kernel-ark/arch/x86/crypto/sm4-aesni-avx-asm_64.S
Tianjia Zhang f8690a4b5a crypto: x86/sm4 - Fix invalid section entry size
This fixes the following warning:

  vmlinux.o: warning: objtool: elf_update: invalid section entry size

The size of the rodata section is 164 bytes, directly using the
entry_size of 164 bytes will cause errors in some versions of the
gcc compiler, while using 16 bytes directly will cause errors in
the clang compiler. This patch correct it by filling the size of
rodata to a 16-byte boundary.

Fixes: a7ee22ee14 ("crypto: x86/sm4 - add AES-NI/AVX/x86_64 implementation")
Fixes: 5b2efa2bb8 ("crypto: x86/sm4 - add AES-NI/AVX2/x86_64 implementation")
Reported-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Tested-by: Heyuan Shi <heyuan@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-10-22 20:23:01 +08:00

595 lines
18 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* SM4 Cipher Algorithm, AES-NI/AVX optimized.
* as specified in
* https://tools.ietf.org/id/draft-ribose-cfrg-sm4-10.html
*
* Copyright (C) 2018 Markku-Juhani O. Saarinen <mjos@iki.fi>
* Copyright (C) 2020 Jussi Kivilinna <jussi.kivilinna@iki.fi>
* Copyright (c) 2021 Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
*/
/* Based on SM4 AES-NI work by libgcrypt and Markku-Juhani O. Saarinen at:
* https://github.com/mjosaarinen/sm4ni
*/
#include <linux/linkage.h>
#include <asm/frame.h>
#define rRIP (%rip)
#define RX0 %xmm0
#define RX1 %xmm1
#define MASK_4BIT %xmm2
#define RTMP0 %xmm3
#define RTMP1 %xmm4
#define RTMP2 %xmm5
#define RTMP3 %xmm6
#define RTMP4 %xmm7
#define RA0 %xmm8
#define RA1 %xmm9
#define RA2 %xmm10
#define RA3 %xmm11
#define RB0 %xmm12
#define RB1 %xmm13
#define RB2 %xmm14
#define RB3 %xmm15
#define RNOT %xmm0
#define RBSWAP %xmm1
/* Transpose four 32-bit words between 128-bit vectors. */
#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
vpunpckhdq x1, x0, t2; \
vpunpckldq x1, x0, x0; \
\
vpunpckldq x3, x2, t1; \
vpunpckhdq x3, x2, x2; \
\
vpunpckhqdq t1, x0, x1; \
vpunpcklqdq t1, x0, x0; \
\
vpunpckhqdq x2, t2, x3; \
vpunpcklqdq x2, t2, x2;
/* pre-SubByte transform. */
#define transform_pre(x, lo_t, hi_t, mask4bit, tmp0) \
vpand x, mask4bit, tmp0; \
vpandn x, mask4bit, x; \
vpsrld $4, x, x; \
\
vpshufb tmp0, lo_t, tmp0; \
vpshufb x, hi_t, x; \
vpxor tmp0, x, x;
/* post-SubByte transform. Note: x has been XOR'ed with mask4bit by
* 'vaeslastenc' instruction.
*/
#define transform_post(x, lo_t, hi_t, mask4bit, tmp0) \
vpandn mask4bit, x, tmp0; \
vpsrld $4, x, x; \
vpand x, mask4bit, x; \
\
vpshufb tmp0, lo_t, tmp0; \
vpshufb x, hi_t, x; \
vpxor tmp0, x, x;
.section .rodata.cst16, "aM", @progbits, 16
.align 16
/*
* Following four affine transform look-up tables are from work by
* Markku-Juhani O. Saarinen, at https://github.com/mjosaarinen/sm4ni
*
* These allow exposing SM4 S-Box from AES SubByte.
*/
/* pre-SubByte affine transform, from SM4 field to AES field. */
.Lpre_tf_lo_s:
.quad 0x9197E2E474720701, 0xC7C1B4B222245157
.Lpre_tf_hi_s:
.quad 0xE240AB09EB49A200, 0xF052B91BF95BB012
/* post-SubByte affine transform, from AES field to SM4 field. */
.Lpost_tf_lo_s:
.quad 0x5B67F2CEA19D0834, 0xEDD14478172BBE82
.Lpost_tf_hi_s:
.quad 0xAE7201DD73AFDC00, 0x11CDBE62CC1063BF
/* For isolating SubBytes from AESENCLAST, inverse shift row */
.Linv_shift_row:
.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
/* Inverse shift row + Rotate left by 8 bits on 32-bit words with vpshufb */
.Linv_shift_row_rol_8:
.byte 0x07, 0x00, 0x0d, 0x0a, 0x0b, 0x04, 0x01, 0x0e
.byte 0x0f, 0x08, 0x05, 0x02, 0x03, 0x0c, 0x09, 0x06
/* Inverse shift row + Rotate left by 16 bits on 32-bit words with vpshufb */
.Linv_shift_row_rol_16:
.byte 0x0a, 0x07, 0x00, 0x0d, 0x0e, 0x0b, 0x04, 0x01
.byte 0x02, 0x0f, 0x08, 0x05, 0x06, 0x03, 0x0c, 0x09
/* Inverse shift row + Rotate left by 24 bits on 32-bit words with vpshufb */
.Linv_shift_row_rol_24:
.byte 0x0d, 0x0a, 0x07, 0x00, 0x01, 0x0e, 0x0b, 0x04
.byte 0x05, 0x02, 0x0f, 0x08, 0x09, 0x06, 0x03, 0x0c
/* For CTR-mode IV byteswap */
.Lbswap128_mask:
.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
/* For input word byte-swap */
.Lbswap32_mask:
.byte 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12
.align 4
/* 4-bit mask */
.L0f0f0f0f:
.long 0x0f0f0f0f
/* 12 bytes, only for padding */
.Lpadding_deadbeef:
.long 0xdeadbeef, 0xdeadbeef, 0xdeadbeef
.text
.align 16
/*
* void sm4_aesni_avx_crypt4(const u32 *rk, u8 *dst,
* const u8 *src, int nblocks)
*/
.align 8
SYM_FUNC_START(sm4_aesni_avx_crypt4)
/* input:
* %rdi: round key array, CTX
* %rsi: dst (1..4 blocks)
* %rdx: src (1..4 blocks)
* %rcx: num blocks (1..4)
*/
FRAME_BEGIN
vmovdqu 0*16(%rdx), RA0;
vmovdqa RA0, RA1;
vmovdqa RA0, RA2;
vmovdqa RA0, RA3;
cmpq $2, %rcx;
jb .Lblk4_load_input_done;
vmovdqu 1*16(%rdx), RA1;
je .Lblk4_load_input_done;
vmovdqu 2*16(%rdx), RA2;
cmpq $3, %rcx;
je .Lblk4_load_input_done;
vmovdqu 3*16(%rdx), RA3;
.Lblk4_load_input_done:
vmovdqa .Lbswap32_mask rRIP, RTMP2;
vpshufb RTMP2, RA0, RA0;
vpshufb RTMP2, RA1, RA1;
vpshufb RTMP2, RA2, RA2;
vpshufb RTMP2, RA3, RA3;
vbroadcastss .L0f0f0f0f rRIP, MASK_4BIT;
vmovdqa .Lpre_tf_lo_s rRIP, RTMP4;
vmovdqa .Lpre_tf_hi_s rRIP, RB0;
vmovdqa .Lpost_tf_lo_s rRIP, RB1;
vmovdqa .Lpost_tf_hi_s rRIP, RB2;
vmovdqa .Linv_shift_row rRIP, RB3;
vmovdqa .Linv_shift_row_rol_8 rRIP, RTMP2;
vmovdqa .Linv_shift_row_rol_16 rRIP, RTMP3;
transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
#define ROUND(round, s0, s1, s2, s3) \
vbroadcastss (4*(round))(%rdi), RX0; \
vpxor s1, RX0, RX0; \
vpxor s2, RX0, RX0; \
vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \
\
/* sbox, non-linear part */ \
transform_pre(RX0, RTMP4, RB0, MASK_4BIT, RTMP0); \
vaesenclast MASK_4BIT, RX0, RX0; \
transform_post(RX0, RB1, RB2, MASK_4BIT, RTMP0); \
\
/* linear part */ \
vpshufb RB3, RX0, RTMP0; \
vpxor RTMP0, s0, s0; /* s0 ^ x */ \
vpshufb RTMP2, RX0, RTMP1; \
vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \
vpshufb RTMP3, RX0, RTMP1; \
vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \
vpshufb .Linv_shift_row_rol_24 rRIP, RX0, RTMP1; \
vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \
vpslld $2, RTMP0, RTMP1; \
vpsrld $30, RTMP0, RTMP0; \
vpxor RTMP0, s0, s0; \
/* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
vpxor RTMP1, s0, s0;
leaq (32*4)(%rdi), %rax;
.align 16
.Lroundloop_blk4:
ROUND(0, RA0, RA1, RA2, RA3);
ROUND(1, RA1, RA2, RA3, RA0);
ROUND(2, RA2, RA3, RA0, RA1);
ROUND(3, RA3, RA0, RA1, RA2);
leaq (4*4)(%rdi), %rdi;
cmpq %rax, %rdi;
jne .Lroundloop_blk4;
#undef ROUND
vmovdqa .Lbswap128_mask rRIP, RTMP2;
transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
vpshufb RTMP2, RA0, RA0;
vpshufb RTMP2, RA1, RA1;
vpshufb RTMP2, RA2, RA2;
vpshufb RTMP2, RA3, RA3;
vmovdqu RA0, 0*16(%rsi);
cmpq $2, %rcx;
jb .Lblk4_store_output_done;
vmovdqu RA1, 1*16(%rsi);
je .Lblk4_store_output_done;
vmovdqu RA2, 2*16(%rsi);
cmpq $3, %rcx;
je .Lblk4_store_output_done;
vmovdqu RA3, 3*16(%rsi);
.Lblk4_store_output_done:
vzeroall;
FRAME_END
ret;
SYM_FUNC_END(sm4_aesni_avx_crypt4)
.align 8
SYM_FUNC_START_LOCAL(__sm4_crypt_blk8)
/* input:
* %rdi: round key array, CTX
* RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: eight parallel
* plaintext blocks
* output:
* RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3: eight parallel
* ciphertext blocks
*/
FRAME_BEGIN
vmovdqa .Lbswap32_mask rRIP, RTMP2;
vpshufb RTMP2, RA0, RA0;
vpshufb RTMP2, RA1, RA1;
vpshufb RTMP2, RA2, RA2;
vpshufb RTMP2, RA3, RA3;
vpshufb RTMP2, RB0, RB0;
vpshufb RTMP2, RB1, RB1;
vpshufb RTMP2, RB2, RB2;
vpshufb RTMP2, RB3, RB3;
vbroadcastss .L0f0f0f0f rRIP, MASK_4BIT;
transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1);
#define ROUND(round, s0, s1, s2, s3, r0, r1, r2, r3) \
vbroadcastss (4*(round))(%rdi), RX0; \
vmovdqa .Lpre_tf_lo_s rRIP, RTMP4; \
vmovdqa .Lpre_tf_hi_s rRIP, RTMP1; \
vmovdqa RX0, RX1; \
vpxor s1, RX0, RX0; \
vpxor s2, RX0, RX0; \
vpxor s3, RX0, RX0; /* s1 ^ s2 ^ s3 ^ rk */ \
vmovdqa .Lpost_tf_lo_s rRIP, RTMP2; \
vmovdqa .Lpost_tf_hi_s rRIP, RTMP3; \
vpxor r1, RX1, RX1; \
vpxor r2, RX1, RX1; \
vpxor r3, RX1, RX1; /* r1 ^ r2 ^ r3 ^ rk */ \
\
/* sbox, non-linear part */ \
transform_pre(RX0, RTMP4, RTMP1, MASK_4BIT, RTMP0); \
transform_pre(RX1, RTMP4, RTMP1, MASK_4BIT, RTMP0); \
vmovdqa .Linv_shift_row rRIP, RTMP4; \
vaesenclast MASK_4BIT, RX0, RX0; \
vaesenclast MASK_4BIT, RX1, RX1; \
transform_post(RX0, RTMP2, RTMP3, MASK_4BIT, RTMP0); \
transform_post(RX1, RTMP2, RTMP3, MASK_4BIT, RTMP0); \
\
/* linear part */ \
vpshufb RTMP4, RX0, RTMP0; \
vpxor RTMP0, s0, s0; /* s0 ^ x */ \
vpshufb RTMP4, RX1, RTMP2; \
vmovdqa .Linv_shift_row_rol_8 rRIP, RTMP4; \
vpxor RTMP2, r0, r0; /* r0 ^ x */ \
vpshufb RTMP4, RX0, RTMP1; \
vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) */ \
vpshufb RTMP4, RX1, RTMP3; \
vmovdqa .Linv_shift_row_rol_16 rRIP, RTMP4; \
vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) */ \
vpshufb RTMP4, RX0, RTMP1; \
vpxor RTMP1, RTMP0, RTMP0; /* x ^ rol(x,8) ^ rol(x,16) */ \
vpshufb RTMP4, RX1, RTMP3; \
vmovdqa .Linv_shift_row_rol_24 rRIP, RTMP4; \
vpxor RTMP3, RTMP2, RTMP2; /* x ^ rol(x,8) ^ rol(x,16) */ \
vpshufb RTMP4, RX0, RTMP1; \
vpxor RTMP1, s0, s0; /* s0 ^ x ^ rol(x,24) */ \
/* s0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
vpslld $2, RTMP0, RTMP1; \
vpsrld $30, RTMP0, RTMP0; \
vpxor RTMP0, s0, s0; \
vpxor RTMP1, s0, s0; \
vpshufb RTMP4, RX1, RTMP3; \
vpxor RTMP3, r0, r0; /* r0 ^ x ^ rol(x,24) */ \
/* r0 ^ x ^ rol(x,2) ^ rol(x,10) ^ rol(x,18) ^ rol(x,24) */ \
vpslld $2, RTMP2, RTMP3; \
vpsrld $30, RTMP2, RTMP2; \
vpxor RTMP2, r0, r0; \
vpxor RTMP3, r0, r0;
leaq (32*4)(%rdi), %rax;
.align 16
.Lroundloop_blk8:
ROUND(0, RA0, RA1, RA2, RA3, RB0, RB1, RB2, RB3);
ROUND(1, RA1, RA2, RA3, RA0, RB1, RB2, RB3, RB0);
ROUND(2, RA2, RA3, RA0, RA1, RB2, RB3, RB0, RB1);
ROUND(3, RA3, RA0, RA1, RA2, RB3, RB0, RB1, RB2);
leaq (4*4)(%rdi), %rdi;
cmpq %rax, %rdi;
jne .Lroundloop_blk8;
#undef ROUND
vmovdqa .Lbswap128_mask rRIP, RTMP2;
transpose_4x4(RA0, RA1, RA2, RA3, RTMP0, RTMP1);
transpose_4x4(RB0, RB1, RB2, RB3, RTMP0, RTMP1);
vpshufb RTMP2, RA0, RA0;
vpshufb RTMP2, RA1, RA1;
vpshufb RTMP2, RA2, RA2;
vpshufb RTMP2, RA3, RA3;
vpshufb RTMP2, RB0, RB0;
vpshufb RTMP2, RB1, RB1;
vpshufb RTMP2, RB2, RB2;
vpshufb RTMP2, RB3, RB3;
FRAME_END
ret;
SYM_FUNC_END(__sm4_crypt_blk8)
/*
* void sm4_aesni_avx_crypt8(const u32 *rk, u8 *dst,
* const u8 *src, int nblocks)
*/
.align 8
SYM_FUNC_START(sm4_aesni_avx_crypt8)
/* input:
* %rdi: round key array, CTX
* %rsi: dst (1..8 blocks)
* %rdx: src (1..8 blocks)
* %rcx: num blocks (1..8)
*/
cmpq $5, %rcx;
jb sm4_aesni_avx_crypt4;
FRAME_BEGIN
vmovdqu (0 * 16)(%rdx), RA0;
vmovdqu (1 * 16)(%rdx), RA1;
vmovdqu (2 * 16)(%rdx), RA2;
vmovdqu (3 * 16)(%rdx), RA3;
vmovdqu (4 * 16)(%rdx), RB0;
vmovdqa RB0, RB1;
vmovdqa RB0, RB2;
vmovdqa RB0, RB3;
je .Lblk8_load_input_done;
vmovdqu (5 * 16)(%rdx), RB1;
cmpq $7, %rcx;
jb .Lblk8_load_input_done;
vmovdqu (6 * 16)(%rdx), RB2;
je .Lblk8_load_input_done;
vmovdqu (7 * 16)(%rdx), RB3;
.Lblk8_load_input_done:
call __sm4_crypt_blk8;
cmpq $6, %rcx;
vmovdqu RA0, (0 * 16)(%rsi);
vmovdqu RA1, (1 * 16)(%rsi);
vmovdqu RA2, (2 * 16)(%rsi);
vmovdqu RA3, (3 * 16)(%rsi);
vmovdqu RB0, (4 * 16)(%rsi);
jb .Lblk8_store_output_done;
vmovdqu RB1, (5 * 16)(%rsi);
je .Lblk8_store_output_done;
vmovdqu RB2, (6 * 16)(%rsi);
cmpq $7, %rcx;
je .Lblk8_store_output_done;
vmovdqu RB3, (7 * 16)(%rsi);
.Lblk8_store_output_done:
vzeroall;
FRAME_END
ret;
SYM_FUNC_END(sm4_aesni_avx_crypt8)
/*
* void sm4_aesni_avx_ctr_enc_blk8(const u32 *rk, u8 *dst,
* const u8 *src, u8 *iv)
*/
.align 8
SYM_FUNC_START(sm4_aesni_avx_ctr_enc_blk8)
/* input:
* %rdi: round key array, CTX
* %rsi: dst (8 blocks)
* %rdx: src (8 blocks)
* %rcx: iv (big endian, 128bit)
*/
FRAME_BEGIN
/* load IV and byteswap */
vmovdqu (%rcx), RA0;
vmovdqa .Lbswap128_mask rRIP, RBSWAP;
vpshufb RBSWAP, RA0, RTMP0; /* be => le */
vpcmpeqd RNOT, RNOT, RNOT;
vpsrldq $8, RNOT, RNOT; /* low: -1, high: 0 */
#define inc_le128(x, minus_one, tmp) \
vpcmpeqq minus_one, x, tmp; \
vpsubq minus_one, x, x; \
vpslldq $8, tmp, tmp; \
vpsubq tmp, x, x;
/* construct IVs */
inc_le128(RTMP0, RNOT, RTMP2); /* +1 */
vpshufb RBSWAP, RTMP0, RA1;
inc_le128(RTMP0, RNOT, RTMP2); /* +2 */
vpshufb RBSWAP, RTMP0, RA2;
inc_le128(RTMP0, RNOT, RTMP2); /* +3 */
vpshufb RBSWAP, RTMP0, RA3;
inc_le128(RTMP0, RNOT, RTMP2); /* +4 */
vpshufb RBSWAP, RTMP0, RB0;
inc_le128(RTMP0, RNOT, RTMP2); /* +5 */
vpshufb RBSWAP, RTMP0, RB1;
inc_le128(RTMP0, RNOT, RTMP2); /* +6 */
vpshufb RBSWAP, RTMP0, RB2;
inc_le128(RTMP0, RNOT, RTMP2); /* +7 */
vpshufb RBSWAP, RTMP0, RB3;
inc_le128(RTMP0, RNOT, RTMP2); /* +8 */
vpshufb RBSWAP, RTMP0, RTMP1;
/* store new IV */
vmovdqu RTMP1, (%rcx);
call __sm4_crypt_blk8;
vpxor (0 * 16)(%rdx), RA0, RA0;
vpxor (1 * 16)(%rdx), RA1, RA1;
vpxor (2 * 16)(%rdx), RA2, RA2;
vpxor (3 * 16)(%rdx), RA3, RA3;
vpxor (4 * 16)(%rdx), RB0, RB0;
vpxor (5 * 16)(%rdx), RB1, RB1;
vpxor (6 * 16)(%rdx), RB2, RB2;
vpxor (7 * 16)(%rdx), RB3, RB3;
vmovdqu RA0, (0 * 16)(%rsi);
vmovdqu RA1, (1 * 16)(%rsi);
vmovdqu RA2, (2 * 16)(%rsi);
vmovdqu RA3, (3 * 16)(%rsi);
vmovdqu RB0, (4 * 16)(%rsi);
vmovdqu RB1, (5 * 16)(%rsi);
vmovdqu RB2, (6 * 16)(%rsi);
vmovdqu RB3, (7 * 16)(%rsi);
vzeroall;
FRAME_END
ret;
SYM_FUNC_END(sm4_aesni_avx_ctr_enc_blk8)
/*
* void sm4_aesni_avx_cbc_dec_blk8(const u32 *rk, u8 *dst,
* const u8 *src, u8 *iv)
*/
.align 8
SYM_FUNC_START(sm4_aesni_avx_cbc_dec_blk8)
/* input:
* %rdi: round key array, CTX
* %rsi: dst (8 blocks)
* %rdx: src (8 blocks)
* %rcx: iv
*/
FRAME_BEGIN
vmovdqu (0 * 16)(%rdx), RA0;
vmovdqu (1 * 16)(%rdx), RA1;
vmovdqu (2 * 16)(%rdx), RA2;
vmovdqu (3 * 16)(%rdx), RA3;
vmovdqu (4 * 16)(%rdx), RB0;
vmovdqu (5 * 16)(%rdx), RB1;
vmovdqu (6 * 16)(%rdx), RB2;
vmovdqu (7 * 16)(%rdx), RB3;
call __sm4_crypt_blk8;
vmovdqu (7 * 16)(%rdx), RNOT;
vpxor (%rcx), RA0, RA0;
vpxor (0 * 16)(%rdx), RA1, RA1;
vpxor (1 * 16)(%rdx), RA2, RA2;
vpxor (2 * 16)(%rdx), RA3, RA3;
vpxor (3 * 16)(%rdx), RB0, RB0;
vpxor (4 * 16)(%rdx), RB1, RB1;
vpxor (5 * 16)(%rdx), RB2, RB2;
vpxor (6 * 16)(%rdx), RB3, RB3;
vmovdqu RNOT, (%rcx); /* store new IV */
vmovdqu RA0, (0 * 16)(%rsi);
vmovdqu RA1, (1 * 16)(%rsi);
vmovdqu RA2, (2 * 16)(%rsi);
vmovdqu RA3, (3 * 16)(%rsi);
vmovdqu RB0, (4 * 16)(%rsi);
vmovdqu RB1, (5 * 16)(%rsi);
vmovdqu RB2, (6 * 16)(%rsi);
vmovdqu RB3, (7 * 16)(%rsi);
vzeroall;
FRAME_END
ret;
SYM_FUNC_END(sm4_aesni_avx_cbc_dec_blk8)
/*
* void sm4_aesni_avx_cfb_dec_blk8(const u32 *rk, u8 *dst,
* const u8 *src, u8 *iv)
*/
.align 8
SYM_FUNC_START(sm4_aesni_avx_cfb_dec_blk8)
/* input:
* %rdi: round key array, CTX
* %rsi: dst (8 blocks)
* %rdx: src (8 blocks)
* %rcx: iv
*/
FRAME_BEGIN
/* Load input */
vmovdqu (%rcx), RA0;
vmovdqu 0 * 16(%rdx), RA1;
vmovdqu 1 * 16(%rdx), RA2;
vmovdqu 2 * 16(%rdx), RA3;
vmovdqu 3 * 16(%rdx), RB0;
vmovdqu 4 * 16(%rdx), RB1;
vmovdqu 5 * 16(%rdx), RB2;
vmovdqu 6 * 16(%rdx), RB3;
/* Update IV */
vmovdqu 7 * 16(%rdx), RNOT;
vmovdqu RNOT, (%rcx);
call __sm4_crypt_blk8;
vpxor (0 * 16)(%rdx), RA0, RA0;
vpxor (1 * 16)(%rdx), RA1, RA1;
vpxor (2 * 16)(%rdx), RA2, RA2;
vpxor (3 * 16)(%rdx), RA3, RA3;
vpxor (4 * 16)(%rdx), RB0, RB0;
vpxor (5 * 16)(%rdx), RB1, RB1;
vpxor (6 * 16)(%rdx), RB2, RB2;
vpxor (7 * 16)(%rdx), RB3, RB3;
vmovdqu RA0, (0 * 16)(%rsi);
vmovdqu RA1, (1 * 16)(%rsi);
vmovdqu RA2, (2 * 16)(%rsi);
vmovdqu RA3, (3 * 16)(%rsi);
vmovdqu RB0, (4 * 16)(%rsi);
vmovdqu RB1, (5 * 16)(%rsi);
vmovdqu RB2, (6 * 16)(%rsi);
vmovdqu RB3, (7 * 16)(%rsi);
vzeroall;
FRAME_END
ret;
SYM_FUNC_END(sm4_aesni_avx_cfb_dec_blk8)