kernel-ark/fs/gfs2/log.c
Benjamin Marzinski 5d054964f5 GFS2: aggressively issue revokes in gfs2_log_flush
This patch looks at all the outstanding blocks in all the transactions
on the log, and moves the completed ones to the ail2 list.  Then it
issues revokes for these blocks.  This will hopefully speed things up
in situations where there is a lot of contention for glocks, especially
if they are acquired serially.

revoke_lo_before_commit will issue at most one log block's full of these
preemptive revokes. The amount of reserved log space that
gfs2_log_reserve() ignores has been incremented to allow for this extra
block.

This patch also consolidates the common revoke instructions into one
function, gfs2_add_revoke().

Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
2013-06-19 09:41:59 +01:00

912 lines
24 KiB
C

/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU General Public License version 2.
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/gfs2_ondisk.h>
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/bio.h>
#include <linux/writeback.h>
#include <linux/list_sort.h>
#include "gfs2.h"
#include "incore.h"
#include "bmap.h"
#include "glock.h"
#include "log.h"
#include "lops.h"
#include "meta_io.h"
#include "util.h"
#include "dir.h"
#include "trace_gfs2.h"
/**
* gfs2_struct2blk - compute stuff
* @sdp: the filesystem
* @nstruct: the number of structures
* @ssize: the size of the structures
*
* Compute the number of log descriptor blocks needed to hold a certain number
* of structures of a certain size.
*
* Returns: the number of blocks needed (minimum is always 1)
*/
unsigned int gfs2_struct2blk(struct gfs2_sbd *sdp, unsigned int nstruct,
unsigned int ssize)
{
unsigned int blks;
unsigned int first, second;
blks = 1;
first = (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_log_descriptor)) / ssize;
if (nstruct > first) {
second = (sdp->sd_sb.sb_bsize -
sizeof(struct gfs2_meta_header)) / ssize;
blks += DIV_ROUND_UP(nstruct - first, second);
}
return blks;
}
/**
* gfs2_remove_from_ail - Remove an entry from the ail lists, updating counters
* @mapping: The associated mapping (maybe NULL)
* @bd: The gfs2_bufdata to remove
*
* The ail lock _must_ be held when calling this function
*
*/
void gfs2_remove_from_ail(struct gfs2_bufdata *bd)
{
bd->bd_tr = NULL;
list_del_init(&bd->bd_ail_st_list);
list_del_init(&bd->bd_ail_gl_list);
atomic_dec(&bd->bd_gl->gl_ail_count);
brelse(bd->bd_bh);
}
/**
* gfs2_ail1_start_one - Start I/O on a part of the AIL
* @sdp: the filesystem
* @wbc: The writeback control structure
* @ai: The ail structure
*
*/
static int gfs2_ail1_start_one(struct gfs2_sbd *sdp,
struct writeback_control *wbc,
struct gfs2_trans *tr)
__releases(&sdp->sd_ail_lock)
__acquires(&sdp->sd_ail_lock)
{
struct gfs2_glock *gl = NULL;
struct address_space *mapping;
struct gfs2_bufdata *bd, *s;
struct buffer_head *bh;
list_for_each_entry_safe_reverse(bd, s, &tr->tr_ail1_list, bd_ail_st_list) {
bh = bd->bd_bh;
gfs2_assert(sdp, bd->bd_tr == tr);
if (!buffer_busy(bh)) {
if (!buffer_uptodate(bh))
gfs2_io_error_bh(sdp, bh);
list_move(&bd->bd_ail_st_list, &tr->tr_ail2_list);
continue;
}
if (!buffer_dirty(bh))
continue;
if (gl == bd->bd_gl)
continue;
gl = bd->bd_gl;
list_move(&bd->bd_ail_st_list, &tr->tr_ail1_list);
mapping = bh->b_page->mapping;
if (!mapping)
continue;
spin_unlock(&sdp->sd_ail_lock);
generic_writepages(mapping, wbc);
spin_lock(&sdp->sd_ail_lock);
if (wbc->nr_to_write <= 0)
break;
return 1;
}
return 0;
}
/**
* gfs2_ail1_flush - start writeback of some ail1 entries
* @sdp: The super block
* @wbc: The writeback control structure
*
* Writes back some ail1 entries, according to the limits in the
* writeback control structure
*/
void gfs2_ail1_flush(struct gfs2_sbd *sdp, struct writeback_control *wbc)
{
struct list_head *head = &sdp->sd_ail1_list;
struct gfs2_trans *tr;
trace_gfs2_ail_flush(sdp, wbc, 1);
spin_lock(&sdp->sd_ail_lock);
restart:
list_for_each_entry_reverse(tr, head, tr_list) {
if (wbc->nr_to_write <= 0)
break;
if (gfs2_ail1_start_one(sdp, wbc, tr))
goto restart;
}
spin_unlock(&sdp->sd_ail_lock);
trace_gfs2_ail_flush(sdp, wbc, 0);
}
/**
* gfs2_ail1_start - start writeback of all ail1 entries
* @sdp: The superblock
*/
static void gfs2_ail1_start(struct gfs2_sbd *sdp)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
.nr_to_write = LONG_MAX,
.range_start = 0,
.range_end = LLONG_MAX,
};
return gfs2_ail1_flush(sdp, &wbc);
}
/**
* gfs2_ail1_empty_one - Check whether or not a trans in the AIL has been synced
* @sdp: the filesystem
* @ai: the AIL entry
*
*/
static void gfs2_ail1_empty_one(struct gfs2_sbd *sdp, struct gfs2_trans *tr)
{
struct gfs2_bufdata *bd, *s;
struct buffer_head *bh;
list_for_each_entry_safe_reverse(bd, s, &tr->tr_ail1_list,
bd_ail_st_list) {
bh = bd->bd_bh;
gfs2_assert(sdp, bd->bd_tr == tr);
if (buffer_busy(bh))
continue;
if (!buffer_uptodate(bh))
gfs2_io_error_bh(sdp, bh);
list_move(&bd->bd_ail_st_list, &tr->tr_ail2_list);
}
}
/**
* gfs2_ail1_empty - Try to empty the ail1 lists
* @sdp: The superblock
*
* Tries to empty the ail1 lists, starting with the oldest first
*/
static int gfs2_ail1_empty(struct gfs2_sbd *sdp)
{
struct gfs2_trans *tr, *s;
int oldest_tr = 1;
int ret;
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry_safe_reverse(tr, s, &sdp->sd_ail1_list, tr_list) {
gfs2_ail1_empty_one(sdp, tr);
if (list_empty(&tr->tr_ail1_list) && oldest_tr)
list_move(&tr->tr_list, &sdp->sd_ail2_list);
else
oldest_tr = 0;
}
ret = list_empty(&sdp->sd_ail1_list);
spin_unlock(&sdp->sd_ail_lock);
return ret;
}
static void gfs2_ail1_wait(struct gfs2_sbd *sdp)
{
struct gfs2_trans *tr;
struct gfs2_bufdata *bd;
struct buffer_head *bh;
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry_reverse(tr, &sdp->sd_ail1_list, tr_list) {
list_for_each_entry(bd, &tr->tr_ail1_list, bd_ail_st_list) {
bh = bd->bd_bh;
if (!buffer_locked(bh))
continue;
get_bh(bh);
spin_unlock(&sdp->sd_ail_lock);
wait_on_buffer(bh);
brelse(bh);
return;
}
}
spin_unlock(&sdp->sd_ail_lock);
}
/**
* gfs2_ail2_empty_one - Check whether or not a trans in the AIL has been synced
* @sdp: the filesystem
* @ai: the AIL entry
*
*/
static void gfs2_ail2_empty_one(struct gfs2_sbd *sdp, struct gfs2_trans *tr)
{
struct list_head *head = &tr->tr_ail2_list;
struct gfs2_bufdata *bd;
while (!list_empty(head)) {
bd = list_entry(head->prev, struct gfs2_bufdata,
bd_ail_st_list);
gfs2_assert(sdp, bd->bd_tr == tr);
gfs2_remove_from_ail(bd);
}
}
static void ail2_empty(struct gfs2_sbd *sdp, unsigned int new_tail)
{
struct gfs2_trans *tr, *safe;
unsigned int old_tail = sdp->sd_log_tail;
int wrap = (new_tail < old_tail);
int a, b, rm;
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry_safe(tr, safe, &sdp->sd_ail2_list, tr_list) {
a = (old_tail <= tr->tr_first);
b = (tr->tr_first < new_tail);
rm = (wrap) ? (a || b) : (a && b);
if (!rm)
continue;
gfs2_ail2_empty_one(sdp, tr);
list_del(&tr->tr_list);
gfs2_assert_warn(sdp, list_empty(&tr->tr_ail1_list));
gfs2_assert_warn(sdp, list_empty(&tr->tr_ail2_list));
kfree(tr);
}
spin_unlock(&sdp->sd_ail_lock);
}
/**
* gfs2_log_reserve - Make a log reservation
* @sdp: The GFS2 superblock
* @blks: The number of blocks to reserve
*
* Note that we never give out the last few blocks of the journal. Thats
* due to the fact that there is a small number of header blocks
* associated with each log flush. The exact number can't be known until
* flush time, so we ensure that we have just enough free blocks at all
* times to avoid running out during a log flush.
*
* We no longer flush the log here, instead we wake up logd to do that
* for us. To avoid the thundering herd and to ensure that we deal fairly
* with queued waiters, we use an exclusive wait. This means that when we
* get woken with enough journal space to get our reservation, we need to
* wake the next waiter on the list.
*
* Returns: errno
*/
int gfs2_log_reserve(struct gfs2_sbd *sdp, unsigned int blks)
{
unsigned reserved_blks = 7 * (4096 / sdp->sd_vfs->s_blocksize);
unsigned wanted = blks + reserved_blks;
DEFINE_WAIT(wait);
int did_wait = 0;
unsigned int free_blocks;
if (gfs2_assert_warn(sdp, blks) ||
gfs2_assert_warn(sdp, blks <= sdp->sd_jdesc->jd_blocks))
return -EINVAL;
retry:
free_blocks = atomic_read(&sdp->sd_log_blks_free);
if (unlikely(free_blocks <= wanted)) {
do {
prepare_to_wait_exclusive(&sdp->sd_log_waitq, &wait,
TASK_UNINTERRUPTIBLE);
wake_up(&sdp->sd_logd_waitq);
did_wait = 1;
if (atomic_read(&sdp->sd_log_blks_free) <= wanted)
io_schedule();
free_blocks = atomic_read(&sdp->sd_log_blks_free);
} while(free_blocks <= wanted);
finish_wait(&sdp->sd_log_waitq, &wait);
}
if (atomic_cmpxchg(&sdp->sd_log_blks_free, free_blocks,
free_blocks - blks) != free_blocks)
goto retry;
trace_gfs2_log_blocks(sdp, -blks);
/*
* If we waited, then so might others, wake them up _after_ we get
* our share of the log.
*/
if (unlikely(did_wait))
wake_up(&sdp->sd_log_waitq);
down_read(&sdp->sd_log_flush_lock);
return 0;
}
/**
* log_distance - Compute distance between two journal blocks
* @sdp: The GFS2 superblock
* @newer: The most recent journal block of the pair
* @older: The older journal block of the pair
*
* Compute the distance (in the journal direction) between two
* blocks in the journal
*
* Returns: the distance in blocks
*/
static inline unsigned int log_distance(struct gfs2_sbd *sdp, unsigned int newer,
unsigned int older)
{
int dist;
dist = newer - older;
if (dist < 0)
dist += sdp->sd_jdesc->jd_blocks;
return dist;
}
/**
* calc_reserved - Calculate the number of blocks to reserve when
* refunding a transaction's unused buffers.
* @sdp: The GFS2 superblock
*
* This is complex. We need to reserve room for all our currently used
* metadata buffers (e.g. normal file I/O rewriting file time stamps) and
* all our journaled data buffers for journaled files (e.g. files in the
* meta_fs like rindex, or files for which chattr +j was done.)
* If we don't reserve enough space, gfs2_log_refund and gfs2_log_flush
* will count it as free space (sd_log_blks_free) and corruption will follow.
*
* We can have metadata bufs and jdata bufs in the same journal. So each
* type gets its own log header, for which we need to reserve a block.
* In fact, each type has the potential for needing more than one header
* in cases where we have more buffers than will fit on a journal page.
* Metadata journal entries take up half the space of journaled buffer entries.
* Thus, metadata entries have buf_limit (502) and journaled buffers have
* databuf_limit (251) before they cause a wrap around.
*
* Also, we need to reserve blocks for revoke journal entries and one for an
* overall header for the lot.
*
* Returns: the number of blocks reserved
*/
static unsigned int calc_reserved(struct gfs2_sbd *sdp)
{
unsigned int reserved = 0;
unsigned int mbuf_limit, metabufhdrs_needed;
unsigned int dbuf_limit, databufhdrs_needed;
unsigned int revokes = 0;
mbuf_limit = buf_limit(sdp);
metabufhdrs_needed = (sdp->sd_log_commited_buf +
(mbuf_limit - 1)) / mbuf_limit;
dbuf_limit = databuf_limit(sdp);
databufhdrs_needed = (sdp->sd_log_commited_databuf +
(dbuf_limit - 1)) / dbuf_limit;
if (sdp->sd_log_commited_revoke > 0)
revokes = gfs2_struct2blk(sdp, sdp->sd_log_commited_revoke,
sizeof(u64));
reserved = sdp->sd_log_commited_buf + metabufhdrs_needed +
sdp->sd_log_commited_databuf + databufhdrs_needed +
revokes;
/* One for the overall header */
if (reserved)
reserved++;
return reserved;
}
static unsigned int current_tail(struct gfs2_sbd *sdp)
{
struct gfs2_trans *tr;
unsigned int tail;
spin_lock(&sdp->sd_ail_lock);
if (list_empty(&sdp->sd_ail1_list)) {
tail = sdp->sd_log_head;
} else {
tr = list_entry(sdp->sd_ail1_list.prev, struct gfs2_trans,
tr_list);
tail = tr->tr_first;
}
spin_unlock(&sdp->sd_ail_lock);
return tail;
}
static void log_pull_tail(struct gfs2_sbd *sdp, unsigned int new_tail)
{
unsigned int dist = log_distance(sdp, new_tail, sdp->sd_log_tail);
ail2_empty(sdp, new_tail);
atomic_add(dist, &sdp->sd_log_blks_free);
trace_gfs2_log_blocks(sdp, dist);
gfs2_assert_withdraw(sdp, atomic_read(&sdp->sd_log_blks_free) <=
sdp->sd_jdesc->jd_blocks);
sdp->sd_log_tail = new_tail;
}
static void log_flush_wait(struct gfs2_sbd *sdp)
{
DEFINE_WAIT(wait);
if (atomic_read(&sdp->sd_log_in_flight)) {
do {
prepare_to_wait(&sdp->sd_log_flush_wait, &wait,
TASK_UNINTERRUPTIBLE);
if (atomic_read(&sdp->sd_log_in_flight))
io_schedule();
} while(atomic_read(&sdp->sd_log_in_flight));
finish_wait(&sdp->sd_log_flush_wait, &wait);
}
}
static int ip_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct gfs2_inode *ipa, *ipb;
ipa = list_entry(a, struct gfs2_inode, i_ordered);
ipb = list_entry(b, struct gfs2_inode, i_ordered);
if (ipa->i_no_addr < ipb->i_no_addr)
return -1;
if (ipa->i_no_addr > ipb->i_no_addr)
return 1;
return 0;
}
static void gfs2_ordered_write(struct gfs2_sbd *sdp)
{
struct gfs2_inode *ip;
LIST_HEAD(written);
spin_lock(&sdp->sd_ordered_lock);
list_sort(NULL, &sdp->sd_log_le_ordered, &ip_cmp);
while (!list_empty(&sdp->sd_log_le_ordered)) {
ip = list_entry(sdp->sd_log_le_ordered.next, struct gfs2_inode, i_ordered);
list_move(&ip->i_ordered, &written);
if (ip->i_inode.i_mapping->nrpages == 0)
continue;
spin_unlock(&sdp->sd_ordered_lock);
filemap_fdatawrite(ip->i_inode.i_mapping);
spin_lock(&sdp->sd_ordered_lock);
}
list_splice(&written, &sdp->sd_log_le_ordered);
spin_unlock(&sdp->sd_ordered_lock);
}
static void gfs2_ordered_wait(struct gfs2_sbd *sdp)
{
struct gfs2_inode *ip;
spin_lock(&sdp->sd_ordered_lock);
while (!list_empty(&sdp->sd_log_le_ordered)) {
ip = list_entry(sdp->sd_log_le_ordered.next, struct gfs2_inode, i_ordered);
list_del(&ip->i_ordered);
WARN_ON(!test_and_clear_bit(GIF_ORDERED, &ip->i_flags));
if (ip->i_inode.i_mapping->nrpages == 0)
continue;
spin_unlock(&sdp->sd_ordered_lock);
filemap_fdatawait(ip->i_inode.i_mapping);
spin_lock(&sdp->sd_ordered_lock);
}
spin_unlock(&sdp->sd_ordered_lock);
}
void gfs2_ordered_del_inode(struct gfs2_inode *ip)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
spin_lock(&sdp->sd_ordered_lock);
if (test_and_clear_bit(GIF_ORDERED, &ip->i_flags))
list_del(&ip->i_ordered);
spin_unlock(&sdp->sd_ordered_lock);
}
void gfs2_add_revoke(struct gfs2_sbd *sdp, struct gfs2_bufdata *bd)
{
struct buffer_head *bh = bd->bd_bh;
struct gfs2_glock *gl = bd->bd_gl;
gfs2_remove_from_ail(bd);
bd->bd_bh = NULL;
bh->b_private = NULL;
bd->bd_blkno = bh->b_blocknr;
bd->bd_ops = &gfs2_revoke_lops;
sdp->sd_log_num_revoke++;
atomic_inc(&gl->gl_revokes);
set_bit(GLF_LFLUSH, &gl->gl_flags);
list_add(&bd->bd_list, &sdp->sd_log_le_revoke);
}
void gfs2_write_revokes(struct gfs2_sbd *sdp)
{
struct gfs2_trans *tr;
struct gfs2_bufdata *bd, *tmp;
int have_revokes = 0;
int max_revokes = (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_log_descriptor)) / sizeof(u64);
gfs2_ail1_empty(sdp);
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry(tr, &sdp->sd_ail1_list, tr_list) {
list_for_each_entry(bd, &tr->tr_ail2_list, bd_ail_st_list) {
if (list_empty(&bd->bd_list)) {
have_revokes = 1;
goto done;
}
}
}
done:
spin_unlock(&sdp->sd_ail_lock);
if (have_revokes == 0)
return;
while (sdp->sd_log_num_revoke > max_revokes)
max_revokes += (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_meta_header)) / sizeof(u64);
max_revokes -= sdp->sd_log_num_revoke;
if (!sdp->sd_log_num_revoke) {
atomic_dec(&sdp->sd_log_blks_free);
/* If no blocks have been reserved, we need to also
* reserve a block for the header */
if (!sdp->sd_log_blks_reserved)
atomic_dec(&sdp->sd_log_blks_free);
}
gfs2_log_lock(sdp);
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry(tr, &sdp->sd_ail1_list, tr_list) {
list_for_each_entry_safe(bd, tmp, &tr->tr_ail2_list, bd_ail_st_list) {
if (max_revokes == 0)
goto out_of_blocks;
if (!list_empty(&bd->bd_list))
continue;
gfs2_add_revoke(sdp, bd);
max_revokes--;
}
}
out_of_blocks:
spin_unlock(&sdp->sd_ail_lock);
gfs2_log_unlock(sdp);
if (!sdp->sd_log_num_revoke) {
atomic_inc(&sdp->sd_log_blks_free);
if (!sdp->sd_log_blks_reserved)
atomic_inc(&sdp->sd_log_blks_free);
}
}
/**
* log_write_header - Get and initialize a journal header buffer
* @sdp: The GFS2 superblock
*
* Returns: the initialized log buffer descriptor
*/
static void log_write_header(struct gfs2_sbd *sdp, u32 flags)
{
struct gfs2_log_header *lh;
unsigned int tail;
u32 hash;
int rw = WRITE_FLUSH_FUA | REQ_META;
struct page *page = mempool_alloc(gfs2_page_pool, GFP_NOIO);
lh = page_address(page);
clear_page(lh);
tail = current_tail(sdp);
lh->lh_header.mh_magic = cpu_to_be32(GFS2_MAGIC);
lh->lh_header.mh_type = cpu_to_be32(GFS2_METATYPE_LH);
lh->lh_header.__pad0 = cpu_to_be64(0);
lh->lh_header.mh_format = cpu_to_be32(GFS2_FORMAT_LH);
lh->lh_header.mh_jid = cpu_to_be32(sdp->sd_jdesc->jd_jid);
lh->lh_sequence = cpu_to_be64(sdp->sd_log_sequence++);
lh->lh_flags = cpu_to_be32(flags);
lh->lh_tail = cpu_to_be32(tail);
lh->lh_blkno = cpu_to_be32(sdp->sd_log_flush_head);
hash = gfs2_disk_hash(page_address(page), sizeof(struct gfs2_log_header));
lh->lh_hash = cpu_to_be32(hash);
if (test_bit(SDF_NOBARRIERS, &sdp->sd_flags)) {
gfs2_ordered_wait(sdp);
log_flush_wait(sdp);
rw = WRITE_SYNC | REQ_META | REQ_PRIO;
}
sdp->sd_log_idle = (tail == sdp->sd_log_flush_head);
gfs2_log_write_page(sdp, page);
gfs2_log_flush_bio(sdp, rw);
log_flush_wait(sdp);
if (sdp->sd_log_tail != tail)
log_pull_tail(sdp, tail);
}
/**
* gfs2_log_flush - flush incore transaction(s)
* @sdp: the filesystem
* @gl: The glock structure to flush. If NULL, flush the whole incore log
*
*/
void gfs2_log_flush(struct gfs2_sbd *sdp, struct gfs2_glock *gl)
{
struct gfs2_trans *tr;
down_write(&sdp->sd_log_flush_lock);
/* Log might have been flushed while we waited for the flush lock */
if (gl && !test_bit(GLF_LFLUSH, &gl->gl_flags)) {
up_write(&sdp->sd_log_flush_lock);
return;
}
trace_gfs2_log_flush(sdp, 1);
tr = sdp->sd_log_tr;
if (tr) {
sdp->sd_log_tr = NULL;
INIT_LIST_HEAD(&tr->tr_ail1_list);
INIT_LIST_HEAD(&tr->tr_ail2_list);
}
if (sdp->sd_log_num_buf != sdp->sd_log_commited_buf) {
printk(KERN_INFO "GFS2: log buf %u %u\n", sdp->sd_log_num_buf,
sdp->sd_log_commited_buf);
gfs2_assert_withdraw(sdp, 0);
}
if (sdp->sd_log_num_databuf != sdp->sd_log_commited_databuf) {
printk(KERN_INFO "GFS2: log databuf %u %u\n",
sdp->sd_log_num_databuf, sdp->sd_log_commited_databuf);
gfs2_assert_withdraw(sdp, 0);
}
gfs2_assert_withdraw(sdp,
sdp->sd_log_num_revoke == sdp->sd_log_commited_revoke);
sdp->sd_log_flush_head = sdp->sd_log_head;
sdp->sd_log_flush_wrapped = 0;
if (tr)
tr->tr_first = sdp->sd_log_flush_head;
gfs2_ordered_write(sdp);
lops_before_commit(sdp);
gfs2_log_flush_bio(sdp, WRITE);
if (sdp->sd_log_head != sdp->sd_log_flush_head) {
log_write_header(sdp, 0);
} else if (sdp->sd_log_tail != current_tail(sdp) && !sdp->sd_log_idle){
atomic_dec(&sdp->sd_log_blks_free); /* Adjust for unreserved buffer */
trace_gfs2_log_blocks(sdp, -1);
log_write_header(sdp, 0);
}
lops_after_commit(sdp, tr);
gfs2_log_lock(sdp);
sdp->sd_log_head = sdp->sd_log_flush_head;
sdp->sd_log_blks_reserved = 0;
sdp->sd_log_commited_buf = 0;
sdp->sd_log_commited_databuf = 0;
sdp->sd_log_commited_revoke = 0;
spin_lock(&sdp->sd_ail_lock);
if (tr && !list_empty(&tr->tr_ail1_list)) {
list_add(&tr->tr_list, &sdp->sd_ail1_list);
tr = NULL;
}
spin_unlock(&sdp->sd_ail_lock);
gfs2_log_unlock(sdp);
trace_gfs2_log_flush(sdp, 0);
up_write(&sdp->sd_log_flush_lock);
kfree(tr);
}
static void log_refund(struct gfs2_sbd *sdp, struct gfs2_trans *tr)
{
unsigned int reserved;
unsigned int unused;
gfs2_log_lock(sdp);
sdp->sd_log_commited_buf += tr->tr_num_buf_new - tr->tr_num_buf_rm;
sdp->sd_log_commited_databuf += tr->tr_num_databuf_new -
tr->tr_num_databuf_rm;
gfs2_assert_withdraw(sdp, (((int)sdp->sd_log_commited_buf) >= 0) ||
(((int)sdp->sd_log_commited_databuf) >= 0));
sdp->sd_log_commited_revoke += tr->tr_num_revoke - tr->tr_num_revoke_rm;
reserved = calc_reserved(sdp);
gfs2_assert_withdraw(sdp, sdp->sd_log_blks_reserved + tr->tr_reserved >= reserved);
unused = sdp->sd_log_blks_reserved - reserved + tr->tr_reserved;
atomic_add(unused, &sdp->sd_log_blks_free);
trace_gfs2_log_blocks(sdp, unused);
gfs2_assert_withdraw(sdp, atomic_read(&sdp->sd_log_blks_free) <=
sdp->sd_jdesc->jd_blocks);
sdp->sd_log_blks_reserved = reserved;
if (sdp->sd_log_tr == NULL &&
(tr->tr_num_buf_new || tr->tr_num_databuf_new)) {
gfs2_assert_withdraw(sdp, tr->tr_t_gh.gh_gl);
sdp->sd_log_tr = tr;
tr->tr_attached = 1;
}
gfs2_log_unlock(sdp);
}
/**
* gfs2_log_commit - Commit a transaction to the log
* @sdp: the filesystem
* @tr: the transaction
*
* We wake up gfs2_logd if the number of pinned blocks exceed thresh1
* or the total number of used blocks (pinned blocks plus AIL blocks)
* is greater than thresh2.
*
* At mount time thresh1 is 1/3rd of journal size, thresh2 is 2/3rd of
* journal size.
*
* Returns: errno
*/
void gfs2_log_commit(struct gfs2_sbd *sdp, struct gfs2_trans *tr)
{
log_refund(sdp, tr);
if (atomic_read(&sdp->sd_log_pinned) > atomic_read(&sdp->sd_log_thresh1) ||
((sdp->sd_jdesc->jd_blocks - atomic_read(&sdp->sd_log_blks_free)) >
atomic_read(&sdp->sd_log_thresh2)))
wake_up(&sdp->sd_logd_waitq);
}
/**
* gfs2_log_shutdown - write a shutdown header into a journal
* @sdp: the filesystem
*
*/
void gfs2_log_shutdown(struct gfs2_sbd *sdp)
{
down_write(&sdp->sd_log_flush_lock);
gfs2_assert_withdraw(sdp, !sdp->sd_log_blks_reserved);
gfs2_assert_withdraw(sdp, !sdp->sd_log_num_buf);
gfs2_assert_withdraw(sdp, !sdp->sd_log_num_revoke);
gfs2_assert_withdraw(sdp, !sdp->sd_log_num_rg);
gfs2_assert_withdraw(sdp, !sdp->sd_log_num_databuf);
gfs2_assert_withdraw(sdp, list_empty(&sdp->sd_ail1_list));
sdp->sd_log_flush_head = sdp->sd_log_head;
sdp->sd_log_flush_wrapped = 0;
log_write_header(sdp, GFS2_LOG_HEAD_UNMOUNT);
gfs2_assert_warn(sdp, atomic_read(&sdp->sd_log_blks_free) == sdp->sd_jdesc->jd_blocks);
gfs2_assert_warn(sdp, sdp->sd_log_head == sdp->sd_log_tail);
gfs2_assert_warn(sdp, list_empty(&sdp->sd_ail2_list));
sdp->sd_log_head = sdp->sd_log_flush_head;
sdp->sd_log_tail = sdp->sd_log_head;
up_write(&sdp->sd_log_flush_lock);
}
/**
* gfs2_meta_syncfs - sync all the buffers in a filesystem
* @sdp: the filesystem
*
*/
void gfs2_meta_syncfs(struct gfs2_sbd *sdp)
{
gfs2_log_flush(sdp, NULL);
for (;;) {
gfs2_ail1_start(sdp);
gfs2_ail1_wait(sdp);
if (gfs2_ail1_empty(sdp))
break;
}
gfs2_log_flush(sdp, NULL);
}
static inline int gfs2_jrnl_flush_reqd(struct gfs2_sbd *sdp)
{
return (atomic_read(&sdp->sd_log_pinned) >= atomic_read(&sdp->sd_log_thresh1));
}
static inline int gfs2_ail_flush_reqd(struct gfs2_sbd *sdp)
{
unsigned int used_blocks = sdp->sd_jdesc->jd_blocks - atomic_read(&sdp->sd_log_blks_free);
return used_blocks >= atomic_read(&sdp->sd_log_thresh2);
}
/**
* gfs2_logd - Update log tail as Active Items get flushed to in-place blocks
* @sdp: Pointer to GFS2 superblock
*
* Also, periodically check to make sure that we're using the most recent
* journal index.
*/
int gfs2_logd(void *data)
{
struct gfs2_sbd *sdp = data;
unsigned long t = 1;
DEFINE_WAIT(wait);
while (!kthread_should_stop()) {
if (gfs2_jrnl_flush_reqd(sdp) || t == 0) {
gfs2_ail1_empty(sdp);
gfs2_log_flush(sdp, NULL);
}
if (gfs2_ail_flush_reqd(sdp)) {
gfs2_ail1_start(sdp);
gfs2_ail1_wait(sdp);
gfs2_ail1_empty(sdp);
gfs2_log_flush(sdp, NULL);
}
if (!gfs2_ail_flush_reqd(sdp))
wake_up(&sdp->sd_log_waitq);
t = gfs2_tune_get(sdp, gt_logd_secs) * HZ;
try_to_freeze();
do {
prepare_to_wait(&sdp->sd_logd_waitq, &wait,
TASK_INTERRUPTIBLE);
if (!gfs2_ail_flush_reqd(sdp) &&
!gfs2_jrnl_flush_reqd(sdp) &&
!kthread_should_stop())
t = schedule_timeout(t);
} while(t && !gfs2_ail_flush_reqd(sdp) &&
!gfs2_jrnl_flush_reqd(sdp) &&
!kthread_should_stop());
finish_wait(&sdp->sd_logd_waitq, &wait);
}
return 0;
}