e53f517ff2
Fixes the following sparse warnings: arch/arm/mm/dma-mapping.c:231:15: warning: symbol 'consistent_base' was not declared. Should it be static? arch/arm/mm/dma-mapping.c:326:8: warning: symbol 'coherent_pool_size' was not declared. Should it be static? Signed-off-by: Sachin Kamat <sachin.kamat@linaro.org> Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
1684 lines
43 KiB
C
1684 lines
43 KiB
C
/*
|
|
* linux/arch/arm/mm/dma-mapping.c
|
|
*
|
|
* Copyright (C) 2000-2004 Russell King
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* DMA uncached mapping support.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/list.h>
|
|
#include <linux/init.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dma-contiguous.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/iommu.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include <asm/memory.h>
|
|
#include <asm/highmem.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/sizes.h>
|
|
#include <asm/mach/arch.h>
|
|
#include <asm/dma-iommu.h>
|
|
#include <asm/mach/map.h>
|
|
#include <asm/system_info.h>
|
|
#include <asm/dma-contiguous.h>
|
|
|
|
#include "mm.h"
|
|
|
|
/*
|
|
* The DMA API is built upon the notion of "buffer ownership". A buffer
|
|
* is either exclusively owned by the CPU (and therefore may be accessed
|
|
* by it) or exclusively owned by the DMA device. These helper functions
|
|
* represent the transitions between these two ownership states.
|
|
*
|
|
* Note, however, that on later ARMs, this notion does not work due to
|
|
* speculative prefetches. We model our approach on the assumption that
|
|
* the CPU does do speculative prefetches, which means we clean caches
|
|
* before transfers and delay cache invalidation until transfer completion.
|
|
*
|
|
*/
|
|
static void __dma_page_cpu_to_dev(struct page *, unsigned long,
|
|
size_t, enum dma_data_direction);
|
|
static void __dma_page_dev_to_cpu(struct page *, unsigned long,
|
|
size_t, enum dma_data_direction);
|
|
|
|
/**
|
|
* arm_dma_map_page - map a portion of a page for streaming DMA
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @page: page that buffer resides in
|
|
* @offset: offset into page for start of buffer
|
|
* @size: size of buffer to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* Ensure that any data held in the cache is appropriately discarded
|
|
* or written back.
|
|
*
|
|
* The device owns this memory once this call has completed. The CPU
|
|
* can regain ownership by calling dma_unmap_page().
|
|
*/
|
|
static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
if (!arch_is_coherent())
|
|
__dma_page_cpu_to_dev(page, offset, size, dir);
|
|
return pfn_to_dma(dev, page_to_pfn(page)) + offset;
|
|
}
|
|
|
|
/**
|
|
* arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @handle: DMA address of buffer
|
|
* @size: size of buffer (same as passed to dma_map_page)
|
|
* @dir: DMA transfer direction (same as passed to dma_map_page)
|
|
*
|
|
* Unmap a page streaming mode DMA translation. The handle and size
|
|
* must match what was provided in the previous dma_map_page() call.
|
|
* All other usages are undefined.
|
|
*
|
|
* After this call, reads by the CPU to the buffer are guaranteed to see
|
|
* whatever the device wrote there.
|
|
*/
|
|
static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
|
|
size_t size, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
if (!arch_is_coherent())
|
|
__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
|
|
handle & ~PAGE_MASK, size, dir);
|
|
}
|
|
|
|
static void arm_dma_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
unsigned int offset = handle & (PAGE_SIZE - 1);
|
|
struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
|
|
if (!arch_is_coherent())
|
|
__dma_page_dev_to_cpu(page, offset, size, dir);
|
|
}
|
|
|
|
static void arm_dma_sync_single_for_device(struct device *dev,
|
|
dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
unsigned int offset = handle & (PAGE_SIZE - 1);
|
|
struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
|
|
if (!arch_is_coherent())
|
|
__dma_page_cpu_to_dev(page, offset, size, dir);
|
|
}
|
|
|
|
static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
|
|
|
|
struct dma_map_ops arm_dma_ops = {
|
|
.alloc = arm_dma_alloc,
|
|
.free = arm_dma_free,
|
|
.mmap = arm_dma_mmap,
|
|
.map_page = arm_dma_map_page,
|
|
.unmap_page = arm_dma_unmap_page,
|
|
.map_sg = arm_dma_map_sg,
|
|
.unmap_sg = arm_dma_unmap_sg,
|
|
.sync_single_for_cpu = arm_dma_sync_single_for_cpu,
|
|
.sync_single_for_device = arm_dma_sync_single_for_device,
|
|
.sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
|
|
.sync_sg_for_device = arm_dma_sync_sg_for_device,
|
|
.set_dma_mask = arm_dma_set_mask,
|
|
};
|
|
EXPORT_SYMBOL(arm_dma_ops);
|
|
|
|
static u64 get_coherent_dma_mask(struct device *dev)
|
|
{
|
|
u64 mask = (u64)arm_dma_limit;
|
|
|
|
if (dev) {
|
|
mask = dev->coherent_dma_mask;
|
|
|
|
/*
|
|
* Sanity check the DMA mask - it must be non-zero, and
|
|
* must be able to be satisfied by a DMA allocation.
|
|
*/
|
|
if (mask == 0) {
|
|
dev_warn(dev, "coherent DMA mask is unset\n");
|
|
return 0;
|
|
}
|
|
|
|
if ((~mask) & (u64)arm_dma_limit) {
|
|
dev_warn(dev, "coherent DMA mask %#llx is smaller "
|
|
"than system GFP_DMA mask %#llx\n",
|
|
mask, (u64)arm_dma_limit);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
static void __dma_clear_buffer(struct page *page, size_t size)
|
|
{
|
|
void *ptr;
|
|
/*
|
|
* Ensure that the allocated pages are zeroed, and that any data
|
|
* lurking in the kernel direct-mapped region is invalidated.
|
|
*/
|
|
ptr = page_address(page);
|
|
if (ptr) {
|
|
memset(ptr, 0, size);
|
|
dmac_flush_range(ptr, ptr + size);
|
|
outer_flush_range(__pa(ptr), __pa(ptr) + size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a DMA buffer for 'dev' of size 'size' using the
|
|
* specified gfp mask. Note that 'size' must be page aligned.
|
|
*/
|
|
static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
|
|
{
|
|
unsigned long order = get_order(size);
|
|
struct page *page, *p, *e;
|
|
|
|
page = alloc_pages(gfp, order);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
/*
|
|
* Now split the huge page and free the excess pages
|
|
*/
|
|
split_page(page, order);
|
|
for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
|
|
__free_page(p);
|
|
|
|
__dma_clear_buffer(page, size);
|
|
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Free a DMA buffer. 'size' must be page aligned.
|
|
*/
|
|
static void __dma_free_buffer(struct page *page, size_t size)
|
|
{
|
|
struct page *e = page + (size >> PAGE_SHIFT);
|
|
|
|
while (page < e) {
|
|
__free_page(page);
|
|
page++;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
#define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
|
|
#define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
|
|
|
|
/*
|
|
* These are the page tables (2MB each) covering uncached, DMA consistent allocations
|
|
*/
|
|
static pte_t **consistent_pte;
|
|
|
|
#define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
|
|
|
|
static unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
|
|
|
|
void __init init_consistent_dma_size(unsigned long size)
|
|
{
|
|
unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
|
|
|
|
BUG_ON(consistent_pte); /* Check we're called before DMA region init */
|
|
BUG_ON(base < VMALLOC_END);
|
|
|
|
/* Grow region to accommodate specified size */
|
|
if (base < consistent_base)
|
|
consistent_base = base;
|
|
}
|
|
|
|
#include "vmregion.h"
|
|
|
|
static struct arm_vmregion_head consistent_head = {
|
|
.vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
|
|
.vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
|
|
.vm_end = CONSISTENT_END,
|
|
};
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
#error ARM Coherent DMA allocator does not (yet) support huge TLB
|
|
#endif
|
|
|
|
/*
|
|
* Initialise the consistent memory allocation.
|
|
*/
|
|
static int __init consistent_init(void)
|
|
{
|
|
int ret = 0;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
int i = 0;
|
|
unsigned long base = consistent_base;
|
|
unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
|
|
|
|
if (IS_ENABLED(CONFIG_CMA) && !IS_ENABLED(CONFIG_ARM_DMA_USE_IOMMU))
|
|
return 0;
|
|
|
|
consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
|
|
if (!consistent_pte) {
|
|
pr_err("%s: no memory\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
|
|
consistent_head.vm_start = base;
|
|
|
|
do {
|
|
pgd = pgd_offset(&init_mm, base);
|
|
|
|
pud = pud_alloc(&init_mm, pgd, base);
|
|
if (!pud) {
|
|
pr_err("%s: no pud tables\n", __func__);
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
pmd = pmd_alloc(&init_mm, pud, base);
|
|
if (!pmd) {
|
|
pr_err("%s: no pmd tables\n", __func__);
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
WARN_ON(!pmd_none(*pmd));
|
|
|
|
pte = pte_alloc_kernel(pmd, base);
|
|
if (!pte) {
|
|
pr_err("%s: no pte tables\n", __func__);
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
|
|
consistent_pte[i++] = pte;
|
|
base += PMD_SIZE;
|
|
} while (base < CONSISTENT_END);
|
|
|
|
return ret;
|
|
}
|
|
core_initcall(consistent_init);
|
|
|
|
static void *__alloc_from_contiguous(struct device *dev, size_t size,
|
|
pgprot_t prot, struct page **ret_page);
|
|
|
|
static struct arm_vmregion_head coherent_head = {
|
|
.vm_lock = __SPIN_LOCK_UNLOCKED(&coherent_head.vm_lock),
|
|
.vm_list = LIST_HEAD_INIT(coherent_head.vm_list),
|
|
};
|
|
|
|
static size_t coherent_pool_size = DEFAULT_CONSISTENT_DMA_SIZE / 8;
|
|
|
|
static int __init early_coherent_pool(char *p)
|
|
{
|
|
coherent_pool_size = memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("coherent_pool", early_coherent_pool);
|
|
|
|
/*
|
|
* Initialise the coherent pool for atomic allocations.
|
|
*/
|
|
static int __init coherent_init(void)
|
|
{
|
|
pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
|
|
size_t size = coherent_pool_size;
|
|
struct page *page;
|
|
void *ptr;
|
|
|
|
if (!IS_ENABLED(CONFIG_CMA))
|
|
return 0;
|
|
|
|
ptr = __alloc_from_contiguous(NULL, size, prot, &page);
|
|
if (ptr) {
|
|
coherent_head.vm_start = (unsigned long) ptr;
|
|
coherent_head.vm_end = (unsigned long) ptr + size;
|
|
printk(KERN_INFO "DMA: preallocated %u KiB pool for atomic coherent allocations\n",
|
|
(unsigned)size / 1024);
|
|
return 0;
|
|
}
|
|
printk(KERN_ERR "DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
|
|
(unsigned)size / 1024);
|
|
return -ENOMEM;
|
|
}
|
|
/*
|
|
* CMA is activated by core_initcall, so we must be called after it.
|
|
*/
|
|
postcore_initcall(coherent_init);
|
|
|
|
struct dma_contig_early_reserve {
|
|
phys_addr_t base;
|
|
unsigned long size;
|
|
};
|
|
|
|
static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
|
|
|
|
static int dma_mmu_remap_num __initdata;
|
|
|
|
void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
|
|
{
|
|
dma_mmu_remap[dma_mmu_remap_num].base = base;
|
|
dma_mmu_remap[dma_mmu_remap_num].size = size;
|
|
dma_mmu_remap_num++;
|
|
}
|
|
|
|
void __init dma_contiguous_remap(void)
|
|
{
|
|
int i;
|
|
for (i = 0; i < dma_mmu_remap_num; i++) {
|
|
phys_addr_t start = dma_mmu_remap[i].base;
|
|
phys_addr_t end = start + dma_mmu_remap[i].size;
|
|
struct map_desc map;
|
|
unsigned long addr;
|
|
|
|
if (end > arm_lowmem_limit)
|
|
end = arm_lowmem_limit;
|
|
if (start >= end)
|
|
return;
|
|
|
|
map.pfn = __phys_to_pfn(start);
|
|
map.virtual = __phys_to_virt(start);
|
|
map.length = end - start;
|
|
map.type = MT_MEMORY_DMA_READY;
|
|
|
|
/*
|
|
* Clear previous low-memory mapping
|
|
*/
|
|
for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
|
|
addr += PMD_SIZE)
|
|
pmd_clear(pmd_off_k(addr));
|
|
|
|
iotable_init(&map, 1);
|
|
}
|
|
}
|
|
|
|
static void *
|
|
__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
|
|
const void *caller)
|
|
{
|
|
struct arm_vmregion *c;
|
|
size_t align;
|
|
int bit;
|
|
|
|
if (!consistent_pte) {
|
|
pr_err("%s: not initialised\n", __func__);
|
|
dump_stack();
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Align the virtual region allocation - maximum alignment is
|
|
* a section size, minimum is a page size. This helps reduce
|
|
* fragmentation of the DMA space, and also prevents allocations
|
|
* smaller than a section from crossing a section boundary.
|
|
*/
|
|
bit = fls(size - 1);
|
|
if (bit > SECTION_SHIFT)
|
|
bit = SECTION_SHIFT;
|
|
align = 1 << bit;
|
|
|
|
/*
|
|
* Allocate a virtual address in the consistent mapping region.
|
|
*/
|
|
c = arm_vmregion_alloc(&consistent_head, align, size,
|
|
gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
|
|
if (c) {
|
|
pte_t *pte;
|
|
int idx = CONSISTENT_PTE_INDEX(c->vm_start);
|
|
u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
|
|
|
|
pte = consistent_pte[idx] + off;
|
|
c->priv = page;
|
|
|
|
do {
|
|
BUG_ON(!pte_none(*pte));
|
|
|
|
set_pte_ext(pte, mk_pte(page, prot), 0);
|
|
page++;
|
|
pte++;
|
|
off++;
|
|
if (off >= PTRS_PER_PTE) {
|
|
off = 0;
|
|
pte = consistent_pte[++idx];
|
|
}
|
|
} while (size -= PAGE_SIZE);
|
|
|
|
dsb();
|
|
|
|
return (void *)c->vm_start;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void __dma_free_remap(void *cpu_addr, size_t size)
|
|
{
|
|
struct arm_vmregion *c;
|
|
unsigned long addr;
|
|
pte_t *ptep;
|
|
int idx;
|
|
u32 off;
|
|
|
|
c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
|
|
if (!c) {
|
|
pr_err("%s: trying to free invalid coherent area: %p\n",
|
|
__func__, cpu_addr);
|
|
dump_stack();
|
|
return;
|
|
}
|
|
|
|
if ((c->vm_end - c->vm_start) != size) {
|
|
pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
|
|
__func__, c->vm_end - c->vm_start, size);
|
|
dump_stack();
|
|
size = c->vm_end - c->vm_start;
|
|
}
|
|
|
|
idx = CONSISTENT_PTE_INDEX(c->vm_start);
|
|
off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
|
|
ptep = consistent_pte[idx] + off;
|
|
addr = c->vm_start;
|
|
do {
|
|
pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
|
|
|
|
ptep++;
|
|
addr += PAGE_SIZE;
|
|
off++;
|
|
if (off >= PTRS_PER_PTE) {
|
|
off = 0;
|
|
ptep = consistent_pte[++idx];
|
|
}
|
|
|
|
if (pte_none(pte) || !pte_present(pte))
|
|
pr_crit("%s: bad page in kernel page table\n",
|
|
__func__);
|
|
} while (size -= PAGE_SIZE);
|
|
|
|
flush_tlb_kernel_range(c->vm_start, c->vm_end);
|
|
|
|
arm_vmregion_free(&consistent_head, c);
|
|
}
|
|
|
|
static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
|
|
void *data)
|
|
{
|
|
struct page *page = virt_to_page(addr);
|
|
pgprot_t prot = *(pgprot_t *)data;
|
|
|
|
set_pte_ext(pte, mk_pte(page, prot), 0);
|
|
return 0;
|
|
}
|
|
|
|
static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
|
|
{
|
|
unsigned long start = (unsigned long) page_address(page);
|
|
unsigned end = start + size;
|
|
|
|
apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
|
|
dsb();
|
|
flush_tlb_kernel_range(start, end);
|
|
}
|
|
|
|
static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
|
|
pgprot_t prot, struct page **ret_page,
|
|
const void *caller)
|
|
{
|
|
struct page *page;
|
|
void *ptr;
|
|
page = __dma_alloc_buffer(dev, size, gfp);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
|
|
if (!ptr) {
|
|
__dma_free_buffer(page, size);
|
|
return NULL;
|
|
}
|
|
|
|
*ret_page = page;
|
|
return ptr;
|
|
}
|
|
|
|
static void *__alloc_from_pool(struct device *dev, size_t size,
|
|
struct page **ret_page, const void *caller)
|
|
{
|
|
struct arm_vmregion *c;
|
|
size_t align;
|
|
|
|
if (!coherent_head.vm_start) {
|
|
printk(KERN_ERR "%s: coherent pool not initialised!\n",
|
|
__func__);
|
|
dump_stack();
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Align the region allocation - allocations from pool are rather
|
|
* small, so align them to their order in pages, minimum is a page
|
|
* size. This helps reduce fragmentation of the DMA space.
|
|
*/
|
|
align = PAGE_SIZE << get_order(size);
|
|
c = arm_vmregion_alloc(&coherent_head, align, size, 0, caller);
|
|
if (c) {
|
|
void *ptr = (void *)c->vm_start;
|
|
struct page *page = virt_to_page(ptr);
|
|
*ret_page = page;
|
|
return ptr;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int __free_from_pool(void *cpu_addr, size_t size)
|
|
{
|
|
unsigned long start = (unsigned long)cpu_addr;
|
|
unsigned long end = start + size;
|
|
struct arm_vmregion *c;
|
|
|
|
if (start < coherent_head.vm_start || end > coherent_head.vm_end)
|
|
return 0;
|
|
|
|
c = arm_vmregion_find_remove(&coherent_head, (unsigned long)start);
|
|
|
|
if ((c->vm_end - c->vm_start) != size) {
|
|
printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
|
|
__func__, c->vm_end - c->vm_start, size);
|
|
dump_stack();
|
|
size = c->vm_end - c->vm_start;
|
|
}
|
|
|
|
arm_vmregion_free(&coherent_head, c);
|
|
return 1;
|
|
}
|
|
|
|
static void *__alloc_from_contiguous(struct device *dev, size_t size,
|
|
pgprot_t prot, struct page **ret_page)
|
|
{
|
|
unsigned long order = get_order(size);
|
|
size_t count = size >> PAGE_SHIFT;
|
|
struct page *page;
|
|
|
|
page = dma_alloc_from_contiguous(dev, count, order);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
__dma_clear_buffer(page, size);
|
|
__dma_remap(page, size, prot);
|
|
|
|
*ret_page = page;
|
|
return page_address(page);
|
|
}
|
|
|
|
static void __free_from_contiguous(struct device *dev, struct page *page,
|
|
size_t size)
|
|
{
|
|
__dma_remap(page, size, pgprot_kernel);
|
|
dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
|
|
}
|
|
|
|
static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
|
|
{
|
|
prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
|
|
pgprot_writecombine(prot) :
|
|
pgprot_dmacoherent(prot);
|
|
return prot;
|
|
}
|
|
|
|
#define nommu() 0
|
|
|
|
#else /* !CONFIG_MMU */
|
|
|
|
#define nommu() 1
|
|
|
|
#define __get_dma_pgprot(attrs, prot) __pgprot(0)
|
|
#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
|
|
#define __alloc_from_pool(dev, size, ret_page, c) NULL
|
|
#define __alloc_from_contiguous(dev, size, prot, ret) NULL
|
|
#define __free_from_pool(cpu_addr, size) 0
|
|
#define __free_from_contiguous(dev, page, size) do { } while (0)
|
|
#define __dma_free_remap(cpu_addr, size) do { } while (0)
|
|
|
|
#endif /* CONFIG_MMU */
|
|
|
|
static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
|
|
struct page **ret_page)
|
|
{
|
|
struct page *page;
|
|
page = __dma_alloc_buffer(dev, size, gfp);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
*ret_page = page;
|
|
return page_address(page);
|
|
}
|
|
|
|
|
|
|
|
static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
|
|
gfp_t gfp, pgprot_t prot, const void *caller)
|
|
{
|
|
u64 mask = get_coherent_dma_mask(dev);
|
|
struct page *page;
|
|
void *addr;
|
|
|
|
#ifdef CONFIG_DMA_API_DEBUG
|
|
u64 limit = (mask + 1) & ~mask;
|
|
if (limit && size >= limit) {
|
|
dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
|
|
size, mask);
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
if (!mask)
|
|
return NULL;
|
|
|
|
if (mask < 0xffffffffULL)
|
|
gfp |= GFP_DMA;
|
|
|
|
/*
|
|
* Following is a work-around (a.k.a. hack) to prevent pages
|
|
* with __GFP_COMP being passed to split_page() which cannot
|
|
* handle them. The real problem is that this flag probably
|
|
* should be 0 on ARM as it is not supported on this
|
|
* platform; see CONFIG_HUGETLBFS.
|
|
*/
|
|
gfp &= ~(__GFP_COMP);
|
|
|
|
*handle = DMA_ERROR_CODE;
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (arch_is_coherent() || nommu())
|
|
addr = __alloc_simple_buffer(dev, size, gfp, &page);
|
|
else if (!IS_ENABLED(CONFIG_CMA))
|
|
addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
|
|
else if (gfp & GFP_ATOMIC)
|
|
addr = __alloc_from_pool(dev, size, &page, caller);
|
|
else
|
|
addr = __alloc_from_contiguous(dev, size, prot, &page);
|
|
|
|
if (addr)
|
|
*handle = pfn_to_dma(dev, page_to_pfn(page));
|
|
|
|
return addr;
|
|
}
|
|
|
|
/*
|
|
* Allocate DMA-coherent memory space and return both the kernel remapped
|
|
* virtual and bus address for that space.
|
|
*/
|
|
void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
|
|
gfp_t gfp, struct dma_attrs *attrs)
|
|
{
|
|
pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
|
|
void *memory;
|
|
|
|
if (dma_alloc_from_coherent(dev, size, handle, &memory))
|
|
return memory;
|
|
|
|
return __dma_alloc(dev, size, handle, gfp, prot,
|
|
__builtin_return_address(0));
|
|
}
|
|
|
|
/*
|
|
* Create userspace mapping for the DMA-coherent memory.
|
|
*/
|
|
int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
int ret = -ENXIO;
|
|
#ifdef CONFIG_MMU
|
|
unsigned long pfn = dma_to_pfn(dev, dma_addr);
|
|
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
|
|
|
|
if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
|
|
return ret;
|
|
|
|
ret = remap_pfn_range(vma, vma->vm_start,
|
|
pfn + vma->vm_pgoff,
|
|
vma->vm_end - vma->vm_start,
|
|
vma->vm_page_prot);
|
|
#endif /* CONFIG_MMU */
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Free a buffer as defined by the above mapping.
|
|
*/
|
|
void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, struct dma_attrs *attrs)
|
|
{
|
|
struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
|
|
|
|
if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
|
|
return;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
if (arch_is_coherent() || nommu()) {
|
|
__dma_free_buffer(page, size);
|
|
} else if (!IS_ENABLED(CONFIG_CMA)) {
|
|
__dma_free_remap(cpu_addr, size);
|
|
__dma_free_buffer(page, size);
|
|
} else {
|
|
if (__free_from_pool(cpu_addr, size))
|
|
return;
|
|
/*
|
|
* Non-atomic allocations cannot be freed with IRQs disabled
|
|
*/
|
|
WARN_ON(irqs_disabled());
|
|
__free_from_contiguous(dev, page, size);
|
|
}
|
|
}
|
|
|
|
static void dma_cache_maint_page(struct page *page, unsigned long offset,
|
|
size_t size, enum dma_data_direction dir,
|
|
void (*op)(const void *, size_t, int))
|
|
{
|
|
/*
|
|
* A single sg entry may refer to multiple physically contiguous
|
|
* pages. But we still need to process highmem pages individually.
|
|
* If highmem is not configured then the bulk of this loop gets
|
|
* optimized out.
|
|
*/
|
|
size_t left = size;
|
|
do {
|
|
size_t len = left;
|
|
void *vaddr;
|
|
|
|
if (PageHighMem(page)) {
|
|
if (len + offset > PAGE_SIZE) {
|
|
if (offset >= PAGE_SIZE) {
|
|
page += offset / PAGE_SIZE;
|
|
offset %= PAGE_SIZE;
|
|
}
|
|
len = PAGE_SIZE - offset;
|
|
}
|
|
vaddr = kmap_high_get(page);
|
|
if (vaddr) {
|
|
vaddr += offset;
|
|
op(vaddr, len, dir);
|
|
kunmap_high(page);
|
|
} else if (cache_is_vipt()) {
|
|
/* unmapped pages might still be cached */
|
|
vaddr = kmap_atomic(page);
|
|
op(vaddr + offset, len, dir);
|
|
kunmap_atomic(vaddr);
|
|
}
|
|
} else {
|
|
vaddr = page_address(page) + offset;
|
|
op(vaddr, len, dir);
|
|
}
|
|
offset = 0;
|
|
page++;
|
|
left -= len;
|
|
} while (left);
|
|
}
|
|
|
|
/*
|
|
* Make an area consistent for devices.
|
|
* Note: Drivers should NOT use this function directly, as it will break
|
|
* platforms with CONFIG_DMABOUNCE.
|
|
* Use the driver DMA support - see dma-mapping.h (dma_sync_*)
|
|
*/
|
|
static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
unsigned long paddr;
|
|
|
|
dma_cache_maint_page(page, off, size, dir, dmac_map_area);
|
|
|
|
paddr = page_to_phys(page) + off;
|
|
if (dir == DMA_FROM_DEVICE) {
|
|
outer_inv_range(paddr, paddr + size);
|
|
} else {
|
|
outer_clean_range(paddr, paddr + size);
|
|
}
|
|
/* FIXME: non-speculating: flush on bidirectional mappings? */
|
|
}
|
|
|
|
static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
|
|
size_t size, enum dma_data_direction dir)
|
|
{
|
|
unsigned long paddr = page_to_phys(page) + off;
|
|
|
|
/* FIXME: non-speculating: not required */
|
|
/* don't bother invalidating if DMA to device */
|
|
if (dir != DMA_TO_DEVICE)
|
|
outer_inv_range(paddr, paddr + size);
|
|
|
|
dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
|
|
|
|
/*
|
|
* Mark the D-cache clean for this page to avoid extra flushing.
|
|
*/
|
|
if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
|
|
set_bit(PG_dcache_clean, &page->flags);
|
|
}
|
|
|
|
/**
|
|
* arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* Map a set of buffers described by scatterlist in streaming mode for DMA.
|
|
* This is the scatter-gather version of the dma_map_single interface.
|
|
* Here the scatter gather list elements are each tagged with the
|
|
* appropriate dma address and length. They are obtained via
|
|
* sg_dma_{address,length}.
|
|
*
|
|
* Device ownership issues as mentioned for dma_map_single are the same
|
|
* here.
|
|
*/
|
|
int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir, struct dma_attrs *attrs)
|
|
{
|
|
struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
int i, j;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
#ifdef CONFIG_NEED_SG_DMA_LENGTH
|
|
s->dma_length = s->length;
|
|
#endif
|
|
s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
|
|
s->length, dir, attrs);
|
|
if (dma_mapping_error(dev, s->dma_address))
|
|
goto bad_mapping;
|
|
}
|
|
return nents;
|
|
|
|
bad_mapping:
|
|
for_each_sg(sg, s, i, j)
|
|
ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to unmap (same as was passed to dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*
|
|
* Unmap a set of streaming mode DMA translations. Again, CPU access
|
|
* rules concerning calls here are the same as for dma_unmap_single().
|
|
*/
|
|
void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir, struct dma_attrs *attrs)
|
|
{
|
|
struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
|
|
}
|
|
|
|
/**
|
|
* arm_dma_sync_sg_for_cpu
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
|
|
dir);
|
|
}
|
|
|
|
/**
|
|
* arm_dma_sync_sg_for_device
|
|
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct dma_map_ops *ops = get_dma_ops(dev);
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
|
|
dir);
|
|
}
|
|
|
|
/*
|
|
* Return whether the given device DMA address mask can be supported
|
|
* properly. For example, if your device can only drive the low 24-bits
|
|
* during bus mastering, then you would pass 0x00ffffff as the mask
|
|
* to this function.
|
|
*/
|
|
int dma_supported(struct device *dev, u64 mask)
|
|
{
|
|
if (mask < (u64)arm_dma_limit)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(dma_supported);
|
|
|
|
static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
|
|
{
|
|
if (!dev->dma_mask || !dma_supported(dev, dma_mask))
|
|
return -EIO;
|
|
|
|
*dev->dma_mask = dma_mask;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define PREALLOC_DMA_DEBUG_ENTRIES 4096
|
|
|
|
static int __init dma_debug_do_init(void)
|
|
{
|
|
#ifdef CONFIG_MMU
|
|
arm_vmregion_create_proc("dma-mappings", &consistent_head);
|
|
#endif
|
|
dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
|
|
return 0;
|
|
}
|
|
fs_initcall(dma_debug_do_init);
|
|
|
|
#ifdef CONFIG_ARM_DMA_USE_IOMMU
|
|
|
|
/* IOMMU */
|
|
|
|
static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
|
|
size_t size)
|
|
{
|
|
unsigned int order = get_order(size);
|
|
unsigned int align = 0;
|
|
unsigned int count, start;
|
|
unsigned long flags;
|
|
|
|
count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
|
|
(1 << mapping->order) - 1) >> mapping->order;
|
|
|
|
if (order > mapping->order)
|
|
align = (1 << (order - mapping->order)) - 1;
|
|
|
|
spin_lock_irqsave(&mapping->lock, flags);
|
|
start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
|
|
count, align);
|
|
if (start > mapping->bits) {
|
|
spin_unlock_irqrestore(&mapping->lock, flags);
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
|
|
bitmap_set(mapping->bitmap, start, count);
|
|
spin_unlock_irqrestore(&mapping->lock, flags);
|
|
|
|
return mapping->base + (start << (mapping->order + PAGE_SHIFT));
|
|
}
|
|
|
|
static inline void __free_iova(struct dma_iommu_mapping *mapping,
|
|
dma_addr_t addr, size_t size)
|
|
{
|
|
unsigned int start = (addr - mapping->base) >>
|
|
(mapping->order + PAGE_SHIFT);
|
|
unsigned int count = ((size >> PAGE_SHIFT) +
|
|
(1 << mapping->order) - 1) >> mapping->order;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mapping->lock, flags);
|
|
bitmap_clear(mapping->bitmap, start, count);
|
|
spin_unlock_irqrestore(&mapping->lock, flags);
|
|
}
|
|
|
|
static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
|
|
{
|
|
struct page **pages;
|
|
int count = size >> PAGE_SHIFT;
|
|
int array_size = count * sizeof(struct page *);
|
|
int i = 0;
|
|
|
|
if (array_size <= PAGE_SIZE)
|
|
pages = kzalloc(array_size, gfp);
|
|
else
|
|
pages = vzalloc(array_size);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
while (count) {
|
|
int j, order = __ffs(count);
|
|
|
|
pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
|
|
while (!pages[i] && order)
|
|
pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
|
|
if (!pages[i])
|
|
goto error;
|
|
|
|
if (order)
|
|
split_page(pages[i], order);
|
|
j = 1 << order;
|
|
while (--j)
|
|
pages[i + j] = pages[i] + j;
|
|
|
|
__dma_clear_buffer(pages[i], PAGE_SIZE << order);
|
|
i += 1 << order;
|
|
count -= 1 << order;
|
|
}
|
|
|
|
return pages;
|
|
error:
|
|
while (--i)
|
|
if (pages[i])
|
|
__free_pages(pages[i], 0);
|
|
if (array_size < PAGE_SIZE)
|
|
kfree(pages);
|
|
else
|
|
vfree(pages);
|
|
return NULL;
|
|
}
|
|
|
|
static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
|
|
{
|
|
int count = size >> PAGE_SHIFT;
|
|
int array_size = count * sizeof(struct page *);
|
|
int i;
|
|
for (i = 0; i < count; i++)
|
|
if (pages[i])
|
|
__free_pages(pages[i], 0);
|
|
if (array_size < PAGE_SIZE)
|
|
kfree(pages);
|
|
else
|
|
vfree(pages);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Create a CPU mapping for a specified pages
|
|
*/
|
|
static void *
|
|
__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot)
|
|
{
|
|
struct arm_vmregion *c;
|
|
size_t align;
|
|
size_t count = size >> PAGE_SHIFT;
|
|
int bit;
|
|
|
|
if (!consistent_pte[0]) {
|
|
pr_err("%s: not initialised\n", __func__);
|
|
dump_stack();
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Align the virtual region allocation - maximum alignment is
|
|
* a section size, minimum is a page size. This helps reduce
|
|
* fragmentation of the DMA space, and also prevents allocations
|
|
* smaller than a section from crossing a section boundary.
|
|
*/
|
|
bit = fls(size - 1);
|
|
if (bit > SECTION_SHIFT)
|
|
bit = SECTION_SHIFT;
|
|
align = 1 << bit;
|
|
|
|
/*
|
|
* Allocate a virtual address in the consistent mapping region.
|
|
*/
|
|
c = arm_vmregion_alloc(&consistent_head, align, size,
|
|
gfp & ~(__GFP_DMA | __GFP_HIGHMEM), NULL);
|
|
if (c) {
|
|
pte_t *pte;
|
|
int idx = CONSISTENT_PTE_INDEX(c->vm_start);
|
|
int i = 0;
|
|
u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
|
|
|
|
pte = consistent_pte[idx] + off;
|
|
c->priv = pages;
|
|
|
|
do {
|
|
BUG_ON(!pte_none(*pte));
|
|
|
|
set_pte_ext(pte, mk_pte(pages[i], prot), 0);
|
|
pte++;
|
|
off++;
|
|
i++;
|
|
if (off >= PTRS_PER_PTE) {
|
|
off = 0;
|
|
pte = consistent_pte[++idx];
|
|
}
|
|
} while (i < count);
|
|
|
|
dsb();
|
|
|
|
return (void *)c->vm_start;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Create a mapping in device IO address space for specified pages
|
|
*/
|
|
static dma_addr_t
|
|
__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
|
|
{
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
dma_addr_t dma_addr, iova;
|
|
int i, ret = DMA_ERROR_CODE;
|
|
|
|
dma_addr = __alloc_iova(mapping, size);
|
|
if (dma_addr == DMA_ERROR_CODE)
|
|
return dma_addr;
|
|
|
|
iova = dma_addr;
|
|
for (i = 0; i < count; ) {
|
|
unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
|
|
phys_addr_t phys = page_to_phys(pages[i]);
|
|
unsigned int len, j;
|
|
|
|
for (j = i + 1; j < count; j++, next_pfn++)
|
|
if (page_to_pfn(pages[j]) != next_pfn)
|
|
break;
|
|
|
|
len = (j - i) << PAGE_SHIFT;
|
|
ret = iommu_map(mapping->domain, iova, phys, len, 0);
|
|
if (ret < 0)
|
|
goto fail;
|
|
iova += len;
|
|
i = j;
|
|
}
|
|
return dma_addr;
|
|
fail:
|
|
iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
|
|
__free_iova(mapping, dma_addr, size);
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
|
|
static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
|
|
{
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
|
|
/*
|
|
* add optional in-page offset from iova to size and align
|
|
* result to page size
|
|
*/
|
|
size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
|
|
iova &= PAGE_MASK;
|
|
|
|
iommu_unmap(mapping->domain, iova, size);
|
|
__free_iova(mapping, iova, size);
|
|
return 0;
|
|
}
|
|
|
|
static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
|
|
dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
|
|
{
|
|
pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
|
|
struct page **pages;
|
|
void *addr = NULL;
|
|
|
|
*handle = DMA_ERROR_CODE;
|
|
size = PAGE_ALIGN(size);
|
|
|
|
pages = __iommu_alloc_buffer(dev, size, gfp);
|
|
if (!pages)
|
|
return NULL;
|
|
|
|
*handle = __iommu_create_mapping(dev, pages, size);
|
|
if (*handle == DMA_ERROR_CODE)
|
|
goto err_buffer;
|
|
|
|
addr = __iommu_alloc_remap(pages, size, gfp, prot);
|
|
if (!addr)
|
|
goto err_mapping;
|
|
|
|
return addr;
|
|
|
|
err_mapping:
|
|
__iommu_remove_mapping(dev, *handle, size);
|
|
err_buffer:
|
|
__iommu_free_buffer(dev, pages, size);
|
|
return NULL;
|
|
}
|
|
|
|
static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
|
|
void *cpu_addr, dma_addr_t dma_addr, size_t size,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct arm_vmregion *c;
|
|
|
|
vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
|
|
c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
|
|
|
|
if (c) {
|
|
struct page **pages = c->priv;
|
|
|
|
unsigned long uaddr = vma->vm_start;
|
|
unsigned long usize = vma->vm_end - vma->vm_start;
|
|
int i = 0;
|
|
|
|
do {
|
|
int ret;
|
|
|
|
ret = vm_insert_page(vma, uaddr, pages[i++]);
|
|
if (ret) {
|
|
pr_err("Remapping memory, error: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
uaddr += PAGE_SIZE;
|
|
usize -= PAGE_SIZE;
|
|
} while (usize > 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* free a page as defined by the above mapping.
|
|
* Must not be called with IRQs disabled.
|
|
*/
|
|
void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
|
|
dma_addr_t handle, struct dma_attrs *attrs)
|
|
{
|
|
struct arm_vmregion *c;
|
|
size = PAGE_ALIGN(size);
|
|
|
|
c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
|
|
if (c) {
|
|
struct page **pages = c->priv;
|
|
__dma_free_remap(cpu_addr, size);
|
|
__iommu_remove_mapping(dev, handle, size);
|
|
__iommu_free_buffer(dev, pages, size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Map a part of the scatter-gather list into contiguous io address space
|
|
*/
|
|
static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
|
|
size_t size, dma_addr_t *handle,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
dma_addr_t iova, iova_base;
|
|
int ret = 0;
|
|
unsigned int count;
|
|
struct scatterlist *s;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
*handle = DMA_ERROR_CODE;
|
|
|
|
iova_base = iova = __alloc_iova(mapping, size);
|
|
if (iova == DMA_ERROR_CODE)
|
|
return -ENOMEM;
|
|
|
|
for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
|
|
phys_addr_t phys = page_to_phys(sg_page(s));
|
|
unsigned int len = PAGE_ALIGN(s->offset + s->length);
|
|
|
|
if (!arch_is_coherent())
|
|
__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
|
|
|
|
ret = iommu_map(mapping->domain, iova, phys, len, 0);
|
|
if (ret < 0)
|
|
goto fail;
|
|
count += len >> PAGE_SHIFT;
|
|
iova += len;
|
|
}
|
|
*handle = iova_base;
|
|
|
|
return 0;
|
|
fail:
|
|
iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
|
|
__free_iova(mapping, iova_base, size);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
|
|
* @dev: valid struct device pointer
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* Map a set of buffers described by scatterlist in streaming mode for DMA.
|
|
* The scatter gather list elements are merged together (if possible) and
|
|
* tagged with the appropriate dma address and length. They are obtained via
|
|
* sg_dma_{address,length}.
|
|
*/
|
|
int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir, struct dma_attrs *attrs)
|
|
{
|
|
struct scatterlist *s = sg, *dma = sg, *start = sg;
|
|
int i, count = 0;
|
|
unsigned int offset = s->offset;
|
|
unsigned int size = s->offset + s->length;
|
|
unsigned int max = dma_get_max_seg_size(dev);
|
|
|
|
for (i = 1; i < nents; i++) {
|
|
s = sg_next(s);
|
|
|
|
s->dma_address = DMA_ERROR_CODE;
|
|
s->dma_length = 0;
|
|
|
|
if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
|
|
if (__map_sg_chunk(dev, start, size, &dma->dma_address,
|
|
dir) < 0)
|
|
goto bad_mapping;
|
|
|
|
dma->dma_address += offset;
|
|
dma->dma_length = size - offset;
|
|
|
|
size = offset = s->offset;
|
|
start = s;
|
|
dma = sg_next(dma);
|
|
count += 1;
|
|
}
|
|
size += s->length;
|
|
}
|
|
if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir) < 0)
|
|
goto bad_mapping;
|
|
|
|
dma->dma_address += offset;
|
|
dma->dma_length = size - offset;
|
|
|
|
return count+1;
|
|
|
|
bad_mapping:
|
|
for_each_sg(sg, s, count, i)
|
|
__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
|
|
* @dev: valid struct device pointer
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to unmap (same as was passed to dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*
|
|
* Unmap a set of streaming mode DMA translations. Again, CPU access
|
|
* rules concerning calls here are the same as for dma_unmap_single().
|
|
*/
|
|
void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir, struct dma_attrs *attrs)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i) {
|
|
if (sg_dma_len(s))
|
|
__iommu_remove_mapping(dev, sg_dma_address(s),
|
|
sg_dma_len(s));
|
|
if (!arch_is_coherent())
|
|
__dma_page_dev_to_cpu(sg_page(s), s->offset,
|
|
s->length, dir);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_sync_sg_for_cpu
|
|
* @dev: valid struct device pointer
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
if (!arch_is_coherent())
|
|
__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
|
|
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_sync_sg_for_device
|
|
* @dev: valid struct device pointer
|
|
* @sg: list of buffers
|
|
* @nents: number of buffers to map (returned from dma_map_sg)
|
|
* @dir: DMA transfer direction (same as was passed to dma_map_sg)
|
|
*/
|
|
void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
|
|
int nents, enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *s;
|
|
int i;
|
|
|
|
for_each_sg(sg, s, nents, i)
|
|
if (!arch_is_coherent())
|
|
__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
|
|
}
|
|
|
|
|
|
/**
|
|
* arm_iommu_map_page
|
|
* @dev: valid struct device pointer
|
|
* @page: page that buffer resides in
|
|
* @offset: offset into page for start of buffer
|
|
* @size: size of buffer to map
|
|
* @dir: DMA transfer direction
|
|
*
|
|
* IOMMU aware version of arm_dma_map_page()
|
|
*/
|
|
static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
|
|
unsigned long offset, size_t size, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
dma_addr_t dma_addr;
|
|
int ret, len = PAGE_ALIGN(size + offset);
|
|
|
|
if (!arch_is_coherent())
|
|
__dma_page_cpu_to_dev(page, offset, size, dir);
|
|
|
|
dma_addr = __alloc_iova(mapping, len);
|
|
if (dma_addr == DMA_ERROR_CODE)
|
|
return dma_addr;
|
|
|
|
ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
|
|
if (ret < 0)
|
|
goto fail;
|
|
|
|
return dma_addr + offset;
|
|
fail:
|
|
__free_iova(mapping, dma_addr, len);
|
|
return DMA_ERROR_CODE;
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_unmap_page
|
|
* @dev: valid struct device pointer
|
|
* @handle: DMA address of buffer
|
|
* @size: size of buffer (same as passed to dma_map_page)
|
|
* @dir: DMA transfer direction (same as passed to dma_map_page)
|
|
*
|
|
* IOMMU aware version of arm_dma_unmap_page()
|
|
*/
|
|
static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
|
|
size_t size, enum dma_data_direction dir,
|
|
struct dma_attrs *attrs)
|
|
{
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
dma_addr_t iova = handle & PAGE_MASK;
|
|
struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
|
|
int offset = handle & ~PAGE_MASK;
|
|
int len = PAGE_ALIGN(size + offset);
|
|
|
|
if (!iova)
|
|
return;
|
|
|
|
if (!arch_is_coherent())
|
|
__dma_page_dev_to_cpu(page, offset, size, dir);
|
|
|
|
iommu_unmap(mapping->domain, iova, len);
|
|
__free_iova(mapping, iova, len);
|
|
}
|
|
|
|
static void arm_iommu_sync_single_for_cpu(struct device *dev,
|
|
dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
dma_addr_t iova = handle & PAGE_MASK;
|
|
struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
|
|
unsigned int offset = handle & ~PAGE_MASK;
|
|
|
|
if (!iova)
|
|
return;
|
|
|
|
if (!arch_is_coherent())
|
|
__dma_page_dev_to_cpu(page, offset, size, dir);
|
|
}
|
|
|
|
static void arm_iommu_sync_single_for_device(struct device *dev,
|
|
dma_addr_t handle, size_t size, enum dma_data_direction dir)
|
|
{
|
|
struct dma_iommu_mapping *mapping = dev->archdata.mapping;
|
|
dma_addr_t iova = handle & PAGE_MASK;
|
|
struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
|
|
unsigned int offset = handle & ~PAGE_MASK;
|
|
|
|
if (!iova)
|
|
return;
|
|
|
|
__dma_page_cpu_to_dev(page, offset, size, dir);
|
|
}
|
|
|
|
struct dma_map_ops iommu_ops = {
|
|
.alloc = arm_iommu_alloc_attrs,
|
|
.free = arm_iommu_free_attrs,
|
|
.mmap = arm_iommu_mmap_attrs,
|
|
|
|
.map_page = arm_iommu_map_page,
|
|
.unmap_page = arm_iommu_unmap_page,
|
|
.sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
|
|
.sync_single_for_device = arm_iommu_sync_single_for_device,
|
|
|
|
.map_sg = arm_iommu_map_sg,
|
|
.unmap_sg = arm_iommu_unmap_sg,
|
|
.sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
|
|
.sync_sg_for_device = arm_iommu_sync_sg_for_device,
|
|
};
|
|
|
|
/**
|
|
* arm_iommu_create_mapping
|
|
* @bus: pointer to the bus holding the client device (for IOMMU calls)
|
|
* @base: start address of the valid IO address space
|
|
* @size: size of the valid IO address space
|
|
* @order: accuracy of the IO addresses allocations
|
|
*
|
|
* Creates a mapping structure which holds information about used/unused
|
|
* IO address ranges, which is required to perform memory allocation and
|
|
* mapping with IOMMU aware functions.
|
|
*
|
|
* The client device need to be attached to the mapping with
|
|
* arm_iommu_attach_device function.
|
|
*/
|
|
struct dma_iommu_mapping *
|
|
arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
|
|
int order)
|
|
{
|
|
unsigned int count = size >> (PAGE_SHIFT + order);
|
|
unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
|
|
struct dma_iommu_mapping *mapping;
|
|
int err = -ENOMEM;
|
|
|
|
if (!count)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
|
|
if (!mapping)
|
|
goto err;
|
|
|
|
mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
|
|
if (!mapping->bitmap)
|
|
goto err2;
|
|
|
|
mapping->base = base;
|
|
mapping->bits = BITS_PER_BYTE * bitmap_size;
|
|
mapping->order = order;
|
|
spin_lock_init(&mapping->lock);
|
|
|
|
mapping->domain = iommu_domain_alloc(bus);
|
|
if (!mapping->domain)
|
|
goto err3;
|
|
|
|
kref_init(&mapping->kref);
|
|
return mapping;
|
|
err3:
|
|
kfree(mapping->bitmap);
|
|
err2:
|
|
kfree(mapping);
|
|
err:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void release_iommu_mapping(struct kref *kref)
|
|
{
|
|
struct dma_iommu_mapping *mapping =
|
|
container_of(kref, struct dma_iommu_mapping, kref);
|
|
|
|
iommu_domain_free(mapping->domain);
|
|
kfree(mapping->bitmap);
|
|
kfree(mapping);
|
|
}
|
|
|
|
void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
|
|
{
|
|
if (mapping)
|
|
kref_put(&mapping->kref, release_iommu_mapping);
|
|
}
|
|
|
|
/**
|
|
* arm_iommu_attach_device
|
|
* @dev: valid struct device pointer
|
|
* @mapping: io address space mapping structure (returned from
|
|
* arm_iommu_create_mapping)
|
|
*
|
|
* Attaches specified io address space mapping to the provided device,
|
|
* this replaces the dma operations (dma_map_ops pointer) with the
|
|
* IOMMU aware version. More than one client might be attached to
|
|
* the same io address space mapping.
|
|
*/
|
|
int arm_iommu_attach_device(struct device *dev,
|
|
struct dma_iommu_mapping *mapping)
|
|
{
|
|
int err;
|
|
|
|
err = iommu_attach_device(mapping->domain, dev);
|
|
if (err)
|
|
return err;
|
|
|
|
kref_get(&mapping->kref);
|
|
dev->archdata.mapping = mapping;
|
|
set_dma_ops(dev, &iommu_ops);
|
|
|
|
pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
|
|
return 0;
|
|
}
|
|
|
|
#endif
|