|
|
hw->htotal_b = INREG(HTOTAL_B);
|
|
hw->hblank_b = INREG(HBLANK_B);
|
|
hw->hsync_b = INREG(HSYNC_B);
|
|
hw->vtotal_b = INREG(VTOTAL_B);
|
|
hw->vblank_b = INREG(VBLANK_B);
|
|
hw->vsync_b = INREG(VSYNC_B);
|
|
hw->src_size_b = INREG(SRC_SIZE_B);
|
|
hw->bclrpat_b = INREG(BCLRPAT_B);
|
|
|
|
if (flag == 3)
|
|
return flag;
|
|
|
|
hw->adpa = INREG(ADPA);
|
|
hw->dvoa = INREG(DVOA);
|
|
hw->dvob = INREG(DVOB);
|
|
hw->dvoc = INREG(DVOC);
|
|
hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
|
|
hw->dvob_srcdim = INREG(DVOB_SRCDIM);
|
|
hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
|
|
hw->lvds = INREG(LVDS);
|
|
|
|
if (flag == 4)
|
|
return flag;
|
|
|
|
hw->pipe_a_conf = INREG(PIPEACONF);
|
|
hw->pipe_b_conf = INREG(PIPEBCONF);
|
|
hw->disp_arb = INREG(DISPARB);
|
|
|
|
if (flag == 5)
|
|
return flag;
|
|
|
|
hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
|
|
hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
|
|
hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
|
|
hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
|
|
|
|
if (flag == 6)
|
|
return flag;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
|
|
hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
|
|
}
|
|
|
|
if (flag == 7)
|
|
return flag;
|
|
|
|
hw->cursor_size = INREG(CURSOR_SIZE);
|
|
|
|
if (flag == 8)
|
|
return flag;
|
|
|
|
hw->disp_a_ctrl = INREG(DSPACNTR);
|
|
hw->disp_b_ctrl = INREG(DSPBCNTR);
|
|
hw->disp_a_base = INREG(DSPABASE);
|
|
hw->disp_b_base = INREG(DSPBBASE);
|
|
hw->disp_a_stride = INREG(DSPASTRIDE);
|
|
hw->disp_b_stride = INREG(DSPBSTRIDE);
|
|
|
|
if (flag == 9)
|
|
return flag;
|
|
|
|
hw->vgacntrl = INREG(VGACNTRL);
|
|
|
|
if (flag == 10)
|
|
return flag;
|
|
|
|
hw->add_id = INREG(ADD_ID);
|
|
|
|
if (flag == 11)
|
|
return flag;
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
hw->swf0x[i] = INREG(SWF00 + (i << 2));
|
|
hw->swf1x[i] = INREG(SWF10 + (i << 2));
|
|
if (i < 3)
|
|
hw->swf3x[i] = INREG(SWF30 + (i << 2));
|
|
}
|
|
|
|
for (i = 0; i < 8; i++)
|
|
hw->fence[i] = INREG(FENCE + (i << 2));
|
|
|
|
hw->instpm = INREG(INSTPM);
|
|
hw->mem_mode = INREG(MEM_MODE);
|
|
hw->fw_blc_0 = INREG(FW_BLC_0);
|
|
hw->fw_blc_1 = INREG(FW_BLC_1);
|
|
|
|
hw->hwstam = INREG16(HWSTAM);
|
|
hw->ier = INREG16(IER);
|
|
hw->iir = INREG16(IIR);
|
|
hw->imr = INREG16(IMR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int calc_vclock3(int index, int m, int n, int p)
|
|
{
|
|
if (p == 0 || n == 0)
|
|
return 0;
|
|
return plls[index].ref_clk * m / n / p;
|
|
}
|
|
|
|
static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
|
|
int lvds)
|
|
{
|
|
struct pll_min_max *pll = &plls[index];
|
|
u32 m, vco, p;
|
|
|
|
m = (5 * (m1 + 2)) + (m2 + 2);
|
|
n += 2;
|
|
vco = pll->ref_clk * m / n;
|
|
|
|
if (index == PLLS_I8xx)
|
|
p = ((p1 + 2) * (1 << (p2 + 1)));
|
|
else
|
|
p = ((p1) * (p2 ? 5 : 10));
|
|
return vco / p;
|
|
}
|
|
|
|
#if REGDUMP
|
|
static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
|
|
int *o_p1, int *o_p2)
|
|
{
|
|
int p1, p2;
|
|
|
|
if (IS_I9XX(dinfo)) {
|
|
if (dpll & DPLL_P1_FORCE_DIV2)
|
|
p1 = 1;
|
|
else
|
|
p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
|
|
|
|
p1 = ffs(p1);
|
|
|
|
p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
|
|
} else {
|
|
if (dpll & DPLL_P1_FORCE_DIV2)
|
|
p1 = 0;
|
|
else
|
|
p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
|
|
p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
|
|
}
|
|
|
|
*o_p1 = p1;
|
|
*o_p2 = p2;
|
|
}
|
|
#endif
|
|
|
|
|
|
void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
|
|
struct intelfb_hwstate *hw)
|
|
{
|
|
#if REGDUMP
|
|
int i, m1, m2, n, p1, p2;
|
|
int index = dinfo->pll_index;
|
|
DBG_MSG("intelfbhw_print_hw_state\n");
|
|
|
|
if (!hw)
|
|
return;
|
|
/* Read in as much of the HW state as possible. */
|
|
printk("hw state dump start\n");
|
|
printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
|
|
printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
|
|
printk(" VGAPD: 0x%08x\n", hw->vga_pd);
|
|
n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
|
|
intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
|
|
|
|
printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
|
|
m1, m2, n, p1, p2);
|
|
printk(" VGA0: clock is %d\n",
|
|
calc_vclock(index, m1, m2, n, p1, p2, 0));
|
|
|
|
n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
|
|
intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
|
|
printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
|
|
m1, m2, n, p1, p2);
|
|
printk(" VGA1: clock is %d\n",
|
|
calc_vclock(index, m1, m2, n, p1, p2, 0));
|
|
|
|
printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
|
|
printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
|
|
printk(" FPA0: 0x%08x\n", hw->fpa0);
|
|
printk(" FPA1: 0x%08x\n", hw->fpa1);
|
|
printk(" FPB0: 0x%08x\n", hw->fpb0);
|
|
printk(" FPB1: 0x%08x\n", hw->fpb1);
|
|
|
|
n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
|
|
intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
|
|
|
|
printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
|
|
m1, m2, n, p1, p2);
|
|
printk(" PLLA0: clock is %d\n",
|
|
calc_vclock(index, m1, m2, n, p1, p2, 0));
|
|
|
|
n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
|
|
|
|
intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
|
|
|
|
printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
|
|
m1, m2, n, p1, p2);
|
|
printk(" PLLA1: clock is %d\n",
|
|
calc_vclock(index, m1, m2, n, p1, p2, 0));
|
|
|
|
#if 0
|
|
printk(" PALETTE_A:\n");
|
|
for (i = 0; i < PALETTE_8_ENTRIES)
|
|
printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
|
|
printk(" PALETTE_B:\n");
|
|
for (i = 0; i < PALETTE_8_ENTRIES)
|
|
printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
|
|
#endif
|
|
|
|
printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
|
|
printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
|
|
printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
|
|
printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
|
|
printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
|
|
printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
|
|
printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
|
|
printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
|
|
printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
|
|
printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
|
|
printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
|
|
printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
|
|
printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
|
|
printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
|
|
printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
|
|
printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
|
|
|
|
printk(" ADPA: 0x%08x\n", hw->adpa);
|
|
printk(" DVOA: 0x%08x\n", hw->dvoa);
|
|
printk(" DVOB: 0x%08x\n", hw->dvob);
|
|
printk(" DVOC: 0x%08x\n", hw->dvoc);
|
|
printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
|
|
printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
|
|
printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
|
|
printk(" LVDS: 0x%08x\n", hw->lvds);
|
|
|
|
printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
|
|
printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
|
|
printk(" DISPARB: 0x%08x\n", hw->disp_arb);
|
|
|
|
printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
|
|
printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
|
|
printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
|
|
printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
|
|
|
|
printk(" CURSOR_A_PALETTE: ");
|
|
for (i = 0; i < 4; i++) {
|
|
printk("0x%08x", hw->cursor_a_palette[i]);
|
|
if (i < 3)
|
|
printk(", ");
|
|
}
|
|
printk("\n");
|
|
printk(" CURSOR_B_PALETTE: ");
|
|
for (i = 0; i < 4; i++) {
|
|
printk("0x%08x", hw->cursor_b_palette[i]);
|
|
if (i < 3)
|
|
printk(", ");
|
|
}
|
|
printk("\n");
|
|
|
|
printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
|
|
|
|
printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
|
|
printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
|
|
printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
|
|
printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
|
|
printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
|
|
printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
|
|
|
|
printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
|
|
printk(" ADD_ID: 0x%08x\n", hw->add_id);
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
printk(" SWF0%d 0x%08x\n", i,
|
|
hw->swf0x[i]);
|
|
}
|
|
for (i = 0; i < 7; i++) {
|
|
printk(" SWF1%d 0x%08x\n", i,
|
|
hw->swf1x[i]);
|
|
}
|
|
for (i = 0; i < 3; i++) {
|
|
printk(" SWF3%d 0x%08x\n", i,
|
|
hw->swf3x[i]);
|
|
}
|
|
for (i = 0; i < 8; i++)
|
|
printk(" FENCE%d 0x%08x\n", i,
|
|
hw->fence[i]);
|
|
|
|
printk(" INSTPM 0x%08x\n", hw->instpm);
|
|
printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
|
|
printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
|
|
printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
|
|
|
|
printk(" HWSTAM 0x%04x\n", hw->hwstam);
|
|
printk(" IER 0x%04x\n", hw->ier);
|
|
printk(" IIR 0x%04x\n", hw->iir);
|
|
printk(" IMR 0x%04x\n", hw->imr);
|
|
printk("hw state dump end\n");
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
/* Split the M parameter into M1 and M2. */
|
|
static int splitm(int index, unsigned int m, unsigned int *retm1,
|
|
unsigned int *retm2)
|
|
{
|
|
int m1, m2;
|
|
int testm;
|
|
struct pll_min_max *pll = &plls[index];
|
|
|
|
/* no point optimising too much - brute force m */
|
|
for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
|
|
for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
|
|
testm = (5 * (m1 + 2)) + (m2 + 2);
|
|
if (testm == m) {
|
|
*retm1 = (unsigned int)m1;
|
|
*retm2 = (unsigned int)m2;
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Split the P parameter into P1 and P2. */
|
|
static int splitp(int index, unsigned int p, unsigned int *retp1,
|
|
unsigned int *retp2)
|
|
{
|
|
int p1, p2;
|
|
struct pll_min_max *pll = &plls[index];
|
|
|
|
if (index == PLLS_I9xx) {
|
|
p2 = (p % 10) ? 1 : 0;
|
|
|
|
p1 = p / (p2 ? 5 : 10);
|
|
|
|
*retp1 = (unsigned int)p1;
|
|
*retp2 = (unsigned int)p2;
|
|
return 0;
|
|
}
|
|
|
|
if (p % 4 == 0)
|
|
p2 = 1;
|
|
else
|
|
p2 = 0;
|
|
p1 = (p / (1 << (p2 + 1))) - 2;
|
|
if (p % 4 == 0 && p1 < pll->min_p1) {
|
|
p2 = 0;
|
|
p1 = (p / (1 << (p2 + 1))) - 2;
|
|
}
|
|
if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
|
|
(p1 + 2) * (1 << (p2 + 1)) != p) {
|
|
return 1;
|
|
} else {
|
|
*retp1 = (unsigned int)p1;
|
|
*retp2 = (unsigned int)p2;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
|
|
u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
|
|
{
|
|
u32 m1, m2, n, p1, p2, n1, testm;
|
|
u32 f_vco, p, p_best = 0, m, f_out = 0;
|
|
u32 err_max, err_target, err_best = 10000000;
|
|
u32 n_best = 0, m_best = 0, f_best, f_err;
|
|
u32 p_min, p_max, p_inc, div_max;
|
|
struct pll_min_max *pll = &plls[index];
|
|
|
|
/* Accept 0.5% difference, but aim for 0.1% */
|
|
err_max = 5 * clock / 1000;
|
|
err_target = clock / 1000;
|
|
|
|
DBG_MSG("Clock is %d\n", clock);
|
|
|
|
div_max = pll->max_vco / clock;
|
|
|
|
p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
|
|
p_min = p_inc;
|
|
p_max = ROUND_DOWN_TO(div_max, p_inc);
|
|
if (p_min < pll->min_p)
|
|
p_min = pll->min_p;
|
|
if (p_max > pll->max_p)
|
|
p_max = pll->max_p;
|
|
|
|
DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
|
|
|
|
p = p_min;
|
|
do {
|
|
if (splitp(index, p, &p1, &p2)) {
|
|
WRN_MSG("cannot split p = %d\n", p);
|
|
p += p_inc;
|
|
continue;
|
|
}
|
|
n = pll->min_n;
|
|
f_vco = clock * p;
|
|
|
|
do {
|
|
m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
|
|
if (m < pll->min_m)
|
|
m = pll->min_m + 1;
|
|
if (m > pll->max_m)
|
|
m = pll->max_m - 1;
|
|
for (testm = m - 1; testm <= m; testm++) {
|
|
f_out = calc_vclock3(index, testm, n, p);
|
|
if (splitm(index, testm, &m1, &m2)) {
|
|
WRN_MSG("cannot split m = %d\n",
|
|
testm);
|
|
continue;
|
|
}
|
|
if (clock > f_out)
|
|
f_err = clock - f_out;
|
|
else/* slightly bias the error for bigger clocks */
|
|
f_err = f_out - clock + 1;
|
|
|
|
if (f_err < err_best) {
|
|
m_best = testm;
|
|
n_best = n;
|
|
p_best = p;
|
|
f_best = f_out;
|
|
err_best = f_err;
|
|
}
|
|
}
|
|
n++;
|
|
} while ((n <= pll->max_n) && (f_out >= clock));
|
|
p += p_inc;
|
|
} while ((p <= p_max));
|
|
|
|
if (!m_best) {
|
|
WRN_MSG("cannot find parameters for clock %d\n", clock);
|
|
return 1;
|
|
}
|
|
m = m_best;
|
|
n = n_best;
|
|
p = p_best;
|
|
splitm(index, m, &m1, &m2);
|
|
splitp(index, p, &p1, &p2);
|
|
n1 = n - 2;
|
|
|
|
DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
|
|
"f: %d (%d), VCO: %d\n",
|
|
m, m1, m2, n, n1, p, p1, p2,
|
|
calc_vclock3(index, m, n, p),
|
|
calc_vclock(index, m1, m2, n1, p1, p2, 0),
|
|
calc_vclock3(index, m, n, p) * p);
|
|
*retm1 = m1;
|
|
*retm2 = m2;
|
|
*retn = n1;
|
|
*retp1 = p1;
|
|
*retp2 = p2;
|
|
*retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __inline__ int check_overflow(u32 value, u32 limit,
|
|
const char *description)
|
|
{
|
|
if (value > limit) {
|
|
WRN_MSG("%s value %d exceeds limit %d\n",
|
|
description, value, limit);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* It is assumed that hw is filled in with the initial state information. */
|
|
int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
|
|
struct intelfb_hwstate *hw,
|
|
struct fb_var_screeninfo *var)
|
|
{
|
|
int pipe = intelfbhw_active_pipe(hw);
|
|
u32 *dpll, *fp0, *fp1;
|
|
u32 m1, m2, n, p1, p2, clock_target, clock;
|
|
u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
|
|
u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
|
|
u32 vsync_pol, hsync_pol;
|
|
u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
|
|
u32 stride_alignment;
|
|
|
|
DBG_MSG("intelfbhw_mode_to_hw\n");
|
|
|
|
/* Disable VGA */
|
|
hw->vgacntrl |= VGA_DISABLE;
|
|
|
|
/* Set which pipe's registers will be set. */
|
|
if (pipe == PIPE_B) {
|
|
dpll = &hw->dpll_b;
|
|
fp0 = &hw->fpb0;
|
|
fp1 = &hw->fpb1;
|
|
hs = &hw->hsync_b;
|
|
hb = &hw->hblank_b;
|
|
ht = &hw->htotal_b;
|
|
vs = &hw->vsync_b;
|
|
vb = &hw->vblank_b;
|
|
vt = &hw->vtotal_b;
|
|
ss = &hw->src_size_b;
|
|
pipe_conf = &hw->pipe_b_conf;
|
|
} else {
|
|
dpll = &hw->dpll_a;
|
|
fp0 = &hw->fpa0;
|
|
fp1 = &hw->fpa1;
|
|
hs = &hw->hsync_a;
|
|
hb = &hw->hblank_a;
|
|
ht = &hw->htotal_a;
|
|
vs = &hw->vsync_a;
|
|
vb = &hw->vblank_a;
|
|
vt = &hw->vtotal_a;
|
|
ss = &hw->src_size_a;
|
|
pipe_conf = &hw->pipe_a_conf;
|
|
}
|
|
|
|
/* Use ADPA register for sync control. */
|
|
hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
|
|
|
|
/* sync polarity */
|
|
hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
|
|
ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
|
|
vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
|
|
ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
|
|
hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
|
|
(ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
|
|
hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
|
|
(vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
|
|
|
|
/* Connect correct pipe to the analog port DAC */
|
|
hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
|
|
hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
|
|
|
|
/* Set DPMS state to D0 (on) */
|
|
hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
|
|
hw->adpa |= ADPA_DPMS_D0;
|
|
|
|
hw->adpa |= ADPA_DAC_ENABLE;
|
|
|
|
*dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
|
|
*dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
|
|
*dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
|
|
|
|
/* Desired clock in kHz */
|
|
clock_target = 1000000000 / var->pixclock;
|
|
|
|
if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
|
|
&n, &p1, &p2, &clock)) {
|
|
WRN_MSG("calc_pll_params failed\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Check for overflow. */
|
|
if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
|
|
return 1;
|
|
if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
|
|
return 1;
|
|
if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
|
|
return 1;
|
|
if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
|
|
return 1;
|
|
if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
|
|
return 1;
|
|
|
|
*dpll &= ~DPLL_P1_FORCE_DIV2;
|
|
*dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
|
|
(DPLL_P1_MASK << DPLL_P1_SHIFT));
|
|
|
|
if (IS_I9XX(dinfo)) {
|
|
*dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
|
|
*dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
|
|
} else
|
|
*dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
|
|
|
|
*fp0 = (n << FP_N_DIVISOR_SHIFT) |
|
|
(m1 << FP_M1_DIVISOR_SHIFT) |
|
|
(m2 << FP_M2_DIVISOR_SHIFT);
|
|
*fp1 = *fp0;
|
|
|
|
hw->dvob &= ~PORT_ENABLE;
|
|
hw->dvoc &= ~PORT_ENABLE;
|
|
|
|
/* Use display plane A. */
|
|
hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
|
|
hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
|
|
hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
|
|
switch (intelfb_var_to_depth(var)) {
|
|
case 8:
|
|
hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
|
|
break;
|
|
case 15:
|
|
hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
|
|
break;
|
|
case 16:
|
|
hw->disp_a_ctrl |= DISPPLANE_16BPP;
|
|
break;
|
|
case 24:
|
|
hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
|
|
break;
|
|
}
|
|
hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
|
|
hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
|
|
|
|
/* Set CRTC registers. */
|
|
hactive = var->xres;
|
|
hsync_start = hactive + var->right_margin;
|
|
hsync_end = hsync_start + var->hsync_len;
|
|
htotal = hsync_end + var->left_margin;
|
|
hblank_start = hactive;
|
|
hblank_end = htotal;
|
|
|
|
DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
|
|
hactive, hsync_start, hsync_end, htotal, hblank_start,
|
|
hblank_end);
|
|
|
|
vactive = var->yres;
|
|
if (var->vmode & FB_VMODE_INTERLACED)
|
|
vactive--; /* the chip adds 2 halflines automatically */
|
|
vsync_start = vactive + var->lower_margin;
|
|
vsync_end = vsync_start + var->vsync_len;
|
|
vtotal = vsync_end + var->upper_margin;
|
|
vblank_start = vactive;
|
|
vblank_end = vtotal;
|
|
vblank_end = vsync_end + 1;
|
|
|
|
DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
|
|
vactive, vsync_start, vsync_end, vtotal, vblank_start,
|
|
vblank_end);
|
|
|
|
/* Adjust for register values, and check for overflow. */
|
|
hactive--;
|
|
if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
|
|
return 1;
|
|
hsync_start--;
|
|
if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
|
|
return 1;
|
|
hsync_end--;
|
|
if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
|
|
return 1;
|
|
htotal--;
|
|
if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
|
|
return 1;
|
|
hblank_start--;
|
|
if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
|
|
return 1;
|
|
hblank_end--;
|
|
if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
|
|
return 1;
|
|
|
|
vactive--;
|
|
if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
|
|
return 1;
|
|
vsync_start--;
|
|
if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
|
|
return 1;
|
|
vsync_end--;
|
|
if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
|
|
return 1;
|
|
vtotal--;
|
|
if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
|
|
return 1;
|
|
vblank_start--;
|
|
if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
|
|
return 1;
|
|
vblank_end--;
|
|
if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
|
|
return 1;
|
|
|
|
*ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
|
|
*hb = (hblank_start << HBLANKSTART_SHIFT) |
|
|
(hblank_end << HSYNCEND_SHIFT);
|
|
*hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
|
|
|
|
*vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
|
|
*vb = (vblank_start << VBLANKSTART_SHIFT) |
|
|
(vblank_end << VSYNCEND_SHIFT);
|
|
*vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
|
|
*ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
|
|
(vactive << SRC_SIZE_VERT_SHIFT);
|
|
|
|
hw->disp_a_stride = dinfo->pitch;
|
|
DBG_MSG("pitch is %d\n", hw->disp_a_stride);
|
|
|
|
hw->disp_a_base = hw->disp_a_stride * var->yoffset +
|
|
var->xoffset * var->bits_per_pixel / 8;
|
|
|
|
hw->disp_a_base += dinfo->fb.offset << 12;
|
|
|
|
/* Check stride alignment. */
|
|
stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
|
|
STRIDE_ALIGNMENT;
|
|
if (hw->disp_a_stride % stride_alignment != 0) {
|
|
WRN_MSG("display stride %d has bad alignment %d\n",
|
|
hw->disp_a_stride, stride_alignment);
|
|
return 1;
|
|
}
|
|
|
|
/* Set the palette to 8-bit mode. */
|
|
*pipe_conf &= ~PIPECONF_GAMMA;
|
|
|
|
if (var->vmode & FB_VMODE_INTERLACED)
|
|
*pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
|
|
else
|
|
*pipe_conf &= ~PIPECONF_INTERLACE_MASK;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Program a (non-VGA) video mode. */
|
|
int intelfbhw_program_mode(struct intelfb_info *dinfo,
|
|
const struct intelfb_hwstate *hw, int blank)
|
|
{
|
|
u32 tmp;
|
|
const u32 *dpll, *fp0, *fp1, *pipe_conf;
|
|
const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
|
|
u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
|
|
u32 hsync_reg, htotal_reg, hblank_reg;
|
|
u32 vsync_reg, vtotal_reg, vblank_reg;
|
|
u32 src_size_reg;
|
|
u32 count, tmp_val[3];
|
|
|
|
/* Assume single pipe */
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_program_mode\n");
|
|
#endif
|
|
|
|
/* Disable VGA */
|
|
tmp = INREG(VGACNTRL);
|
|
tmp |= VGA_DISABLE;
|
|
OUTREG(VGACNTRL, tmp);
|
|
|
|
dinfo->pipe = intelfbhw_active_pipe(hw);
|
|
|
|
if (dinfo->pipe == PIPE_B) {
|
|
dpll = &hw->dpll_b;
|
|
fp0 = &hw->fpb0;
|
|
fp1 = &hw->fpb1;
|
|
pipe_conf = &hw->pipe_b_conf;
|
|
hs = &hw->hsync_b;
|
|
hb = &hw->hblank_b;
|
|
ht = &hw->htotal_b;
|
|
vs = &hw->vsync_b;
|
|
vb = &hw->vblank_b;
|
|
vt = &hw->vtotal_b;
|
|
ss = &hw->src_size_b;
|
|
dpll_reg = DPLL_B;
|
|
fp0_reg = FPB0;
|
|
fp1_reg = FPB1;
|
|
pipe_conf_reg = PIPEBCONF;
|
|
pipe_stat_reg = PIPEBSTAT;
|
|
hsync_reg = HSYNC_B;
|
|
htotal_reg = HTOTAL_B;
|
|
hblank_reg = HBLANK_B;
|
|
vsync_reg = VSYNC_B;
|
|
vtotal_reg = VTOTAL_B;
|
|
vblank_reg = VBLANK_B;
|
|
src_size_reg = SRC_SIZE_B;
|
|
} else {
|
|
dpll = &hw->dpll_a;
|
|
fp0 = &hw->fpa0;
|
|
fp1 = &hw->fpa1;
|
|
pipe_conf = &hw->pipe_a_conf;
|
|
hs = &hw->hsync_a;
|
|
hb = &hw->hblank_a;
|
|
ht = &hw->htotal_a;
|
|
vs = &hw->vsync_a;
|
|
vb = &hw->vblank_a;
|
|
vt = &hw->vtotal_a;
|
|
ss = &hw->src_size_a;
|
|
dpll_reg = DPLL_A;
|
|
fp0_reg = FPA0;
|
|
fp1_reg = FPA1;
|
|
pipe_conf_reg = PIPEACONF;
|
|
pipe_stat_reg = PIPEASTAT;
|
|
hsync_reg = HSYNC_A;
|
|
htotal_reg = HTOTAL_A;
|
|
hblank_reg = HBLANK_A;
|
|
vsync_reg = VSYNC_A;
|
|
vtotal_reg = VTOTAL_A;
|
|
vblank_reg = VBLANK_A;
|
|
src_size_reg = SRC_SIZE_A;
|
|
}
|
|
|
|
/* turn off pipe */
|
|
tmp = INREG(pipe_conf_reg);
|
|
tmp &= ~PIPECONF_ENABLE;
|
|
OUTREG(pipe_conf_reg, tmp);
|
|
|
|
count = 0;
|
|
do {
|
|
tmp_val[count % 3] = INREG(PIPEA_DSL);
|
|
if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
|
|
break;
|
|
count++;
|
|
udelay(1);
|
|
if (count % 200 == 0) {
|
|
tmp = INREG(pipe_conf_reg);
|
|
tmp &= ~PIPECONF_ENABLE;
|
|
OUTREG(pipe_conf_reg, tmp);
|
|
}
|
|
} while (count < 2000);
|
|
|
|
OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
|
|
|
|
/* Disable planes A and B. */
|
|
tmp = INREG(DSPACNTR);
|
|
tmp &= ~DISPPLANE_PLANE_ENABLE;
|
|
OUTREG(DSPACNTR, tmp);
|
|
tmp = INREG(DSPBCNTR);
|
|
tmp &= ~DISPPLANE_PLANE_ENABLE;
|
|
OUTREG(DSPBCNTR, tmp);
|
|
|
|
/* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
|
|
mdelay(20);
|
|
|
|
OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
|
|
OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
|
|
OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
|
|
|
|
/* Disable Sync */
|
|
tmp = INREG(ADPA);
|
|
tmp &= ~ADPA_DPMS_CONTROL_MASK;
|
|
tmp |= ADPA_DPMS_D3;
|
|
OUTREG(ADPA, tmp);
|
|
|
|
/* do some funky magic - xyzzy */
|
|
OUTREG(0x61204, 0xabcd0000);
|
|
|
|
/* turn off PLL */
|
|
tmp = INREG(dpll_reg);
|
|
tmp &= ~DPLL_VCO_ENABLE;
|
|
OUTREG(dpll_reg, tmp);
|
|
|
|
/* Set PLL parameters */
|
|
OUTREG(fp0_reg, *fp0);
|
|
OUTREG(fp1_reg, *fp1);
|
|
|
|
/* Enable PLL */
|
|
OUTREG(dpll_reg, *dpll);
|
|
|
|
/* Set DVOs B/C */
|
|
OUTREG(DVOB, hw->dvob);
|
|
OUTREG(DVOC, hw->dvoc);
|
|
|
|
/* undo funky magic */
|
|
OUTREG(0x61204, 0x00000000);
|
|
|
|
/* Set ADPA */
|
|
OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
|
|
OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
|
|
|
|
/* Set pipe parameters */
|
|
OUTREG(hsync_reg, *hs);
|
|
OUTREG(hblank_reg, *hb);
|
|
OUTREG(htotal_reg, *ht);
|
|
OUTREG(vsync_reg, *vs);
|
|
OUTREG(vblank_reg, *vb);
|
|
OUTREG(vtotal_reg, *vt);
|
|
OUTREG(src_size_reg, *ss);
|
|
|
|
switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
|
|
FB_VMODE_ODD_FLD_FIRST)) {
|
|
case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
|
|
OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
|
|
break;
|
|
case FB_VMODE_INTERLACED: /* even lines first */
|
|
OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
|
|
break;
|
|
default: /* non-interlaced */
|
|
OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
|
|
}
|
|
/* Enable pipe */
|
|
OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
|
|
|
|
/* Enable sync */
|
|
tmp = INREG(ADPA);
|
|
tmp &= ~ADPA_DPMS_CONTROL_MASK;
|
|
tmp |= ADPA_DPMS_D0;
|
|
OUTREG(ADPA, tmp);
|
|
|
|
/* setup display plane */
|
|
if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
|
|
/*
|
|
* i830M errata: the display plane must be enabled
|
|
* to allow writes to the other bits in the plane
|
|
* control register.
|
|
*/
|
|
tmp = INREG(DSPACNTR);
|
|
if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
|
|
tmp |= DISPPLANE_PLANE_ENABLE;
|
|
OUTREG(DSPACNTR, tmp);
|
|
OUTREG(DSPACNTR,
|
|
hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
|
|
mdelay(1);
|
|
}
|
|
}
|
|
|
|
OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
|
|
OUTREG(DSPASTRIDE, hw->disp_a_stride);
|
|
OUTREG(DSPABASE, hw->disp_a_base);
|
|
|
|
/* Enable plane */
|
|
if (!blank) {
|
|
tmp = INREG(DSPACNTR);
|
|
tmp |= DISPPLANE_PLANE_ENABLE;
|
|
OUTREG(DSPACNTR, tmp);
|
|
OUTREG(DSPABASE, hw->disp_a_base);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* forward declarations */
|
|
static void refresh_ring(struct intelfb_info *dinfo);
|
|
static void reset_state(struct intelfb_info *dinfo);
|
|
static void do_flush(struct intelfb_info *dinfo);
|
|
|
|
static u32 get_ring_space(struct intelfb_info *dinfo)
|
|
{
|
|
u32 ring_space;
|
|
|
|
if (dinfo->ring_tail >= dinfo->ring_head)
|
|
ring_space = dinfo->ring.size -
|
|
(dinfo->ring_tail - dinfo->ring_head);
|
|
else
|
|
ring_space = dinfo->ring_head - dinfo->ring_tail;
|
|
|
|
if (ring_space > RING_MIN_FREE)
|
|
ring_space -= RING_MIN_FREE;
|
|
else
|
|
ring_space = 0;
|
|
|
|
return ring_space;
|
|
}
|
|
|
|
static int wait_ring(struct intelfb_info *dinfo, int n)
|
|
{
|
|
int i = 0;
|
|
unsigned long end;
|
|
u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("wait_ring: %d\n", n);
|
|
#endif
|
|
|
|
end = jiffies + (HZ * 3);
|
|
while (dinfo->ring_space < n) {
|
|
dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
|
|
dinfo->ring_space = get_ring_space(dinfo);
|
|
|
|
if (dinfo->ring_head != last_head) {
|
|
end = jiffies + (HZ * 3);
|
|
last_head = dinfo->ring_head;
|
|
}
|
|
i++;
|
|
if (time_before(end, jiffies)) {
|
|
if (!i) {
|
|
/* Try again */
|
|
reset_state(dinfo);
|
|
refresh_ring(dinfo);
|
|
do_flush(dinfo);
|
|
end = jiffies + (HZ * 3);
|
|
i = 1;
|
|
} else {
|
|
WRN_MSG("ring buffer : space: %d wanted %d\n",
|
|
dinfo->ring_space, n);
|
|
WRN_MSG("lockup - turning off hardware "
|
|
"acceleration\n");
|
|
dinfo->ring_lockup = 1;
|
|
break;
|
|
}
|
|
}
|
|
udelay(1);
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static void do_flush(struct intelfb_info *dinfo)
|
|
{
|
|
START_RING(2);
|
|
OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
|
|
OUT_RING(MI_NOOP);
|
|
ADVANCE_RING();
|
|
}
|
|
|
|
void intelfbhw_do_sync(struct intelfb_info *dinfo)
|
|
{
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_do_sync\n");
|
|
#endif
|
|
|
|
if (!dinfo->accel)
|
|
return;
|
|
|
|
/*
|
|
* Send a flush, then wait until the ring is empty. This is what
|
|
* the XFree86 driver does, and actually it doesn't seem a lot worse
|
|
* than the recommended method (both have problems).
|
|
*/
|
|
do_flush(dinfo);
|
|
wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
|
|
dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
|
|
}
|
|
|
|
static void refresh_ring(struct intelfb_info *dinfo)
|
|
{
|
|
#if VERBOSE > 0
|
|
DBG_MSG("refresh_ring\n");
|
|
#endif
|
|
|
|
dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
|
|
dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
|
|
dinfo->ring_space = get_ring_space(dinfo);
|
|
}
|
|
|
|
static void reset_state(struct intelfb_info *dinfo)
|
|
{
|
|
int i;
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("reset_state\n");
|
|
#endif
|
|
|
|
for (i = 0; i < FENCE_NUM; i++)
|
|
OUTREG(FENCE + (i << 2), 0);
|
|
|
|
/* Flush the ring buffer if it's enabled. */
|
|
tmp = INREG(PRI_RING_LENGTH);
|
|
if (tmp & RING_ENABLE) {
|
|
#if VERBOSE > 0
|
|
DBG_MSG("reset_state: ring was enabled\n");
|
|
#endif
|
|
refresh_ring(dinfo);
|
|
intelfbhw_do_sync(dinfo);
|
|
DO_RING_IDLE();
|
|
}
|
|
|
|
OUTREG(PRI_RING_LENGTH, 0);
|
|
OUTREG(PRI_RING_HEAD, 0);
|
|
OUTREG(PRI_RING_TAIL, 0);
|
|
OUTREG(PRI_RING_START, 0);
|
|
}
|
|
|
|
/* Stop the 2D engine, and turn off the ring buffer. */
|
|
void intelfbhw_2d_stop(struct intelfb_info *dinfo)
|
|
{
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
|
|
dinfo->accel, dinfo->ring_active);
|
|
#endif
|
|
|
|
if (!dinfo->accel)
|
|
return;
|
|
|
|
dinfo->ring_active = 0;
|
|
reset_state(dinfo);
|
|
}
|
|
|
|
/*
|
|
* Enable the ring buffer, and initialise the 2D engine.
|
|
* It is assumed that the graphics engine has been stopped by previously
|
|
* calling intelfb_2d_stop().
|
|
*/
|
|
void intelfbhw_2d_start(struct intelfb_info *dinfo)
|
|
{
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
|
|
dinfo->accel, dinfo->ring_active);
|
|
#endif
|
|
|
|
if (!dinfo->accel)
|
|
return;
|
|
|
|
/* Initialise the primary ring buffer. */
|
|
OUTREG(PRI_RING_LENGTH, 0);
|
|
OUTREG(PRI_RING_TAIL, 0);
|
|
OUTREG(PRI_RING_HEAD, 0);
|
|
|
|
OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
|
|
OUTREG(PRI_RING_LENGTH,
|
|
((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
|
|
RING_NO_REPORT | RING_ENABLE);
|
|
refresh_ring(dinfo);
|
|
dinfo->ring_active = 1;
|
|
}
|
|
|
|
/* 2D fillrect (solid fill or invert) */
|
|
void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
|
|
u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
|
|
{
|
|
u32 br00, br09, br13, br14, br16;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
|
|
"rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
|
|
#endif
|
|
|
|
br00 = COLOR_BLT_CMD;
|
|
br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
|
|
br13 = (rop << ROP_SHIFT) | pitch;
|
|
br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
|
|
br16 = color;
|
|
|
|
switch (bpp) {
|
|
case 8:
|
|
br13 |= COLOR_DEPTH_8;
|
|
break;
|
|
case 16:
|
|
br13 |= COLOR_DEPTH_16;
|
|
break;
|
|
case 32:
|
|
br13 |= COLOR_DEPTH_32;
|
|
br00 |= WRITE_ALPHA | WRITE_RGB;
|
|
break;
|
|
}
|
|
|
|
START_RING(6);
|
|
OUT_RING(br00);
|
|
OUT_RING(br13);
|
|
OUT_RING(br14);
|
|
OUT_RING(br09);
|
|
OUT_RING(br16);
|
|
OUT_RING(MI_NOOP);
|
|
ADVANCE_RING();
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
|
|
dinfo->ring_tail, dinfo->ring_space);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
|
|
u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
|
|
{
|
|
u32 br00, br09, br11, br12, br13, br22, br23, br26;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
|
|
curx, cury, dstx, dsty, w, h, pitch, bpp);
|
|
#endif
|
|
|
|
br00 = XY_SRC_COPY_BLT_CMD;
|
|
br09 = dinfo->fb_start;
|
|
br11 = (pitch << PITCH_SHIFT);
|
|
br12 = dinfo->fb_start;
|
|
br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
|
|
br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
|
|
br23 = ((dstx + w) << WIDTH_SHIFT) |
|
|
((dsty + h) << HEIGHT_SHIFT);
|
|
br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
|
|
|
|
switch (bpp) {
|
|
case 8:
|
|
br13 |= COLOR_DEPTH_8;
|
|
break;
|
|
case 16:
|
|
br13 |= COLOR_DEPTH_16;
|
|
break;
|
|
case 32:
|
|
br13 |= COLOR_DEPTH_32;
|
|
br00 |= WRITE_ALPHA | WRITE_RGB;
|
|
break;
|
|
}
|
|
|
|
START_RING(8);
|
|
OUT_RING(br00);
|
|
OUT_RING(br13);
|
|
OUT_RING(br22);
|
|
OUT_RING(br23);
|
|
OUT_RING(br09);
|
|
OUT_RING(br26);
|
|
OUT_RING(br11);
|
|
OUT_RING(br12);
|
|
ADVANCE_RING();
|
|
}
|
|
|
|
int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
|
|
u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
|
|
u32 bpp)
|
|
{
|
|
int nbytes, ndwords, pad, tmp;
|
|
u32 br00, br09, br13, br18, br19, br22, br23;
|
|
int dat, ix, iy, iw;
|
|
int i, j;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
|
|
#endif
|
|
|
|
/* size in bytes of a padded scanline */
|
|
nbytes = ROUND_UP_TO(w, 16) / 8;
|
|
|
|
/* Total bytes of padded scanline data to write out. */
|
|
nbytes = nbytes * h;
|
|
|
|
/*
|
|
* Check if the glyph data exceeds the immediate mode limit.
|
|
* It would take a large font (1K pixels) to hit this limit.
|
|
*/
|
|
if (nbytes > MAX_MONO_IMM_SIZE)
|
|
return 0;
|
|
|
|
/* Src data is packaged a dword (32-bit) at a time. */
|
|
ndwords = ROUND_UP_TO(nbytes, 4) / 4;
|
|
|
|
/*
|
|
* Ring has to be padded to a quad word. But because the command starts
|
|
with 7 bytes, pad only if there is an even number of ndwords
|
|
*/
|
|
pad = !(ndwords % 2);
|
|
|
|
tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
|
|
br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
|
|
br09 = dinfo->fb_start;
|
|
br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
|
|
br18 = bg;
|
|
br19 = fg;
|
|
br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
|
|
br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
|
|
|
|
switch (bpp) {
|
|
case 8:
|
|
br13 |= COLOR_DEPTH_8;
|
|
break;
|
|
case 16:
|
|
br13 |= COLOR_DEPTH_16;
|
|
break;
|
|
case 32:
|
|
br13 |= COLOR_DEPTH_32;
|
|
br00 |= WRITE_ALPHA | WRITE_RGB;
|
|
break;
|
|
}
|
|
|
|
START_RING(8 + ndwords);
|
|
OUT_RING(br00);
|
|
OUT_RING(br13);
|
|
OUT_RING(br22);
|
|
OUT_RING(br23);
|
|
OUT_RING(br09);
|
|
OUT_RING(br18);
|
|
OUT_RING(br19);
|
|
ix = iy = 0;
|
|
iw = ROUND_UP_TO(w, 8) / 8;
|
|
while (ndwords--) {
|
|
dat = 0;
|
|
for (j = 0; j < 2; ++j) {
|
|
for (i = 0; i < 2; ++i) {
|
|
if (ix != iw || i == 0)
|
|
dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
|
|
}
|
|
if (ix == iw && iy != (h-1)) {
|
|
ix = 0;
|
|
++iy;
|
|
}
|
|
}
|
|
OUT_RING(dat);
|
|
}
|
|
if (pad)
|
|
OUT_RING(MI_NOOP);
|
|
ADVANCE_RING();
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* HW cursor functions. */
|
|
void intelfbhw_cursor_init(struct intelfb_info *dinfo)
|
|
{
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_init\n");
|
|
#endif
|
|
|
|
if (dinfo->mobile || IS_I9XX(dinfo)) {
|
|
if (!dinfo->cursor.physical)
|
|
return;
|
|
tmp = INREG(CURSOR_A_CONTROL);
|
|
tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
|
|
CURSOR_MEM_TYPE_LOCAL |
|
|
(1 << CURSOR_PIPE_SELECT_SHIFT));
|
|
tmp |= CURSOR_MODE_DISABLE;
|
|
OUTREG(CURSOR_A_CONTROL, tmp);
|
|
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
|
|
} else {
|
|
tmp = INREG(CURSOR_CONTROL);
|
|
tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
|
|
CURSOR_ENABLE | CURSOR_STRIDE_MASK);
|
|
tmp = CURSOR_FORMAT_3C;
|
|
OUTREG(CURSOR_CONTROL, tmp);
|
|
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
|
|
tmp = (64 << CURSOR_SIZE_H_SHIFT) |
|
|
(64 << CURSOR_SIZE_V_SHIFT);
|
|
OUTREG(CURSOR_SIZE, tmp);
|
|
}
|
|
}
|
|
|
|
void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
|
|
{
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_hide\n");
|
|
#endif
|
|
|
|
dinfo->cursor_on = 0;
|
|
if (dinfo->mobile || IS_I9XX(dinfo)) {
|
|
if (!dinfo->cursor.physical)
|
|
return;
|
|
tmp = INREG(CURSOR_A_CONTROL);
|
|
tmp &= ~CURSOR_MODE_MASK;
|
|
tmp |= CURSOR_MODE_DISABLE;
|
|
OUTREG(CURSOR_A_CONTROL, tmp);
|
|
/* Flush changes */
|
|
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
|
|
} else {
|
|
tmp = INREG(CURSOR_CONTROL);
|
|
tmp &= ~CURSOR_ENABLE;
|
|
OUTREG(CURSOR_CONTROL, tmp);
|
|
}
|
|
}
|
|
|
|
void intelfbhw_cursor_show(struct intelfb_info *dinfo)
|
|
{
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_show\n");
|
|
#endif
|
|
|
|
dinfo->cursor_on = 1;
|
|
|
|
if (dinfo->cursor_blanked)
|
|
return;
|
|
|
|
if (dinfo->mobile || IS_I9XX(dinfo)) {
|
|
if (!dinfo->cursor.physical)
|
|
return;
|
|
tmp = INREG(CURSOR_A_CONTROL);
|
|
tmp &= ~CURSOR_MODE_MASK;
|
|
tmp |= CURSOR_MODE_64_4C_AX;
|
|
OUTREG(CURSOR_A_CONTROL, tmp);
|
|
/* Flush changes */
|
|
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
|
|
} else {
|
|
tmp = INREG(CURSOR_CONTROL);
|
|
tmp |= CURSOR_ENABLE;
|
|
OUTREG(CURSOR_CONTROL, tmp);
|
|
}
|
|
}
|
|
|
|
void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
|
|
{
|
|
u32 tmp;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
|
|
#endif
|
|
|
|
/*
|
|
* Sets the position. The coordinates are assumed to already
|
|
* have any offset adjusted. Assume that the cursor is never
|
|
* completely off-screen, and that x, y are always >= 0.
|
|
*/
|
|
|
|
tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
|
|
((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
|
|
OUTREG(CURSOR_A_POSITION, tmp);
|
|
|
|
if (IS_I9XX(dinfo))
|
|
OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
|
|
}
|
|
|
|
void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
|
|
{
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_setcolor\n");
|
|
#endif
|
|
|
|
OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
|
|
OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
|
|
OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
|
|
OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
|
|
}
|
|
|
|
void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
|
|
u8 *data)
|
|
{
|
|
u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
|
|
int i, j, w = width / 8;
|
|
int mod = width % 8, t_mask, d_mask;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_load\n");
|
|
#endif
|
|
|
|
if (!dinfo->cursor.virtual)
|
|
return;
|
|
|
|
t_mask = 0xff >> mod;
|
|
d_mask = ~(0xff >> mod);
|
|
for (i = height; i--; ) {
|
|
for (j = 0; j < w; j++) {
|
|
writeb(0x00, addr + j);
|
|
writeb(*(data++), addr + j+8);
|
|
}
|
|
if (mod) {
|
|
writeb(t_mask, addr + j);
|
|
writeb(*(data++) & d_mask, addr + j+8);
|
|
}
|
|
addr += 16;
|
|
}
|
|
}
|
|
|
|
void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
|
|
{
|
|
u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
|
|
int i, j;
|
|
|
|
#if VERBOSE > 0
|
|
DBG_MSG("intelfbhw_cursor_reset\n");
|
|
#endif
|
|
|
|
if (!dinfo->cursor.virtual)
|
|
return;
|
|
|
|
for (i = 64; i--; ) {
|
|
for (j = 0; j < 8; j++) {
|
|
writeb(0xff, addr + j+0);
|
|
writeb(0x00, addr + j+8);
|
|
}
|
|
addr += 16;
|
|
}
|
|
}
|
|
|
|
static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
|
|
{
|
|
u16 tmp;
|
|
struct intelfb_info *dinfo = dev_id;
|
|
|
|
spin_lock(&dinfo->int_lock);
|
|
|
|
tmp = INREG16(IIR);
|
|
if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
|
|
tmp &= PIPE_A_EVENT_INTERRUPT;
|
|
else
|
|
tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
|
|
|
|
if (tmp == 0) {
|
|
spin_unlock(&dinfo->int_lock);
|
|
return IRQ_RETVAL(0); /* not us */
|
|
}
|
|
|
|
/* clear status bits 0-15 ASAP and don't touch bits 16-31 */
|
|
OUTREG(PIPEASTAT, INREG(PIPEASTAT));
|
|
|
|
OUTREG16(IIR, tmp);
|
|
if (dinfo->vsync.pan_display) {
|
|
dinfo->vsync.pan_display = 0;
|
|
OUTREG(DSPABASE, dinfo->vsync.pan_offset);
|
|
}
|
|
|
|
dinfo->vsync.count++;
|
|
wake_up_interruptible(&dinfo->vsync.wait);
|
|
|
|
spin_unlock(&dinfo->int_lock);
|
|
|
|
return IRQ_RETVAL(1);
|
|
}
|
|
|
|
int intelfbhw_enable_irq(struct intelfb_info *dinfo)
|
|
{
|
|
u16 tmp;
|
|
if (!test_and_set_bit(0, &dinfo->irq_flags)) {
|
|
if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
|
|
"intelfb", dinfo)) {
|
|
clear_bit(0, &dinfo->irq_flags);
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_irq(&dinfo->int_lock);
|
|
OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
|
|
OUTREG16(IMR, 0);
|
|
} else
|
|
spin_lock_irq(&dinfo->int_lock);
|
|
|
|
if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
|
|
tmp = PIPE_A_EVENT_INTERRUPT;
|
|
else
|
|
tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
|
|
if (tmp != INREG16(IER)) {
|
|
DBG_MSG("changing IER to 0x%X\n", tmp);
|
|
OUTREG16(IER, tmp);
|
|
}
|
|
|
|
spin_unlock_irq(&dinfo->int_lock);
|
|
return 0;
|
|
}
|
|
|
|
void intelfbhw_disable_irq(struct intelfb_info *dinfo)
|
|
{
|
|
if (test_and_clear_bit(0, &dinfo->irq_flags)) {
|
|
if (dinfo->vsync.pan_display) {
|
|
dinfo->vsync.pan_display = 0;
|
|
OUTREG(DSPABASE, dinfo->vsync.pan_offset);
|
|
}
|
|
spin_lock_irq(&dinfo->int_lock);
|
|
OUTREG16(HWSTAM, 0xffff);
|
|
OUTREG16(IMR, 0xffff);
|
|
OUTREG16(IER, 0x0);
|
|
|
|
OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
|
|
spin_unlock_irq(&dinfo->int_lock);
|
|
|
|
free_irq(dinfo->pdev->irq, dinfo);
|
|
}
|
|
}
|
|
|
|
int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
|
|
{
|
|
struct intelfb_vsync *vsync;
|
|
unsigned int count;
|
|
int ret;
|
|
|
|
switch (pipe) {
|
|
case 0:
|
|
vsync = &dinfo->vsync;
|
|
break;
|
|
default:
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = intelfbhw_enable_irq(dinfo);
|
|
if (ret)
|
|
return ret;
|
|
|
|
count = vsync->count;
|
|
ret = wait_event_interruptible_timeout(vsync->wait,
|
|
count != vsync->count, HZ / 10);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret == 0) {
|
|
DBG_MSG("wait_for_vsync timed out!\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
return 0;
|
|
}
|