kernel-ark/arch/x86_64/kernel/tsc.c
john stultz 5a90cf205c [PATCH] x86: Log reason why TSC was marked unstable
Change mark_tsc_unstable() so it takes a string argument, which holds the
reason the TSC was marked unstable.

This is then displayed the first time mark_tsc_unstable is called.

This should help us better debug why the TSC was marked unstable on certain
systems and allow us to make sure we're not being overly paranoid when
throwing out this troublesome clocksource.

Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andi Kleen <ak@suse.de>
2007-05-02 19:27:08 +02:00

227 lines
5.0 KiB
C

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/clocksource.h>
#include <linux/time.h>
#include <linux/acpi.h>
#include <linux/cpufreq.h>
#include <asm/timex.h>
static int notsc __initdata = 0;
unsigned int cpu_khz; /* TSC clocks / usec, not used here */
EXPORT_SYMBOL(cpu_khz);
unsigned int tsc_khz;
EXPORT_SYMBOL(tsc_khz);
static unsigned int cyc2ns_scale __read_mostly;
void set_cyc2ns_scale(unsigned long khz)
{
cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / khz;
}
static unsigned long long cycles_2_ns(unsigned long long cyc)
{
return (cyc * cyc2ns_scale) >> NS_SCALE;
}
unsigned long long sched_clock(void)
{
unsigned long a = 0;
/* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
* which means it is not completely exact and may not be monotonous
* between CPUs. But the errors should be too small to matter for
* scheduling purposes.
*/
rdtscll(a);
return cycles_2_ns(a);
}
static int tsc_unstable;
static inline int check_tsc_unstable(void)
{
return tsc_unstable;
}
#ifdef CONFIG_CPU_FREQ
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
* changes.
*
* RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
* not that important because current Opteron setups do not support
* scaling on SMP anyroads.
*
* Should fix up last_tsc too. Currently gettimeofday in the
* first tick after the change will be slightly wrong.
*/
#include <linux/workqueue.h>
static unsigned int cpufreq_delayed_issched = 0;
static unsigned int cpufreq_init = 0;
static struct work_struct cpufreq_delayed_get_work;
static void handle_cpufreq_delayed_get(struct work_struct *v)
{
unsigned int cpu;
for_each_online_cpu(cpu) {
cpufreq_get(cpu);
}
cpufreq_delayed_issched = 0;
}
static unsigned int ref_freq = 0;
static unsigned long loops_per_jiffy_ref = 0;
static unsigned long tsc_khz_ref = 0;
static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct cpufreq_freqs *freq = data;
unsigned long *lpj, dummy;
if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
return 0;
lpj = &dummy;
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
#ifdef CONFIG_SMP
lpj = &cpu_data[freq->cpu].loops_per_jiffy;
#else
lpj = &boot_cpu_data.loops_per_jiffy;
#endif
if (!ref_freq) {
ref_freq = freq->old;
loops_per_jiffy_ref = *lpj;
tsc_khz_ref = tsc_khz;
}
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
(val == CPUFREQ_RESUMECHANGE)) {
*lpj =
cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
mark_tsc_unstable("cpufreq changes");
}
set_cyc2ns_scale(tsc_khz_ref);
return 0;
}
static struct notifier_block time_cpufreq_notifier_block = {
.notifier_call = time_cpufreq_notifier
};
static int __init cpufreq_tsc(void)
{
INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get);
if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER))
cpufreq_init = 1;
return 0;
}
core_initcall(cpufreq_tsc);
#endif
static int tsc_unstable = 0;
/*
* Make an educated guess if the TSC is trustworthy and synchronized
* over all CPUs.
*/
__cpuinit int unsynchronized_tsc(void)
{
if (tsc_unstable)
return 1;
#ifdef CONFIG_SMP
if (apic_is_clustered_box())
return 1;
#endif
/* Most intel systems have synchronized TSCs except for
multi node systems */
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
#ifdef CONFIG_ACPI
/* But TSC doesn't tick in C3 so don't use it there */
if (acpi_gbl_FADT.header.length > 0 && acpi_gbl_FADT.C3latency < 1000)
return 1;
#endif
return 0;
}
/* Assume multi socket systems are not synchronized */
return num_present_cpus() > 1;
}
int __init notsc_setup(char *s)
{
notsc = 1;
return 1;
}
__setup("notsc", notsc_setup);
/* clock source code: */
static cycle_t read_tsc(void)
{
cycle_t ret = (cycle_t)get_cycles_sync();
return ret;
}
static cycle_t __vsyscall_fn vread_tsc(void)
{
cycle_t ret = (cycle_t)get_cycles_sync();
return ret;
}
static struct clocksource clocksource_tsc = {
.name = "tsc",
.rating = 300,
.read = read_tsc,
.mask = CLOCKSOURCE_MASK(64),
.shift = 22,
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
CLOCK_SOURCE_MUST_VERIFY,
.vread = vread_tsc,
};
void mark_tsc_unstable(char *reason)
{
if (!tsc_unstable) {
tsc_unstable = 1;
printk("Marking TSC unstable due to %s\n", reason);
/* Change only the rating, when not registered */
if (clocksource_tsc.mult)
clocksource_change_rating(&clocksource_tsc, 0);
else
clocksource_tsc.rating = 0;
}
}
EXPORT_SYMBOL_GPL(mark_tsc_unstable);
void __init init_tsc_clocksource(void)
{
if (!notsc) {
clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
clocksource_tsc.shift);
if (check_tsc_unstable())
clocksource_tsc.rating = 0;
clocksource_register(&clocksource_tsc);
}
}