654f31189e
This lets us remove a lot of code in the drivers that were all checking the same thing. It also found some bugs in a few of the drivers, which has been fixed up. Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1943 lines
54 KiB
C
1943 lines
54 KiB
C
/*
|
|
* (C) Copyright Linus Torvalds 1999
|
|
* (C) Copyright Johannes Erdfelt 1999-2001
|
|
* (C) Copyright Andreas Gal 1999
|
|
* (C) Copyright Gregory P. Smith 1999
|
|
* (C) Copyright Deti Fliegl 1999
|
|
* (C) Copyright Randy Dunlap 2000
|
|
* (C) Copyright David Brownell 2000-2002
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/version.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/mm.h>
|
|
#include <asm/io.h>
|
|
#include <asm/scatterlist.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <linux/usb.h>
|
|
|
|
#include "usb.h"
|
|
#include "hcd.h"
|
|
#include "hub.h"
|
|
|
|
|
|
// #define USB_BANDWIDTH_MESSAGES
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* USB Host Controller Driver framework
|
|
*
|
|
* Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
|
|
* HCD-specific behaviors/bugs.
|
|
*
|
|
* This does error checks, tracks devices and urbs, and delegates to a
|
|
* "hc_driver" only for code (and data) that really needs to know about
|
|
* hardware differences. That includes root hub registers, i/o queues,
|
|
* and so on ... but as little else as possible.
|
|
*
|
|
* Shared code includes most of the "root hub" code (these are emulated,
|
|
* though each HC's hardware works differently) and PCI glue, plus request
|
|
* tracking overhead. The HCD code should only block on spinlocks or on
|
|
* hardware handshaking; blocking on software events (such as other kernel
|
|
* threads releasing resources, or completing actions) is all generic.
|
|
*
|
|
* Happens the USB 2.0 spec says this would be invisible inside the "USBD",
|
|
* and includes mostly a "HCDI" (HCD Interface) along with some APIs used
|
|
* only by the hub driver ... and that neither should be seen or used by
|
|
* usb client device drivers.
|
|
*
|
|
* Contributors of ideas or unattributed patches include: David Brownell,
|
|
* Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
|
|
*
|
|
* HISTORY:
|
|
* 2002-02-21 Pull in most of the usb_bus support from usb.c; some
|
|
* associated cleanup. "usb_hcd" still != "usb_bus".
|
|
* 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
|
|
*/
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* host controllers we manage */
|
|
LIST_HEAD (usb_bus_list);
|
|
EXPORT_SYMBOL_GPL (usb_bus_list);
|
|
|
|
/* used when allocating bus numbers */
|
|
#define USB_MAXBUS 64
|
|
struct usb_busmap {
|
|
unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
|
|
};
|
|
static struct usb_busmap busmap;
|
|
|
|
/* used when updating list of hcds */
|
|
DECLARE_MUTEX (usb_bus_list_lock); /* exported only for usbfs */
|
|
EXPORT_SYMBOL_GPL (usb_bus_list_lock);
|
|
|
|
/* used for controlling access to virtual root hubs */
|
|
static DEFINE_SPINLOCK(hcd_root_hub_lock);
|
|
|
|
/* used when updating hcd data */
|
|
static DEFINE_SPINLOCK(hcd_data_lock);
|
|
|
|
/* wait queue for synchronous unlinks */
|
|
DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Sharable chunks of root hub code.
|
|
*/
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
#define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
|
|
#define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
|
|
|
|
/* usb 2.0 root hub device descriptor */
|
|
static const u8 usb2_rh_dev_descriptor [18] = {
|
|
0x12, /* __u8 bLength; */
|
|
0x01, /* __u8 bDescriptorType; Device */
|
|
0x00, 0x02, /* __le16 bcdUSB; v2.0 */
|
|
|
|
0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 bDeviceSubClass; */
|
|
0x01, /* __u8 bDeviceProtocol; [ usb 2.0 single TT ]*/
|
|
0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
|
|
|
|
0x00, 0x00, /* __le16 idVendor; */
|
|
0x00, 0x00, /* __le16 idProduct; */
|
|
KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
|
|
|
|
0x03, /* __u8 iManufacturer; */
|
|
0x02, /* __u8 iProduct; */
|
|
0x01, /* __u8 iSerialNumber; */
|
|
0x01 /* __u8 bNumConfigurations; */
|
|
};
|
|
|
|
/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
|
|
|
|
/* usb 1.1 root hub device descriptor */
|
|
static const u8 usb11_rh_dev_descriptor [18] = {
|
|
0x12, /* __u8 bLength; */
|
|
0x01, /* __u8 bDescriptorType; Device */
|
|
0x10, 0x01, /* __le16 bcdUSB; v1.1 */
|
|
|
|
0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 bDeviceSubClass; */
|
|
0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
|
|
0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
|
|
|
|
0x00, 0x00, /* __le16 idVendor; */
|
|
0x00, 0x00, /* __le16 idProduct; */
|
|
KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
|
|
|
|
0x03, /* __u8 iManufacturer; */
|
|
0x02, /* __u8 iProduct; */
|
|
0x01, /* __u8 iSerialNumber; */
|
|
0x01 /* __u8 bNumConfigurations; */
|
|
};
|
|
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* Configuration descriptors for our root hubs */
|
|
|
|
static const u8 fs_rh_config_descriptor [] = {
|
|
|
|
/* one configuration */
|
|
0x09, /* __u8 bLength; */
|
|
0x02, /* __u8 bDescriptorType; Configuration */
|
|
0x19, 0x00, /* __le16 wTotalLength; */
|
|
0x01, /* __u8 bNumInterfaces; (1) */
|
|
0x01, /* __u8 bConfigurationValue; */
|
|
0x00, /* __u8 iConfiguration; */
|
|
0xc0, /* __u8 bmAttributes;
|
|
Bit 7: must be set,
|
|
6: Self-powered,
|
|
5: Remote wakeup,
|
|
4..0: resvd */
|
|
0x00, /* __u8 MaxPower; */
|
|
|
|
/* USB 1.1:
|
|
* USB 2.0, single TT organization (mandatory):
|
|
* one interface, protocol 0
|
|
*
|
|
* USB 2.0, multiple TT organization (optional):
|
|
* two interfaces, protocols 1 (like single TT)
|
|
* and 2 (multiple TT mode) ... config is
|
|
* sometimes settable
|
|
* NOT IMPLEMENTED
|
|
*/
|
|
|
|
/* one interface */
|
|
0x09, /* __u8 if_bLength; */
|
|
0x04, /* __u8 if_bDescriptorType; Interface */
|
|
0x00, /* __u8 if_bInterfaceNumber; */
|
|
0x00, /* __u8 if_bAlternateSetting; */
|
|
0x01, /* __u8 if_bNumEndpoints; */
|
|
0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 if_bInterfaceSubClass; */
|
|
0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
|
|
0x00, /* __u8 if_iInterface; */
|
|
|
|
/* one endpoint (status change endpoint) */
|
|
0x07, /* __u8 ep_bLength; */
|
|
0x05, /* __u8 ep_bDescriptorType; Endpoint */
|
|
0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
|
|
0x03, /* __u8 ep_bmAttributes; Interrupt */
|
|
0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
|
|
0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
|
|
};
|
|
|
|
static const u8 hs_rh_config_descriptor [] = {
|
|
|
|
/* one configuration */
|
|
0x09, /* __u8 bLength; */
|
|
0x02, /* __u8 bDescriptorType; Configuration */
|
|
0x19, 0x00, /* __le16 wTotalLength; */
|
|
0x01, /* __u8 bNumInterfaces; (1) */
|
|
0x01, /* __u8 bConfigurationValue; */
|
|
0x00, /* __u8 iConfiguration; */
|
|
0xc0, /* __u8 bmAttributes;
|
|
Bit 7: must be set,
|
|
6: Self-powered,
|
|
5: Remote wakeup,
|
|
4..0: resvd */
|
|
0x00, /* __u8 MaxPower; */
|
|
|
|
/* USB 1.1:
|
|
* USB 2.0, single TT organization (mandatory):
|
|
* one interface, protocol 0
|
|
*
|
|
* USB 2.0, multiple TT organization (optional):
|
|
* two interfaces, protocols 1 (like single TT)
|
|
* and 2 (multiple TT mode) ... config is
|
|
* sometimes settable
|
|
* NOT IMPLEMENTED
|
|
*/
|
|
|
|
/* one interface */
|
|
0x09, /* __u8 if_bLength; */
|
|
0x04, /* __u8 if_bDescriptorType; Interface */
|
|
0x00, /* __u8 if_bInterfaceNumber; */
|
|
0x00, /* __u8 if_bAlternateSetting; */
|
|
0x01, /* __u8 if_bNumEndpoints; */
|
|
0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
|
|
0x00, /* __u8 if_bInterfaceSubClass; */
|
|
0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
|
|
0x00, /* __u8 if_iInterface; */
|
|
|
|
/* one endpoint (status change endpoint) */
|
|
0x07, /* __u8 ep_bLength; */
|
|
0x05, /* __u8 ep_bDescriptorType; Endpoint */
|
|
0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
|
|
0x03, /* __u8 ep_bmAttributes; Interrupt */
|
|
0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
|
|
0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
|
|
};
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* helper routine for returning string descriptors in UTF-16LE
|
|
* input can actually be ISO-8859-1; ASCII is its 7-bit subset
|
|
*/
|
|
static int ascii2utf (char *s, u8 *utf, int utfmax)
|
|
{
|
|
int retval;
|
|
|
|
for (retval = 0; *s && utfmax > 1; utfmax -= 2, retval += 2) {
|
|
*utf++ = *s++;
|
|
*utf++ = 0;
|
|
}
|
|
if (utfmax > 0) {
|
|
*utf = *s;
|
|
++retval;
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* rh_string - provides manufacturer, product and serial strings for root hub
|
|
* @id: the string ID number (1: serial number, 2: product, 3: vendor)
|
|
* @hcd: the host controller for this root hub
|
|
* @type: string describing our driver
|
|
* @data: return packet in UTF-16 LE
|
|
* @len: length of the return packet
|
|
*
|
|
* Produces either a manufacturer, product or serial number string for the
|
|
* virtual root hub device.
|
|
*/
|
|
static int rh_string (
|
|
int id,
|
|
struct usb_hcd *hcd,
|
|
u8 *data,
|
|
int len
|
|
) {
|
|
char buf [100];
|
|
|
|
// language ids
|
|
if (id == 0) {
|
|
buf[0] = 4; buf[1] = 3; /* 4 bytes string data */
|
|
buf[2] = 0x09; buf[3] = 0x04; /* MSFT-speak for "en-us" */
|
|
len = min (len, 4);
|
|
memcpy (data, buf, len);
|
|
return len;
|
|
|
|
// serial number
|
|
} else if (id == 1) {
|
|
strlcpy (buf, hcd->self.bus_name, sizeof buf);
|
|
|
|
// product description
|
|
} else if (id == 2) {
|
|
strlcpy (buf, hcd->product_desc, sizeof buf);
|
|
|
|
// id 3 == vendor description
|
|
} else if (id == 3) {
|
|
snprintf (buf, sizeof buf, "%s %s %s", system_utsname.sysname,
|
|
system_utsname.release, hcd->driver->description);
|
|
|
|
// unsupported IDs --> "protocol stall"
|
|
} else
|
|
return -EPIPE;
|
|
|
|
switch (len) { /* All cases fall through */
|
|
default:
|
|
len = 2 + ascii2utf (buf, data + 2, len - 2);
|
|
case 2:
|
|
data [1] = 3; /* type == string */
|
|
case 1:
|
|
data [0] = 2 * (strlen (buf) + 1);
|
|
case 0:
|
|
; /* Compiler wants a statement here */
|
|
}
|
|
return len;
|
|
}
|
|
|
|
|
|
/* Root hub control transfers execute synchronously */
|
|
static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
struct usb_ctrlrequest *cmd;
|
|
u16 typeReq, wValue, wIndex, wLength;
|
|
u8 *ubuf = urb->transfer_buffer;
|
|
u8 tbuf [sizeof (struct usb_hub_descriptor)];
|
|
const u8 *bufp = tbuf;
|
|
int len = 0;
|
|
int patch_wakeup = 0;
|
|
unsigned long flags;
|
|
int status = 0;
|
|
int n;
|
|
|
|
cmd = (struct usb_ctrlrequest *) urb->setup_packet;
|
|
typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
|
|
wValue = le16_to_cpu (cmd->wValue);
|
|
wIndex = le16_to_cpu (cmd->wIndex);
|
|
wLength = le16_to_cpu (cmd->wLength);
|
|
|
|
if (wLength > urb->transfer_buffer_length)
|
|
goto error;
|
|
|
|
urb->actual_length = 0;
|
|
switch (typeReq) {
|
|
|
|
/* DEVICE REQUESTS */
|
|
|
|
case DeviceRequest | USB_REQ_GET_STATUS:
|
|
tbuf [0] = (hcd->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP)
|
|
| (1 << USB_DEVICE_SELF_POWERED);
|
|
tbuf [1] = 0;
|
|
len = 2;
|
|
break;
|
|
case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
|
|
if (wValue == USB_DEVICE_REMOTE_WAKEUP)
|
|
hcd->remote_wakeup = 0;
|
|
else
|
|
goto error;
|
|
break;
|
|
case DeviceOutRequest | USB_REQ_SET_FEATURE:
|
|
if (hcd->can_wakeup && wValue == USB_DEVICE_REMOTE_WAKEUP)
|
|
hcd->remote_wakeup = 1;
|
|
else
|
|
goto error;
|
|
break;
|
|
case DeviceRequest | USB_REQ_GET_CONFIGURATION:
|
|
tbuf [0] = 1;
|
|
len = 1;
|
|
/* FALLTHROUGH */
|
|
case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
|
|
break;
|
|
case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
|
|
switch (wValue & 0xff00) {
|
|
case USB_DT_DEVICE << 8:
|
|
if (hcd->driver->flags & HCD_USB2)
|
|
bufp = usb2_rh_dev_descriptor;
|
|
else if (hcd->driver->flags & HCD_USB11)
|
|
bufp = usb11_rh_dev_descriptor;
|
|
else
|
|
goto error;
|
|
len = 18;
|
|
break;
|
|
case USB_DT_CONFIG << 8:
|
|
if (hcd->driver->flags & HCD_USB2) {
|
|
bufp = hs_rh_config_descriptor;
|
|
len = sizeof hs_rh_config_descriptor;
|
|
} else {
|
|
bufp = fs_rh_config_descriptor;
|
|
len = sizeof fs_rh_config_descriptor;
|
|
}
|
|
if (hcd->can_wakeup)
|
|
patch_wakeup = 1;
|
|
break;
|
|
case USB_DT_STRING << 8:
|
|
n = rh_string (wValue & 0xff, hcd, ubuf, wLength);
|
|
if (n < 0)
|
|
goto error;
|
|
urb->actual_length = n;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
break;
|
|
case DeviceRequest | USB_REQ_GET_INTERFACE:
|
|
tbuf [0] = 0;
|
|
len = 1;
|
|
/* FALLTHROUGH */
|
|
case DeviceOutRequest | USB_REQ_SET_INTERFACE:
|
|
break;
|
|
case DeviceOutRequest | USB_REQ_SET_ADDRESS:
|
|
// wValue == urb->dev->devaddr
|
|
dev_dbg (hcd->self.controller, "root hub device address %d\n",
|
|
wValue);
|
|
break;
|
|
|
|
/* INTERFACE REQUESTS (no defined feature/status flags) */
|
|
|
|
/* ENDPOINT REQUESTS */
|
|
|
|
case EndpointRequest | USB_REQ_GET_STATUS:
|
|
// ENDPOINT_HALT flag
|
|
tbuf [0] = 0;
|
|
tbuf [1] = 0;
|
|
len = 2;
|
|
/* FALLTHROUGH */
|
|
case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
|
|
case EndpointOutRequest | USB_REQ_SET_FEATURE:
|
|
dev_dbg (hcd->self.controller, "no endpoint features yet\n");
|
|
break;
|
|
|
|
/* CLASS REQUESTS (and errors) */
|
|
|
|
default:
|
|
/* non-generic request */
|
|
switch (typeReq) {
|
|
case GetHubStatus:
|
|
case GetPortStatus:
|
|
len = 4;
|
|
break;
|
|
case GetHubDescriptor:
|
|
len = sizeof (struct usb_hub_descriptor);
|
|
break;
|
|
}
|
|
status = hcd->driver->hub_control (hcd,
|
|
typeReq, wValue, wIndex,
|
|
tbuf, wLength);
|
|
break;
|
|
error:
|
|
/* "protocol stall" on error */
|
|
status = -EPIPE;
|
|
}
|
|
|
|
if (status) {
|
|
len = 0;
|
|
if (status != -EPIPE) {
|
|
dev_dbg (hcd->self.controller,
|
|
"CTRL: TypeReq=0x%x val=0x%x "
|
|
"idx=0x%x len=%d ==> %d\n",
|
|
typeReq, wValue, wIndex,
|
|
wLength, status);
|
|
}
|
|
}
|
|
if (len) {
|
|
if (urb->transfer_buffer_length < len)
|
|
len = urb->transfer_buffer_length;
|
|
urb->actual_length = len;
|
|
// always USB_DIR_IN, toward host
|
|
memcpy (ubuf, bufp, len);
|
|
|
|
/* report whether RH hardware supports remote wakeup */
|
|
if (patch_wakeup &&
|
|
len > offsetof (struct usb_config_descriptor,
|
|
bmAttributes))
|
|
((struct usb_config_descriptor *)ubuf)->bmAttributes
|
|
|= USB_CONFIG_ATT_WAKEUP;
|
|
}
|
|
|
|
/* any errors get returned through the urb completion */
|
|
local_irq_save (flags);
|
|
spin_lock (&urb->lock);
|
|
if (urb->status == -EINPROGRESS)
|
|
urb->status = status;
|
|
spin_unlock (&urb->lock);
|
|
usb_hcd_giveback_urb (hcd, urb, NULL);
|
|
local_irq_restore (flags);
|
|
return 0;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Root Hub interrupt transfers are polled using a timer if the
|
|
* driver requests it; otherwise the driver is responsible for
|
|
* calling usb_hcd_poll_rh_status() when an event occurs.
|
|
*
|
|
* Completions are called in_interrupt(), but they may or may not
|
|
* be in_irq().
|
|
*/
|
|
void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
|
|
{
|
|
struct urb *urb;
|
|
int length;
|
|
unsigned long flags;
|
|
char buffer[4]; /* Any root hubs with > 31 ports? */
|
|
|
|
if (!hcd->uses_new_polling && !hcd->status_urb)
|
|
return;
|
|
|
|
length = hcd->driver->hub_status_data(hcd, buffer);
|
|
if (length > 0) {
|
|
|
|
/* try to complete the status urb */
|
|
local_irq_save (flags);
|
|
spin_lock(&hcd_root_hub_lock);
|
|
urb = hcd->status_urb;
|
|
if (urb) {
|
|
spin_lock(&urb->lock);
|
|
if (urb->status == -EINPROGRESS) {
|
|
hcd->poll_pending = 0;
|
|
hcd->status_urb = NULL;
|
|
urb->status = 0;
|
|
urb->hcpriv = NULL;
|
|
urb->actual_length = length;
|
|
memcpy(urb->transfer_buffer, buffer, length);
|
|
} else /* urb has been unlinked */
|
|
length = 0;
|
|
spin_unlock(&urb->lock);
|
|
} else
|
|
length = 0;
|
|
spin_unlock(&hcd_root_hub_lock);
|
|
|
|
/* local irqs are always blocked in completions */
|
|
if (length > 0)
|
|
usb_hcd_giveback_urb (hcd, urb, NULL);
|
|
else
|
|
hcd->poll_pending = 1;
|
|
local_irq_restore (flags);
|
|
}
|
|
|
|
/* The USB 2.0 spec says 256 ms. This is close enough and won't
|
|
* exceed that limit if HZ is 100. */
|
|
if (hcd->uses_new_polling ? hcd->poll_rh :
|
|
(length == 0 && hcd->status_urb != NULL))
|
|
mod_timer (&hcd->rh_timer, jiffies + msecs_to_jiffies(250));
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
|
|
|
|
/* timer callback */
|
|
static void rh_timer_func (unsigned long _hcd)
|
|
{
|
|
usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
int retval;
|
|
unsigned long flags;
|
|
int len = 1 + (urb->dev->maxchild / 8);
|
|
|
|
spin_lock_irqsave (&hcd_root_hub_lock, flags);
|
|
if (urb->status != -EINPROGRESS) /* already unlinked */
|
|
retval = urb->status;
|
|
else if (hcd->status_urb || urb->transfer_buffer_length < len) {
|
|
dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
|
|
retval = -EINVAL;
|
|
} else {
|
|
hcd->status_urb = urb;
|
|
urb->hcpriv = hcd; /* indicate it's queued */
|
|
|
|
if (!hcd->uses_new_polling)
|
|
mod_timer (&hcd->rh_timer, jiffies +
|
|
msecs_to_jiffies(250));
|
|
|
|
/* If a status change has already occurred, report it ASAP */
|
|
else if (hcd->poll_pending)
|
|
mod_timer (&hcd->rh_timer, jiffies);
|
|
retval = 0;
|
|
}
|
|
spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
|
|
return retval;
|
|
}
|
|
|
|
static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
if (usb_pipeint (urb->pipe))
|
|
return rh_queue_status (hcd, urb);
|
|
if (usb_pipecontrol (urb->pipe))
|
|
return rh_call_control (hcd, urb);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* Asynchronous unlinks of root-hub control URBs are legal, but they
|
|
* don't do anything. Status URB unlinks must be made in process context
|
|
* with interrupts enabled.
|
|
*/
|
|
static int usb_rh_urb_dequeue (struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
if (usb_pipeendpoint(urb->pipe) == 0) { /* Control URB */
|
|
if (in_interrupt())
|
|
return 0; /* nothing to do */
|
|
|
|
spin_lock_irq(&urb->lock); /* from usb_kill_urb */
|
|
++urb->reject;
|
|
spin_unlock_irq(&urb->lock);
|
|
|
|
wait_event(usb_kill_urb_queue,
|
|
atomic_read(&urb->use_count) == 0);
|
|
|
|
spin_lock_irq(&urb->lock);
|
|
--urb->reject;
|
|
spin_unlock_irq(&urb->lock);
|
|
|
|
} else { /* Status URB */
|
|
if (!hcd->uses_new_polling)
|
|
del_timer_sync (&hcd->rh_timer);
|
|
local_irq_disable ();
|
|
spin_lock (&hcd_root_hub_lock);
|
|
if (urb == hcd->status_urb) {
|
|
hcd->status_urb = NULL;
|
|
urb->hcpriv = NULL;
|
|
} else
|
|
urb = NULL; /* wasn't fully queued */
|
|
spin_unlock (&hcd_root_hub_lock);
|
|
if (urb)
|
|
usb_hcd_giveback_urb (hcd, urb, NULL);
|
|
local_irq_enable ();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* exported only within usbcore */
|
|
struct usb_bus *usb_bus_get(struct usb_bus *bus)
|
|
{
|
|
if (bus)
|
|
kref_get(&bus->kref);
|
|
return bus;
|
|
}
|
|
|
|
static void usb_host_release(struct kref *kref)
|
|
{
|
|
struct usb_bus *bus = container_of(kref, struct usb_bus, kref);
|
|
|
|
if (bus->release)
|
|
bus->release(bus);
|
|
}
|
|
|
|
/* exported only within usbcore */
|
|
void usb_bus_put(struct usb_bus *bus)
|
|
{
|
|
if (bus)
|
|
kref_put(&bus->kref, usb_host_release);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static struct class *usb_host_class;
|
|
|
|
int usb_host_init(void)
|
|
{
|
|
int retval = 0;
|
|
|
|
usb_host_class = class_create(THIS_MODULE, "usb_host");
|
|
if (IS_ERR(usb_host_class))
|
|
retval = PTR_ERR(usb_host_class);
|
|
return retval;
|
|
}
|
|
|
|
void usb_host_cleanup(void)
|
|
{
|
|
class_destroy(usb_host_class);
|
|
}
|
|
|
|
/**
|
|
* usb_bus_init - shared initialization code
|
|
* @bus: the bus structure being initialized
|
|
*
|
|
* This code is used to initialize a usb_bus structure, memory for which is
|
|
* separately managed.
|
|
*/
|
|
static void usb_bus_init (struct usb_bus *bus)
|
|
{
|
|
memset (&bus->devmap, 0, sizeof(struct usb_devmap));
|
|
|
|
bus->devnum_next = 1;
|
|
|
|
bus->root_hub = NULL;
|
|
bus->hcpriv = NULL;
|
|
bus->busnum = -1;
|
|
bus->bandwidth_allocated = 0;
|
|
bus->bandwidth_int_reqs = 0;
|
|
bus->bandwidth_isoc_reqs = 0;
|
|
|
|
INIT_LIST_HEAD (&bus->bus_list);
|
|
|
|
kref_init(&bus->kref);
|
|
}
|
|
|
|
/**
|
|
* usb_alloc_bus - creates a new USB host controller structure
|
|
* @op: pointer to a struct usb_operations that this bus structure should use
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Creates a USB host controller bus structure with the specified
|
|
* usb_operations and initializes all the necessary internal objects.
|
|
*
|
|
* If no memory is available, NULL is returned.
|
|
*
|
|
* The caller should call usb_put_bus() when it is finished with the structure.
|
|
*/
|
|
struct usb_bus *usb_alloc_bus (struct usb_operations *op)
|
|
{
|
|
struct usb_bus *bus;
|
|
|
|
bus = kzalloc (sizeof *bus, GFP_KERNEL);
|
|
if (!bus)
|
|
return NULL;
|
|
usb_bus_init (bus);
|
|
bus->op = op;
|
|
return bus;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* usb_register_bus - registers the USB host controller with the usb core
|
|
* @bus: pointer to the bus to register
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Assigns a bus number, and links the controller into usbcore data
|
|
* structures so that it can be seen by scanning the bus list.
|
|
*/
|
|
static int usb_register_bus(struct usb_bus *bus)
|
|
{
|
|
int busnum;
|
|
|
|
down (&usb_bus_list_lock);
|
|
busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
|
|
if (busnum < USB_MAXBUS) {
|
|
set_bit (busnum, busmap.busmap);
|
|
bus->busnum = busnum;
|
|
} else {
|
|
printk (KERN_ERR "%s: too many buses\n", usbcore_name);
|
|
up(&usb_bus_list_lock);
|
|
return -E2BIG;
|
|
}
|
|
|
|
bus->class_dev = class_device_create(usb_host_class, NULL, MKDEV(0,0),
|
|
bus->controller, "usb_host%d", busnum);
|
|
if (IS_ERR(bus->class_dev)) {
|
|
clear_bit(busnum, busmap.busmap);
|
|
up(&usb_bus_list_lock);
|
|
return PTR_ERR(bus->class_dev);
|
|
}
|
|
|
|
class_set_devdata(bus->class_dev, bus);
|
|
|
|
/* Add it to the local list of buses */
|
|
list_add (&bus->bus_list, &usb_bus_list);
|
|
up (&usb_bus_list_lock);
|
|
|
|
usb_notify_add_bus(bus);
|
|
|
|
dev_info (bus->controller, "new USB bus registered, assigned bus number %d\n", bus->busnum);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* usb_deregister_bus - deregisters the USB host controller
|
|
* @bus: pointer to the bus to deregister
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Recycles the bus number, and unlinks the controller from usbcore data
|
|
* structures so that it won't be seen by scanning the bus list.
|
|
*/
|
|
static void usb_deregister_bus (struct usb_bus *bus)
|
|
{
|
|
dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
|
|
|
|
/*
|
|
* NOTE: make sure that all the devices are removed by the
|
|
* controller code, as well as having it call this when cleaning
|
|
* itself up
|
|
*/
|
|
down (&usb_bus_list_lock);
|
|
list_del (&bus->bus_list);
|
|
up (&usb_bus_list_lock);
|
|
|
|
usb_notify_remove_bus(bus);
|
|
|
|
clear_bit (bus->busnum, busmap.busmap);
|
|
|
|
class_device_unregister(bus->class_dev);
|
|
}
|
|
|
|
/**
|
|
* register_root_hub - called by usb_add_hcd() to register a root hub
|
|
* @usb_dev: the usb root hub device to be registered.
|
|
* @hcd: host controller for this root hub
|
|
*
|
|
* This function registers the root hub with the USB subsystem. It sets up
|
|
* the device properly in the device tree and stores the root_hub pointer
|
|
* in the bus structure, then calls usb_new_device() to register the usb
|
|
* device. It also assigns the root hub's USB address (always 1).
|
|
*/
|
|
static int register_root_hub (struct usb_device *usb_dev,
|
|
struct usb_hcd *hcd)
|
|
{
|
|
struct device *parent_dev = hcd->self.controller;
|
|
const int devnum = 1;
|
|
int retval;
|
|
|
|
usb_dev->devnum = devnum;
|
|
usb_dev->bus->devnum_next = devnum + 1;
|
|
memset (&usb_dev->bus->devmap.devicemap, 0,
|
|
sizeof usb_dev->bus->devmap.devicemap);
|
|
set_bit (devnum, usb_dev->bus->devmap.devicemap);
|
|
usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
|
|
|
|
down (&usb_bus_list_lock);
|
|
usb_dev->bus->root_hub = usb_dev;
|
|
|
|
usb_dev->ep0.desc.wMaxPacketSize = __constant_cpu_to_le16(64);
|
|
retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
|
|
if (retval != sizeof usb_dev->descriptor) {
|
|
usb_dev->bus->root_hub = NULL;
|
|
up (&usb_bus_list_lock);
|
|
dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
|
|
usb_dev->dev.bus_id, retval);
|
|
return (retval < 0) ? retval : -EMSGSIZE;
|
|
}
|
|
|
|
usb_lock_device (usb_dev);
|
|
retval = usb_new_device (usb_dev);
|
|
usb_unlock_device (usb_dev);
|
|
if (retval) {
|
|
usb_dev->bus->root_hub = NULL;
|
|
dev_err (parent_dev, "can't register root hub for %s, %d\n",
|
|
usb_dev->dev.bus_id, retval);
|
|
}
|
|
up (&usb_bus_list_lock);
|
|
|
|
if (retval == 0) {
|
|
spin_lock_irq (&hcd_root_hub_lock);
|
|
hcd->rh_registered = 1;
|
|
spin_unlock_irq (&hcd_root_hub_lock);
|
|
|
|
/* Did the HC die before the root hub was registered? */
|
|
if (hcd->state == HC_STATE_HALT)
|
|
usb_hc_died (hcd); /* This time clean up */
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
void usb_enable_root_hub_irq (struct usb_bus *bus)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
|
|
hcd = container_of (bus, struct usb_hcd, self);
|
|
if (hcd->driver->hub_irq_enable && !hcd->poll_rh &&
|
|
hcd->state != HC_STATE_HALT)
|
|
hcd->driver->hub_irq_enable (hcd);
|
|
}
|
|
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* usb_calc_bus_time - approximate periodic transaction time in nanoseconds
|
|
* @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
|
|
* @is_input: true iff the transaction sends data to the host
|
|
* @isoc: true for isochronous transactions, false for interrupt ones
|
|
* @bytecount: how many bytes in the transaction.
|
|
*
|
|
* Returns approximate bus time in nanoseconds for a periodic transaction.
|
|
* See USB 2.0 spec section 5.11.3; only periodic transfers need to be
|
|
* scheduled in software, this function is only used for such scheduling.
|
|
*/
|
|
long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
switch (speed) {
|
|
case USB_SPEED_LOW: /* INTR only */
|
|
if (is_input) {
|
|
tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
|
|
return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
|
|
} else {
|
|
tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
|
|
return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
|
|
}
|
|
case USB_SPEED_FULL: /* ISOC or INTR */
|
|
if (isoc) {
|
|
tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
|
|
return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
|
|
} else {
|
|
tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
|
|
return (9107L + BW_HOST_DELAY + tmp);
|
|
}
|
|
case USB_SPEED_HIGH: /* ISOC or INTR */
|
|
// FIXME adjust for input vs output
|
|
if (isoc)
|
|
tmp = HS_NSECS_ISO (bytecount);
|
|
else
|
|
tmp = HS_NSECS (bytecount);
|
|
return tmp;
|
|
default:
|
|
pr_debug ("%s: bogus device speed!\n", usbcore_name);
|
|
return -1;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL (usb_calc_bus_time);
|
|
|
|
/*
|
|
* usb_check_bandwidth():
|
|
*
|
|
* old_alloc is from host_controller->bandwidth_allocated in microseconds;
|
|
* bustime is from calc_bus_time(), but converted to microseconds.
|
|
*
|
|
* returns <bustime in us> if successful,
|
|
* or -ENOSPC if bandwidth request fails.
|
|
*
|
|
* FIXME:
|
|
* This initial implementation does not use Endpoint.bInterval
|
|
* in managing bandwidth allocation.
|
|
* It probably needs to be expanded to use Endpoint.bInterval.
|
|
* This can be done as a later enhancement (correction).
|
|
*
|
|
* This will also probably require some kind of
|
|
* frame allocation tracking...meaning, for example,
|
|
* that if multiple drivers request interrupts every 10 USB frames,
|
|
* they don't all have to be allocated at
|
|
* frame numbers N, N+10, N+20, etc. Some of them could be at
|
|
* N+11, N+21, N+31, etc., and others at
|
|
* N+12, N+22, N+32, etc.
|
|
*
|
|
* Similarly for isochronous transfers...
|
|
*
|
|
* Individual HCDs can schedule more directly ... this logic
|
|
* is not correct for high speed transfers.
|
|
*/
|
|
int usb_check_bandwidth (struct usb_device *dev, struct urb *urb)
|
|
{
|
|
unsigned int pipe = urb->pipe;
|
|
long bustime;
|
|
int is_in = usb_pipein (pipe);
|
|
int is_iso = usb_pipeisoc (pipe);
|
|
int old_alloc = dev->bus->bandwidth_allocated;
|
|
int new_alloc;
|
|
|
|
|
|
bustime = NS_TO_US (usb_calc_bus_time (dev->speed, is_in, is_iso,
|
|
usb_maxpacket (dev, pipe, !is_in)));
|
|
if (is_iso)
|
|
bustime /= urb->number_of_packets;
|
|
|
|
new_alloc = old_alloc + (int) bustime;
|
|
if (new_alloc > FRAME_TIME_MAX_USECS_ALLOC) {
|
|
#ifdef DEBUG
|
|
char *mode =
|
|
#ifdef CONFIG_USB_BANDWIDTH
|
|
"";
|
|
#else
|
|
"would have ";
|
|
#endif
|
|
dev_dbg (&dev->dev, "usb_check_bandwidth %sFAILED: %d + %ld = %d usec\n",
|
|
mode, old_alloc, bustime, new_alloc);
|
|
#endif
|
|
#ifdef CONFIG_USB_BANDWIDTH
|
|
bustime = -ENOSPC; /* report error */
|
|
#endif
|
|
}
|
|
|
|
return bustime;
|
|
}
|
|
EXPORT_SYMBOL (usb_check_bandwidth);
|
|
|
|
|
|
/**
|
|
* usb_claim_bandwidth - records bandwidth for a periodic transfer
|
|
* @dev: source/target of request
|
|
* @urb: request (urb->dev == dev)
|
|
* @bustime: bandwidth consumed, in (average) microseconds per frame
|
|
* @isoc: true iff the request is isochronous
|
|
*
|
|
* Bus bandwidth reservations are recorded purely for diagnostic purposes.
|
|
* HCDs are expected not to overcommit periodic bandwidth, and to record such
|
|
* reservations whenever endpoints are added to the periodic schedule.
|
|
*
|
|
* FIXME averaging per-frame is suboptimal. Better to sum over the HCD's
|
|
* entire periodic schedule ... 32 frames for OHCI, 1024 for UHCI, settable
|
|
* for EHCI (256/512/1024 frames, default 1024) and have the bus expose how
|
|
* large its periodic schedule is.
|
|
*/
|
|
void usb_claim_bandwidth (struct usb_device *dev, struct urb *urb, int bustime, int isoc)
|
|
{
|
|
dev->bus->bandwidth_allocated += bustime;
|
|
if (isoc)
|
|
dev->bus->bandwidth_isoc_reqs++;
|
|
else
|
|
dev->bus->bandwidth_int_reqs++;
|
|
urb->bandwidth = bustime;
|
|
|
|
#ifdef USB_BANDWIDTH_MESSAGES
|
|
dev_dbg (&dev->dev, "bandwidth alloc increased by %d (%s) to %d for %d requesters\n",
|
|
bustime,
|
|
isoc ? "ISOC" : "INTR",
|
|
dev->bus->bandwidth_allocated,
|
|
dev->bus->bandwidth_int_reqs + dev->bus->bandwidth_isoc_reqs);
|
|
#endif
|
|
}
|
|
EXPORT_SYMBOL (usb_claim_bandwidth);
|
|
|
|
|
|
/**
|
|
* usb_release_bandwidth - reverses effect of usb_claim_bandwidth()
|
|
* @dev: source/target of request
|
|
* @urb: request (urb->dev == dev)
|
|
* @isoc: true iff the request is isochronous
|
|
*
|
|
* This records that previously allocated bandwidth has been released.
|
|
* Bandwidth is released when endpoints are removed from the host controller's
|
|
* periodic schedule.
|
|
*/
|
|
void usb_release_bandwidth (struct usb_device *dev, struct urb *urb, int isoc)
|
|
{
|
|
dev->bus->bandwidth_allocated -= urb->bandwidth;
|
|
if (isoc)
|
|
dev->bus->bandwidth_isoc_reqs--;
|
|
else
|
|
dev->bus->bandwidth_int_reqs--;
|
|
|
|
#ifdef USB_BANDWIDTH_MESSAGES
|
|
dev_dbg (&dev->dev, "bandwidth alloc reduced by %d (%s) to %d for %d requesters\n",
|
|
urb->bandwidth,
|
|
isoc ? "ISOC" : "INTR",
|
|
dev->bus->bandwidth_allocated,
|
|
dev->bus->bandwidth_int_reqs + dev->bus->bandwidth_isoc_reqs);
|
|
#endif
|
|
urb->bandwidth = 0;
|
|
}
|
|
EXPORT_SYMBOL (usb_release_bandwidth);
|
|
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* Generic HC operations.
|
|
*/
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static void urb_unlink (struct urb *urb)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/* Release any periodic transfer bandwidth */
|
|
if (urb->bandwidth)
|
|
usb_release_bandwidth (urb->dev, urb,
|
|
usb_pipeisoc (urb->pipe));
|
|
|
|
/* clear all state linking urb to this dev (and hcd) */
|
|
|
|
spin_lock_irqsave (&hcd_data_lock, flags);
|
|
list_del_init (&urb->urb_list);
|
|
spin_unlock_irqrestore (&hcd_data_lock, flags);
|
|
usb_put_dev (urb->dev);
|
|
}
|
|
|
|
|
|
/* may be called in any context with a valid urb->dev usecount
|
|
* caller surrenders "ownership" of urb
|
|
* expects usb_submit_urb() to have sanity checked and conditioned all
|
|
* inputs in the urb
|
|
*/
|
|
static int hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
|
|
{
|
|
int status;
|
|
struct usb_hcd *hcd = urb->dev->bus->hcpriv;
|
|
struct usb_host_endpoint *ep;
|
|
unsigned long flags;
|
|
|
|
if (!hcd)
|
|
return -ENODEV;
|
|
|
|
usbmon_urb_submit(&hcd->self, urb);
|
|
|
|
/*
|
|
* Atomically queue the urb, first to our records, then to the HCD.
|
|
* Access to urb->status is controlled by urb->lock ... changes on
|
|
* i/o completion (normal or fault) or unlinking.
|
|
*/
|
|
|
|
// FIXME: verify that quiescing hc works right (RH cleans up)
|
|
|
|
spin_lock_irqsave (&hcd_data_lock, flags);
|
|
ep = (usb_pipein(urb->pipe) ? urb->dev->ep_in : urb->dev->ep_out)
|
|
[usb_pipeendpoint(urb->pipe)];
|
|
if (unlikely (!ep))
|
|
status = -ENOENT;
|
|
else if (unlikely (urb->reject))
|
|
status = -EPERM;
|
|
else switch (hcd->state) {
|
|
case HC_STATE_RUNNING:
|
|
case HC_STATE_RESUMING:
|
|
doit:
|
|
usb_get_dev (urb->dev);
|
|
list_add_tail (&urb->urb_list, &ep->urb_list);
|
|
status = 0;
|
|
break;
|
|
case HC_STATE_SUSPENDED:
|
|
/* HC upstream links (register access, wakeup signaling) can work
|
|
* even when the downstream links (and DMA etc) are quiesced; let
|
|
* usbcore talk to the root hub.
|
|
*/
|
|
if (hcd->self.controller->power.power_state.event == PM_EVENT_ON
|
|
&& urb->dev->parent == NULL)
|
|
goto doit;
|
|
/* FALL THROUGH */
|
|
default:
|
|
status = -ESHUTDOWN;
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore (&hcd_data_lock, flags);
|
|
if (status) {
|
|
INIT_LIST_HEAD (&urb->urb_list);
|
|
usbmon_urb_submit_error(&hcd->self, urb, status);
|
|
return status;
|
|
}
|
|
|
|
/* increment urb's reference count as part of giving it to the HCD
|
|
* (which now controls it). HCD guarantees that it either returns
|
|
* an error or calls giveback(), but not both.
|
|
*/
|
|
urb = usb_get_urb (urb);
|
|
atomic_inc (&urb->use_count);
|
|
|
|
if (urb->dev == hcd->self.root_hub) {
|
|
/* NOTE: requirement on hub callers (usbfs and the hub
|
|
* driver, for now) that URBs' urb->transfer_buffer be
|
|
* valid and usb_buffer_{sync,unmap}() not be needed, since
|
|
* they could clobber root hub response data.
|
|
*/
|
|
status = rh_urb_enqueue (hcd, urb);
|
|
goto done;
|
|
}
|
|
|
|
/* lower level hcd code should use *_dma exclusively,
|
|
* unless it uses pio or talks to another transport.
|
|
*/
|
|
if (hcd->self.controller->dma_mask) {
|
|
if (usb_pipecontrol (urb->pipe)
|
|
&& !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
|
|
urb->setup_dma = dma_map_single (
|
|
hcd->self.controller,
|
|
urb->setup_packet,
|
|
sizeof (struct usb_ctrlrequest),
|
|
DMA_TO_DEVICE);
|
|
if (urb->transfer_buffer_length != 0
|
|
&& !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP))
|
|
urb->transfer_dma = dma_map_single (
|
|
hcd->self.controller,
|
|
urb->transfer_buffer,
|
|
urb->transfer_buffer_length,
|
|
usb_pipein (urb->pipe)
|
|
? DMA_FROM_DEVICE
|
|
: DMA_TO_DEVICE);
|
|
}
|
|
|
|
status = hcd->driver->urb_enqueue (hcd, ep, urb, mem_flags);
|
|
done:
|
|
if (unlikely (status)) {
|
|
urb_unlink (urb);
|
|
atomic_dec (&urb->use_count);
|
|
if (urb->reject)
|
|
wake_up (&usb_kill_urb_queue);
|
|
usb_put_urb (urb);
|
|
usbmon_urb_submit_error(&hcd->self, urb, status);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* called in any context */
|
|
static int hcd_get_frame_number (struct usb_device *udev)
|
|
{
|
|
struct usb_hcd *hcd = (struct usb_hcd *)udev->bus->hcpriv;
|
|
if (!HC_IS_RUNNING (hcd->state))
|
|
return -ESHUTDOWN;
|
|
return hcd->driver->get_frame_number (hcd);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* this makes the hcd giveback() the urb more quickly, by kicking it
|
|
* off hardware queues (which may take a while) and returning it as
|
|
* soon as practical. we've already set up the urb's return status,
|
|
* but we can't know if the callback completed already.
|
|
*/
|
|
static int
|
|
unlink1 (struct usb_hcd *hcd, struct urb *urb)
|
|
{
|
|
int value;
|
|
|
|
if (urb->dev == hcd->self.root_hub)
|
|
value = usb_rh_urb_dequeue (hcd, urb);
|
|
else {
|
|
|
|
/* The only reason an HCD might fail this call is if
|
|
* it has not yet fully queued the urb to begin with.
|
|
* Such failures should be harmless. */
|
|
value = hcd->driver->urb_dequeue (hcd, urb);
|
|
}
|
|
|
|
if (value != 0)
|
|
dev_dbg (hcd->self.controller, "dequeue %p --> %d\n",
|
|
urb, value);
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* called in any context
|
|
*
|
|
* caller guarantees urb won't be recycled till both unlink()
|
|
* and the urb's completion function return
|
|
*/
|
|
static int hcd_unlink_urb (struct urb *urb, int status)
|
|
{
|
|
struct usb_host_endpoint *ep;
|
|
struct usb_hcd *hcd = NULL;
|
|
struct device *sys = NULL;
|
|
unsigned long flags;
|
|
struct list_head *tmp;
|
|
int retval;
|
|
|
|
if (!urb)
|
|
return -EINVAL;
|
|
if (!urb->dev || !urb->dev->bus)
|
|
return -ENODEV;
|
|
ep = (usb_pipein(urb->pipe) ? urb->dev->ep_in : urb->dev->ep_out)
|
|
[usb_pipeendpoint(urb->pipe)];
|
|
if (!ep)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* we contend for urb->status with the hcd core,
|
|
* which changes it while returning the urb.
|
|
*
|
|
* Caller guaranteed that the urb pointer hasn't been freed, and
|
|
* that it was submitted. But as a rule it can't know whether or
|
|
* not it's already been unlinked ... so we respect the reversed
|
|
* lock sequence needed for the usb_hcd_giveback_urb() code paths
|
|
* (urb lock, then hcd_data_lock) in case some other CPU is now
|
|
* unlinking it.
|
|
*/
|
|
spin_lock_irqsave (&urb->lock, flags);
|
|
spin_lock (&hcd_data_lock);
|
|
|
|
sys = &urb->dev->dev;
|
|
hcd = urb->dev->bus->hcpriv;
|
|
if (hcd == NULL) {
|
|
retval = -ENODEV;
|
|
goto done;
|
|
}
|
|
|
|
/* insist the urb is still queued */
|
|
list_for_each(tmp, &ep->urb_list) {
|
|
if (tmp == &urb->urb_list)
|
|
break;
|
|
}
|
|
if (tmp != &urb->urb_list) {
|
|
retval = -EIDRM;
|
|
goto done;
|
|
}
|
|
|
|
/* Any status except -EINPROGRESS means something already started to
|
|
* unlink this URB from the hardware. So there's no more work to do.
|
|
*/
|
|
if (urb->status != -EINPROGRESS) {
|
|
retval = -EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
/* IRQ setup can easily be broken so that USB controllers
|
|
* never get completion IRQs ... maybe even the ones we need to
|
|
* finish unlinking the initial failed usb_set_address()
|
|
* or device descriptor fetch.
|
|
*/
|
|
if (!hcd->saw_irq && hcd->self.root_hub != urb->dev) {
|
|
dev_warn (hcd->self.controller, "Unlink after no-IRQ? "
|
|
"Controller is probably using the wrong IRQ."
|
|
"\n");
|
|
hcd->saw_irq = 1;
|
|
}
|
|
|
|
urb->status = status;
|
|
|
|
spin_unlock (&hcd_data_lock);
|
|
spin_unlock_irqrestore (&urb->lock, flags);
|
|
|
|
retval = unlink1 (hcd, urb);
|
|
if (retval == 0)
|
|
retval = -EINPROGRESS;
|
|
return retval;
|
|
|
|
done:
|
|
spin_unlock (&hcd_data_lock);
|
|
spin_unlock_irqrestore (&urb->lock, flags);
|
|
if (retval != -EIDRM && sys && sys->driver)
|
|
dev_dbg (sys, "hcd_unlink_urb %p fail %d\n", urb, retval);
|
|
return retval;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* disables the endpoint: cancels any pending urbs, then synchronizes with
|
|
* the hcd to make sure all endpoint state is gone from hardware. use for
|
|
* set_configuration, set_interface, driver removal, physical disconnect.
|
|
*
|
|
* example: a qh stored in ep->hcpriv, holding state related to endpoint
|
|
* type, maxpacket size, toggle, halt status, and scheduling.
|
|
*/
|
|
static void
|
|
hcd_endpoint_disable (struct usb_device *udev, struct usb_host_endpoint *ep)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
struct urb *urb;
|
|
|
|
hcd = udev->bus->hcpriv;
|
|
|
|
WARN_ON (!HC_IS_RUNNING (hcd->state) && hcd->state != HC_STATE_HALT &&
|
|
udev->state != USB_STATE_NOTATTACHED);
|
|
|
|
local_irq_disable ();
|
|
|
|
/* FIXME move most of this into message.c as part of its
|
|
* endpoint disable logic
|
|
*/
|
|
|
|
/* ep is already gone from udev->ep_{in,out}[]; no more submits */
|
|
rescan:
|
|
spin_lock (&hcd_data_lock);
|
|
list_for_each_entry (urb, &ep->urb_list, urb_list) {
|
|
int tmp;
|
|
|
|
/* another cpu may be in hcd, spinning on hcd_data_lock
|
|
* to giveback() this urb. the races here should be
|
|
* small, but a full fix needs a new "can't submit"
|
|
* urb state.
|
|
* FIXME urb->reject should allow that...
|
|
*/
|
|
if (urb->status != -EINPROGRESS)
|
|
continue;
|
|
usb_get_urb (urb);
|
|
spin_unlock (&hcd_data_lock);
|
|
|
|
spin_lock (&urb->lock);
|
|
tmp = urb->status;
|
|
if (tmp == -EINPROGRESS)
|
|
urb->status = -ESHUTDOWN;
|
|
spin_unlock (&urb->lock);
|
|
|
|
/* kick hcd unless it's already returning this */
|
|
if (tmp == -EINPROGRESS) {
|
|
tmp = urb->pipe;
|
|
unlink1 (hcd, urb);
|
|
dev_dbg (hcd->self.controller,
|
|
"shutdown urb %p pipe %08x ep%d%s%s\n",
|
|
urb, tmp, usb_pipeendpoint (tmp),
|
|
(tmp & USB_DIR_IN) ? "in" : "out",
|
|
({ char *s; \
|
|
switch (usb_pipetype (tmp)) { \
|
|
case PIPE_CONTROL: s = ""; break; \
|
|
case PIPE_BULK: s = "-bulk"; break; \
|
|
case PIPE_INTERRUPT: s = "-intr"; break; \
|
|
default: s = "-iso"; break; \
|
|
}; s;}));
|
|
}
|
|
usb_put_urb (urb);
|
|
|
|
/* list contents may have changed */
|
|
goto rescan;
|
|
}
|
|
spin_unlock (&hcd_data_lock);
|
|
local_irq_enable ();
|
|
|
|
/* synchronize with the hardware, so old configuration state
|
|
* clears out immediately (and will be freed).
|
|
*/
|
|
might_sleep ();
|
|
if (hcd->driver->endpoint_disable)
|
|
hcd->driver->endpoint_disable (hcd, ep);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
#ifdef CONFIG_PM
|
|
|
|
int hcd_bus_suspend (struct usb_bus *bus)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
int status;
|
|
|
|
hcd = container_of (bus, struct usb_hcd, self);
|
|
if (!hcd->driver->bus_suspend)
|
|
return -ENOENT;
|
|
hcd->state = HC_STATE_QUIESCING;
|
|
status = hcd->driver->bus_suspend (hcd);
|
|
if (status == 0)
|
|
hcd->state = HC_STATE_SUSPENDED;
|
|
else
|
|
dev_dbg(&bus->root_hub->dev, "%s fail, err %d\n",
|
|
"suspend", status);
|
|
return status;
|
|
}
|
|
|
|
int hcd_bus_resume (struct usb_bus *bus)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
int status;
|
|
|
|
hcd = container_of (bus, struct usb_hcd, self);
|
|
if (!hcd->driver->bus_resume)
|
|
return -ENOENT;
|
|
if (hcd->state == HC_STATE_RUNNING)
|
|
return 0;
|
|
hcd->state = HC_STATE_RESUMING;
|
|
status = hcd->driver->bus_resume (hcd);
|
|
if (status == 0)
|
|
hcd->state = HC_STATE_RUNNING;
|
|
else {
|
|
dev_dbg(&bus->root_hub->dev, "%s fail, err %d\n",
|
|
"resume", status);
|
|
usb_hc_died(hcd);
|
|
}
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* usb_hcd_suspend_root_hub - HCD autosuspends downstream ports
|
|
* @hcd: host controller for this root hub
|
|
*
|
|
* This call arranges that usb_hcd_resume_root_hub() is safe to call later;
|
|
* that the HCD's root hub polling is deactivated; and that the root's hub
|
|
* driver is suspended. HCDs may call this to autosuspend when their root
|
|
* hub's downstream ports are all inactive: unpowered, disconnected,
|
|
* disabled, or suspended.
|
|
*
|
|
* The HCD will autoresume on device connect change detection (using SRP
|
|
* or a D+/D- pullup). The HCD also autoresumes on remote wakeup signaling
|
|
* from any ports that are suspended (if that is enabled). In most cases,
|
|
* overcurrent signaling (on powered ports) will also start autoresume.
|
|
*
|
|
* Always called with IRQs blocked.
|
|
*/
|
|
void usb_hcd_suspend_root_hub (struct usb_hcd *hcd)
|
|
{
|
|
struct urb *urb;
|
|
|
|
spin_lock (&hcd_root_hub_lock);
|
|
usb_suspend_root_hub (hcd->self.root_hub);
|
|
|
|
/* force status urb to complete/unlink while suspended */
|
|
if (hcd->status_urb) {
|
|
urb = hcd->status_urb;
|
|
urb->status = -ECONNRESET;
|
|
urb->hcpriv = NULL;
|
|
urb->actual_length = 0;
|
|
|
|
del_timer (&hcd->rh_timer);
|
|
hcd->poll_pending = 0;
|
|
hcd->status_urb = NULL;
|
|
} else
|
|
urb = NULL;
|
|
spin_unlock (&hcd_root_hub_lock);
|
|
hcd->state = HC_STATE_SUSPENDED;
|
|
|
|
if (urb)
|
|
usb_hcd_giveback_urb (hcd, urb, NULL);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_suspend_root_hub);
|
|
|
|
/**
|
|
* usb_hcd_resume_root_hub - called by HCD to resume its root hub
|
|
* @hcd: host controller for this root hub
|
|
*
|
|
* The USB host controller calls this function when its root hub is
|
|
* suspended (with the remote wakeup feature enabled) and a remote
|
|
* wakeup request is received. It queues a request for khubd to
|
|
* resume the root hub (that is, manage its downstream ports again).
|
|
*/
|
|
void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave (&hcd_root_hub_lock, flags);
|
|
if (hcd->rh_registered)
|
|
usb_resume_root_hub (hcd->self.root_hub);
|
|
spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
|
|
|
|
#endif
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
#ifdef CONFIG_USB_OTG
|
|
|
|
/**
|
|
* usb_bus_start_enum - start immediate enumeration (for OTG)
|
|
* @bus: the bus (must use hcd framework)
|
|
* @port_num: 1-based number of port; usually bus->otg_port
|
|
* Context: in_interrupt()
|
|
*
|
|
* Starts enumeration, with an immediate reset followed later by
|
|
* khubd identifying and possibly configuring the device.
|
|
* This is needed by OTG controller drivers, where it helps meet
|
|
* HNP protocol timing requirements for starting a port reset.
|
|
*/
|
|
int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
int status = -EOPNOTSUPP;
|
|
|
|
/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
|
|
* boards with root hubs hooked up to internal devices (instead of
|
|
* just the OTG port) may need more attention to resetting...
|
|
*/
|
|
hcd = container_of (bus, struct usb_hcd, self);
|
|
if (port_num && hcd->driver->start_port_reset)
|
|
status = hcd->driver->start_port_reset(hcd, port_num);
|
|
|
|
/* run khubd shortly after (first) root port reset finishes;
|
|
* it may issue others, until at least 50 msecs have passed.
|
|
*/
|
|
if (status == 0)
|
|
mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
|
|
return status;
|
|
}
|
|
EXPORT_SYMBOL (usb_bus_start_enum);
|
|
|
|
#endif
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* usb_hcd_operations - adapts usb_bus framework to HCD framework (bus glue)
|
|
*/
|
|
static struct usb_operations usb_hcd_operations = {
|
|
.get_frame_number = hcd_get_frame_number,
|
|
.submit_urb = hcd_submit_urb,
|
|
.unlink_urb = hcd_unlink_urb,
|
|
.buffer_alloc = hcd_buffer_alloc,
|
|
.buffer_free = hcd_buffer_free,
|
|
.disable = hcd_endpoint_disable,
|
|
};
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* usb_hcd_giveback_urb - return URB from HCD to device driver
|
|
* @hcd: host controller returning the URB
|
|
* @urb: urb being returned to the USB device driver.
|
|
* @regs: pt_regs, passed down to the URB completion handler
|
|
* Context: in_interrupt()
|
|
*
|
|
* This hands the URB from HCD to its USB device driver, using its
|
|
* completion function. The HCD has freed all per-urb resources
|
|
* (and is done using urb->hcpriv). It also released all HCD locks;
|
|
* the device driver won't cause problems if it frees, modifies,
|
|
* or resubmits this URB.
|
|
*/
|
|
void usb_hcd_giveback_urb (struct usb_hcd *hcd, struct urb *urb, struct pt_regs *regs)
|
|
{
|
|
int at_root_hub;
|
|
|
|
at_root_hub = (urb->dev == hcd->self.root_hub);
|
|
urb_unlink (urb);
|
|
|
|
/* lower level hcd code should use *_dma exclusively */
|
|
if (hcd->self.controller->dma_mask && !at_root_hub) {
|
|
if (usb_pipecontrol (urb->pipe)
|
|
&& !(urb->transfer_flags & URB_NO_SETUP_DMA_MAP))
|
|
dma_unmap_single (hcd->self.controller, urb->setup_dma,
|
|
sizeof (struct usb_ctrlrequest),
|
|
DMA_TO_DEVICE);
|
|
if (urb->transfer_buffer_length != 0
|
|
&& !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP))
|
|
dma_unmap_single (hcd->self.controller,
|
|
urb->transfer_dma,
|
|
urb->transfer_buffer_length,
|
|
usb_pipein (urb->pipe)
|
|
? DMA_FROM_DEVICE
|
|
: DMA_TO_DEVICE);
|
|
}
|
|
|
|
usbmon_urb_complete (&hcd->self, urb);
|
|
/* pass ownership to the completion handler */
|
|
urb->complete (urb, regs);
|
|
atomic_dec (&urb->use_count);
|
|
if (unlikely (urb->reject))
|
|
wake_up (&usb_kill_urb_queue);
|
|
usb_put_urb (urb);
|
|
}
|
|
EXPORT_SYMBOL (usb_hcd_giveback_urb);
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* usb_hcd_irq - hook IRQs to HCD framework (bus glue)
|
|
* @irq: the IRQ being raised
|
|
* @__hcd: pointer to the HCD whose IRQ is being signaled
|
|
* @r: saved hardware registers
|
|
*
|
|
* If the controller isn't HALTed, calls the driver's irq handler.
|
|
* Checks whether the controller is now dead.
|
|
*/
|
|
irqreturn_t usb_hcd_irq (int irq, void *__hcd, struct pt_regs * r)
|
|
{
|
|
struct usb_hcd *hcd = __hcd;
|
|
int start = hcd->state;
|
|
|
|
if (start == HC_STATE_HALT)
|
|
return IRQ_NONE;
|
|
if (hcd->driver->irq (hcd, r) == IRQ_NONE)
|
|
return IRQ_NONE;
|
|
|
|
hcd->saw_irq = 1;
|
|
if (hcd->state == HC_STATE_HALT)
|
|
usb_hc_died (hcd);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/**
|
|
* usb_hc_died - report abnormal shutdown of a host controller (bus glue)
|
|
* @hcd: pointer to the HCD representing the controller
|
|
*
|
|
* This is called by bus glue to report a USB host controller that died
|
|
* while operations may still have been pending. It's called automatically
|
|
* by the PCI glue, so only glue for non-PCI busses should need to call it.
|
|
*/
|
|
void usb_hc_died (struct usb_hcd *hcd)
|
|
{
|
|
unsigned long flags;
|
|
|
|
dev_err (hcd->self.controller, "HC died; cleaning up\n");
|
|
|
|
spin_lock_irqsave (&hcd_root_hub_lock, flags);
|
|
if (hcd->rh_registered) {
|
|
hcd->poll_rh = 0;
|
|
|
|
/* make khubd clean up old urbs and devices */
|
|
usb_set_device_state (hcd->self.root_hub,
|
|
USB_STATE_NOTATTACHED);
|
|
usb_kick_khubd (hcd->self.root_hub);
|
|
}
|
|
spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL (usb_hc_died);
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static void hcd_release (struct usb_bus *bus)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
|
|
hcd = container_of(bus, struct usb_hcd, self);
|
|
kfree(hcd);
|
|
}
|
|
|
|
/**
|
|
* usb_create_hcd - create and initialize an HCD structure
|
|
* @driver: HC driver that will use this hcd
|
|
* @dev: device for this HC, stored in hcd->self.controller
|
|
* @bus_name: value to store in hcd->self.bus_name
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Allocate a struct usb_hcd, with extra space at the end for the
|
|
* HC driver's private data. Initialize the generic members of the
|
|
* hcd structure.
|
|
*
|
|
* If memory is unavailable, returns NULL.
|
|
*/
|
|
struct usb_hcd *usb_create_hcd (const struct hc_driver *driver,
|
|
struct device *dev, char *bus_name)
|
|
{
|
|
struct usb_hcd *hcd;
|
|
|
|
hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
|
|
if (!hcd) {
|
|
dev_dbg (dev, "hcd alloc failed\n");
|
|
return NULL;
|
|
}
|
|
dev_set_drvdata(dev, hcd);
|
|
|
|
usb_bus_init(&hcd->self);
|
|
hcd->self.op = &usb_hcd_operations;
|
|
hcd->self.hcpriv = hcd;
|
|
hcd->self.release = &hcd_release;
|
|
hcd->self.controller = dev;
|
|
hcd->self.bus_name = bus_name;
|
|
|
|
init_timer(&hcd->rh_timer);
|
|
hcd->rh_timer.function = rh_timer_func;
|
|
hcd->rh_timer.data = (unsigned long) hcd;
|
|
|
|
hcd->driver = driver;
|
|
hcd->product_desc = (driver->product_desc) ? driver->product_desc :
|
|
"USB Host Controller";
|
|
|
|
return hcd;
|
|
}
|
|
EXPORT_SYMBOL (usb_create_hcd);
|
|
|
|
void usb_put_hcd (struct usb_hcd *hcd)
|
|
{
|
|
dev_set_drvdata(hcd->self.controller, NULL);
|
|
usb_bus_put(&hcd->self);
|
|
}
|
|
EXPORT_SYMBOL (usb_put_hcd);
|
|
|
|
/**
|
|
* usb_add_hcd - finish generic HCD structure initialization and register
|
|
* @hcd: the usb_hcd structure to initialize
|
|
* @irqnum: Interrupt line to allocate
|
|
* @irqflags: Interrupt type flags
|
|
*
|
|
* Finish the remaining parts of generic HCD initialization: allocate the
|
|
* buffers of consistent memory, register the bus, request the IRQ line,
|
|
* and call the driver's reset() and start() routines.
|
|
*/
|
|
int usb_add_hcd(struct usb_hcd *hcd,
|
|
unsigned int irqnum, unsigned long irqflags)
|
|
{
|
|
int retval;
|
|
struct usb_device *rhdev;
|
|
|
|
dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
|
|
|
|
/* till now HC has been in an indeterminate state ... */
|
|
if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
|
|
dev_err(hcd->self.controller, "can't reset\n");
|
|
return retval;
|
|
}
|
|
|
|
if ((retval = hcd_buffer_create(hcd)) != 0) {
|
|
dev_dbg(hcd->self.controller, "pool alloc failed\n");
|
|
return retval;
|
|
}
|
|
|
|
if ((retval = usb_register_bus(&hcd->self)) < 0)
|
|
goto err_register_bus;
|
|
|
|
if (hcd->driver->irq) {
|
|
char buf[8], *bufp = buf;
|
|
|
|
#ifdef __sparc__
|
|
bufp = __irq_itoa(irqnum);
|
|
#else
|
|
sprintf(buf, "%d", irqnum);
|
|
#endif
|
|
|
|
snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
|
|
hcd->driver->description, hcd->self.busnum);
|
|
if ((retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
|
|
hcd->irq_descr, hcd)) != 0) {
|
|
dev_err(hcd->self.controller,
|
|
"request interrupt %s failed\n", bufp);
|
|
goto err_request_irq;
|
|
}
|
|
hcd->irq = irqnum;
|
|
dev_info(hcd->self.controller, "irq %s, %s 0x%08llx\n", bufp,
|
|
(hcd->driver->flags & HCD_MEMORY) ?
|
|
"io mem" : "io base",
|
|
(unsigned long long)hcd->rsrc_start);
|
|
} else {
|
|
hcd->irq = -1;
|
|
if (hcd->rsrc_start)
|
|
dev_info(hcd->self.controller, "%s 0x%08llx\n",
|
|
(hcd->driver->flags & HCD_MEMORY) ?
|
|
"io mem" : "io base",
|
|
(unsigned long long)hcd->rsrc_start);
|
|
}
|
|
|
|
/* Allocate the root hub before calling hcd->driver->start(),
|
|
* but don't register it until afterward so that the hardware
|
|
* is running.
|
|
*/
|
|
if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
|
|
dev_err(hcd->self.controller, "unable to allocate root hub\n");
|
|
retval = -ENOMEM;
|
|
goto err_allocate_root_hub;
|
|
}
|
|
rhdev->speed = (hcd->driver->flags & HCD_USB2) ? USB_SPEED_HIGH :
|
|
USB_SPEED_FULL;
|
|
|
|
/* Although in principle hcd->driver->start() might need to use rhdev,
|
|
* none of the current drivers do.
|
|
*/
|
|
if ((retval = hcd->driver->start(hcd)) < 0) {
|
|
dev_err(hcd->self.controller, "startup error %d\n", retval);
|
|
goto err_hcd_driver_start;
|
|
}
|
|
|
|
/* hcd->driver->start() reported can_wakeup, probably with
|
|
* assistance from board's boot firmware.
|
|
* NOTE: normal devices won't enable wakeup by default.
|
|
*/
|
|
if (hcd->can_wakeup)
|
|
dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
|
|
hcd->remote_wakeup = hcd->can_wakeup;
|
|
|
|
if ((retval = register_root_hub(rhdev, hcd)) != 0)
|
|
goto err_register_root_hub;
|
|
|
|
if (hcd->uses_new_polling && hcd->poll_rh)
|
|
usb_hcd_poll_rh_status(hcd);
|
|
return retval;
|
|
|
|
err_register_root_hub:
|
|
hcd->driver->stop(hcd);
|
|
|
|
err_hcd_driver_start:
|
|
usb_put_dev(rhdev);
|
|
|
|
err_allocate_root_hub:
|
|
if (hcd->irq >= 0)
|
|
free_irq(irqnum, hcd);
|
|
|
|
err_request_irq:
|
|
usb_deregister_bus(&hcd->self);
|
|
|
|
err_register_bus:
|
|
hcd_buffer_destroy(hcd);
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL (usb_add_hcd);
|
|
|
|
/**
|
|
* usb_remove_hcd - shutdown processing for generic HCDs
|
|
* @hcd: the usb_hcd structure to remove
|
|
* Context: !in_interrupt()
|
|
*
|
|
* Disconnects the root hub, then reverses the effects of usb_add_hcd(),
|
|
* invoking the HCD's stop() method.
|
|
*/
|
|
void usb_remove_hcd(struct usb_hcd *hcd)
|
|
{
|
|
dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
|
|
|
|
if (HC_IS_RUNNING (hcd->state))
|
|
hcd->state = HC_STATE_QUIESCING;
|
|
|
|
dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
|
|
spin_lock_irq (&hcd_root_hub_lock);
|
|
hcd->rh_registered = 0;
|
|
spin_unlock_irq (&hcd_root_hub_lock);
|
|
usb_disconnect(&hcd->self.root_hub);
|
|
|
|
hcd->poll_rh = 0;
|
|
del_timer_sync(&hcd->rh_timer);
|
|
|
|
hcd->driver->stop(hcd);
|
|
hcd->state = HC_STATE_HALT;
|
|
|
|
if (hcd->irq >= 0)
|
|
free_irq(hcd->irq, hcd);
|
|
usb_deregister_bus(&hcd->self);
|
|
hcd_buffer_destroy(hcd);
|
|
}
|
|
EXPORT_SYMBOL (usb_remove_hcd);
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
#if defined(CONFIG_USB_MON)
|
|
|
|
struct usb_mon_operations *mon_ops;
|
|
|
|
/*
|
|
* The registration is unlocked.
|
|
* We do it this way because we do not want to lock in hot paths.
|
|
*
|
|
* Notice that the code is minimally error-proof. Because usbmon needs
|
|
* symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
|
|
*/
|
|
|
|
int usb_mon_register (struct usb_mon_operations *ops)
|
|
{
|
|
|
|
if (mon_ops)
|
|
return -EBUSY;
|
|
|
|
mon_ops = ops;
|
|
mb();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL (usb_mon_register);
|
|
|
|
void usb_mon_deregister (void)
|
|
{
|
|
|
|
if (mon_ops == NULL) {
|
|
printk(KERN_ERR "USB: monitor was not registered\n");
|
|
return;
|
|
}
|
|
mon_ops = NULL;
|
|
mb();
|
|
}
|
|
EXPORT_SYMBOL_GPL (usb_mon_deregister);
|
|
|
|
#endif /* CONFIG_USB_MON */
|