e498be7daf
The NUMA API change that introduced kmalloc_node was accepted for 2.6.12-rc3. Now it is possible to do slab allocations on a node to localize memory structures. This API was used by the pageset localization patch and the block layer localization patch now in mm. The existing kmalloc_node is slow since it simply searches through all pages of the slab to find a page that is on the node requested. The two patches do a one time allocation of slab structures at initialization and therefore the speed of kmalloc node does not matter. This patch allows kmalloc_node to be as fast as kmalloc by introducing node specific page lists for partial, free and full slabs. Slab allocation improves in a NUMA system so that we are seeing a performance gain in AIM7 of about 5% with this patch alone. More NUMA localizations are possible if kmalloc_node operates in an fast way like kmalloc. Test run on a 32p systems with 32G Ram. w/o patch Tasks jobs/min jti jobs/min/task real cpu 1 485.36 100 485.3640 11.99 1.91 Sat Apr 30 14:01:51 2005 100 26582.63 88 265.8263 21.89 144.96 Sat Apr 30 14:02:14 2005 200 29866.83 81 149.3342 38.97 286.08 Sat Apr 30 14:02:53 2005 300 33127.16 78 110.4239 52.71 426.54 Sat Apr 30 14:03:46 2005 400 34889.47 80 87.2237 66.72 568.90 Sat Apr 30 14:04:53 2005 500 35654.34 76 71.3087 81.62 714.55 Sat Apr 30 14:06:15 2005 600 36460.83 75 60.7681 95.77 853.42 Sat Apr 30 14:07:51 2005 700 35957.00 75 51.3671 113.30 990.67 Sat Apr 30 14:09:45 2005 800 33380.65 73 41.7258 139.48 1140.86 Sat Apr 30 14:12:05 2005 900 35095.01 76 38.9945 149.25 1281.30 Sat Apr 30 14:14:35 2005 1000 36094.37 74 36.0944 161.24 1419.66 Sat Apr 30 14:17:17 2005 w/patch Tasks jobs/min jti jobs/min/task real cpu 1 484.27 100 484.2736 12.02 1.93 Sat Apr 30 15:59:45 2005 100 28262.03 90 282.6203 20.59 143.57 Sat Apr 30 16:00:06 2005 200 32246.45 82 161.2322 36.10 282.89 Sat Apr 30 16:00:42 2005 300 37945.80 83 126.4860 46.01 418.75 Sat Apr 30 16:01:28 2005 400 40000.69 81 100.0017 58.20 561.48 Sat Apr 30 16:02:27 2005 500 40976.10 78 81.9522 71.02 696.95 Sat Apr 30 16:03:38 2005 600 41121.54 78 68.5359 84.92 834.86 Sat Apr 30 16:05:04 2005 700 44052.77 78 62.9325 92.48 971.53 Sat Apr 30 16:06:37 2005 800 41066.89 79 51.3336 113.38 1111.15 Sat Apr 30 16:08:31 2005 900 38918.77 79 43.2431 134.59 1252.57 Sat Apr 30 16:10:46 2005 1000 41842.21 76 41.8422 139.09 1392.33 Sat Apr 30 16:13:05 2005 These are measurement taken directly after boot and show a greater improvement than 5%. However, the performance improvements become less over time if the AIM7 runs are repeated and settle down at around 5%. Links to earlier discussions: http://marc.theaimsgroup.com/?t=111094594500003&r=1&w=2 http://marc.theaimsgroup.com/?t=111603406600002&r=1&w=2 Changelog V4-V5: - alloc_arraycache and alloc_aliencache take node parameter instead of cpu - fix initialization so that nodes without cpus are properly handled. - simplify code in kmem_cache_init - patch against Andrews temp mm3 release - Add Shai to credits - fallback to __cache_alloc from __cache_alloc_node if the node's cache is not available yet. Changelog V3-V4: - Patch against 2.6.12-rc5-mm1 - Cleanup patch integrated - More and better use of for_each_node and for_each_cpu - GCC 2.95 fix (do not use [] use [0]) - Correct determination of INDEX_AC - Remove hack to cause an error on platforms that have no CONFIG_NUMA but nodes. - Remove list3_data and list3_data_ptr macros for better readability Changelog V2-V3: - Made to patch against 2.6.12-rc4-mm1 - Revised bootstrap mechanism so that larger size kmem_list3 structs can be supported. Do a generic solution so that the right slab can be found for the internal structs. - use for_each_online_node Changelog V1-V2: - Batching for freeing of wrong-node objects (alien caches) - Locking changes and NUMA #ifdefs as requested by Manfred Signed-off-by: Alok N Kataria <alokk@calsoftinc.com> Signed-off-by: Shobhit Dayal <shobhit@calsoftinc.com> Signed-off-by: Shai Fultheim <Shai@Scalex86.org> Signed-off-by: Christoph Lameter <clameter@sgi.com> Cc: Manfred Spraul <manfred@colorfullife.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org> |
||
---|---|---|
arch | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
mm | ||
net | ||
scripts | ||
security | ||
sound | ||
usr | ||
COPYING | ||
CREDITS | ||
MAINTAINERS | ||
Makefile | ||
README | ||
REPORTING-BUGS |
Linux kernel release 2.6.xx These are the release notes for Linux version 2.6. Read them carefully, as they tell you what this is all about, explain how to install the kernel, and what to do if something goes wrong. WHAT IS LINUX? Linux is a Unix clone written from scratch by Linus Torvalds with assistance from a loosely-knit team of hackers across the Net. It aims towards POSIX compliance. It has all the features you would expect in a modern fully-fledged Unix, including true multitasking, virtual memory, shared libraries, demand loading, shared copy-on-write executables, proper memory management and TCP/IP networking. It is distributed under the GNU General Public License - see the accompanying COPYING file for more details. ON WHAT HARDWARE DOES IT RUN? Linux was first developed for 386/486-based PCs. These days it also runs on ARMs, DEC Alphas, SUN Sparcs, M68000 machines (like Atari and Amiga), MIPS and PowerPC, and others. DOCUMENTATION: - There is a lot of documentation available both in electronic form on the Internet and in books, both Linux-specific and pertaining to general UNIX questions. I'd recommend looking into the documentation subdirectories on any Linux FTP site for the LDP (Linux Documentation Project) books. This README is not meant to be documentation on the system: there are much better sources available. - There are various README files in the Documentation/ subdirectory: these typically contain kernel-specific installation notes for some drivers for example. See Documentation/00-INDEX for a list of what is contained in each file. Please read the Changes file, as it contains information about the problems, which may result by upgrading your kernel. - The Documentation/DocBook/ subdirectory contains several guides for kernel developers and users. These guides can be rendered in a number of formats: PostScript (.ps), PDF, and HTML, among others. After installation, "make psdocs", "make pdfdocs", or "make htmldocs" will render the documentation in the requested format. INSTALLING the kernel: - If you install the full sources, put the kernel tarball in a directory where you have permissions (eg. your home directory) and unpack it: gzip -cd linux-2.6.XX.tar.gz | tar xvf - Replace "XX" with the version number of the latest kernel. Do NOT use the /usr/src/linux area! This area has a (usually incomplete) set of kernel headers that are used by the library header files. They should match the library, and not get messed up by whatever the kernel-du-jour happens to be. - You can also upgrade between 2.6.xx releases by patching. Patches are distributed in the traditional gzip and the new bzip2 format. To install by patching, get all the newer patch files, enter the top level directory of the kernel source (linux-2.6.xx) and execute: gzip -cd ../patch-2.6.xx.gz | patch -p1 or bzip2 -dc ../patch-2.6.xx.bz2 | patch -p1 (repeat xx for all versions bigger than the version of your current source tree, _in_order_) and you should be ok. You may want to remove the backup files (xxx~ or xxx.orig), and make sure that there are no failed patches (xxx# or xxx.rej). If there are, either you or me has made a mistake. Alternatively, the script patch-kernel can be used to automate this process. It determines the current kernel version and applies any patches found. linux/scripts/patch-kernel linux The first argument in the command above is the location of the kernel source. Patches are applied from the current directory, but an alternative directory can be specified as the second argument. - If you are upgrading between releases using the stable series patches (for example, patch-2.6.xx.y), note that these "dot-releases" are not incremental and must be applied to the 2.6.xx base tree. For example, if your base kernel is 2.6.12 and you want to apply the 2.6.12.3 patch, you do not and indeed must not first apply the 2.6.12.1 and 2.6.12.2 patches. Similarly, if you are running kernel version 2.6.12.2 and want to jump to 2.6.12.3, you must first reverse the 2.6.12.2 patch (that is, patch -R) _before_ applying the 2.6.12.3 patch. - Make sure you have no stale .o files and dependencies lying around: cd linux make mrproper You should now have the sources correctly installed. SOFTWARE REQUIREMENTS Compiling and running the 2.6.xx kernels requires up-to-date versions of various software packages. Consult Documentation/Changes for the minimum version numbers required and how to get updates for these packages. Beware that using excessively old versions of these packages can cause indirect errors that are very difficult to track down, so don't assume that you can just update packages when obvious problems arise during build or operation. BUILD directory for the kernel: When compiling the kernel all output files will per default be stored together with the kernel source code. Using the option "make O=output/dir" allow you to specify an alternate place for the output files (including .config). Example: kernel source code: /usr/src/linux-2.6.N build directory: /home/name/build/kernel To configure and build the kernel use: cd /usr/src/linux-2.6.N make O=/home/name/build/kernel menuconfig make O=/home/name/build/kernel sudo make O=/home/name/build/kernel modules_install install Please note: If the 'O=output/dir' option is used then it must be used for all invocations of make. CONFIGURING the kernel: Do not skip this step even if you are only upgrading one minor version. New configuration options are added in each release, and odd problems will turn up if the configuration files are not set up as expected. If you want to carry your existing configuration to a new version with minimal work, use "make oldconfig", which will only ask you for the answers to new questions. - Alternate configuration commands are: "make menuconfig" Text based color menus, radiolists & dialogs. "make xconfig" X windows (Qt) based configuration tool. "make gconfig" X windows (Gtk) based configuration tool. "make oldconfig" Default all questions based on the contents of your existing ./.config file. NOTES on "make config": - having unnecessary drivers will make the kernel bigger, and can under some circumstances lead to problems: probing for a nonexistent controller card may confuse your other controllers - compiling the kernel with "Processor type" set higher than 386 will result in a kernel that does NOT work on a 386. The kernel will detect this on bootup, and give up. - A kernel with math-emulation compiled in will still use the coprocessor if one is present: the math emulation will just never get used in that case. The kernel will be slightly larger, but will work on different machines regardless of whether they have a math coprocessor or not. - the "kernel hacking" configuration details usually result in a bigger or slower kernel (or both), and can even make the kernel less stable by configuring some routines to actively try to break bad code to find kernel problems (kmalloc()). Thus you should probably answer 'n' to the questions for "development", "experimental", or "debugging" features. - Check the top Makefile for further site-dependent configuration (default SVGA mode etc). COMPILING the kernel: - Make sure you have gcc 2.95.3 available. gcc 2.91.66 (egcs-1.1.2), and gcc 2.7.2.3 are known to miscompile some parts of the kernel, and are *no longer supported*. Also remember to upgrade your binutils package (for as/ld/nm and company) if necessary. For more information, refer to Documentation/Changes. Please note that you can still run a.out user programs with this kernel. - Do a "make" to create a compressed kernel image. It is also possible to do "make install" if you have lilo installed to suit the kernel makefiles, but you may want to check your particular lilo setup first. To do the actual install you have to be root, but none of the normal build should require that. Don't take the name of root in vain. - If you configured any of the parts of the kernel as `modules', you will also have to do "make modules_install". - Keep a backup kernel handy in case something goes wrong. This is especially true for the development releases, since each new release contains new code which has not been debugged. Make sure you keep a backup of the modules corresponding to that kernel, as well. If you are installing a new kernel with the same version number as your working kernel, make a backup of your modules directory before you do a "make modules_install". - In order to boot your new kernel, you'll need to copy the kernel image (e.g. .../linux/arch/i386/boot/bzImage after compilation) to the place where your regular bootable kernel is found. - Booting a kernel directly from a floppy without the assistance of a bootloader such as LILO, is no longer supported. If you boot Linux from the hard drive, chances are you use LILO which uses the kernel image as specified in the file /etc/lilo.conf. The kernel image file is usually /vmlinuz, /boot/vmlinuz, /bzImage or /boot/bzImage. To use the new kernel, save a copy of the old image and copy the new image over the old one. Then, you MUST RERUN LILO to update the loading map!! If you don't, you won't be able to boot the new kernel image. Reinstalling LILO is usually a matter of running /sbin/lilo. You may wish to edit /etc/lilo.conf to specify an entry for your old kernel image (say, /vmlinux.old) in case the new one does not work. See the LILO docs for more information. After reinstalling LILO, you should be all set. Shutdown the system, reboot, and enjoy! If you ever need to change the default root device, video mode, ramdisk size, etc. in the kernel image, use the 'rdev' program (or alternatively the LILO boot options when appropriate). No need to recompile the kernel to change these parameters. - Reboot with the new kernel and enjoy. IF SOMETHING GOES WRONG: - If you have problems that seem to be due to kernel bugs, please check the file MAINTAINERS to see if there is a particular person associated with the part of the kernel that you are having trouble with. If there isn't anyone listed there, then the second best thing is to mail them to me (torvalds@osdl.org), and possibly to any other relevant mailing-list or to the newsgroup. - In all bug-reports, *please* tell what kernel you are talking about, how to duplicate the problem, and what your setup is (use your common sense). If the problem is new, tell me so, and if the problem is old, please try to tell me when you first noticed it. - If the bug results in a message like unable to handle kernel paging request at address C0000010 Oops: 0002 EIP: 0010:XXXXXXXX eax: xxxxxxxx ebx: xxxxxxxx ecx: xxxxxxxx edx: xxxxxxxx esi: xxxxxxxx edi: xxxxxxxx ebp: xxxxxxxx ds: xxxx es: xxxx fs: xxxx gs: xxxx Pid: xx, process nr: xx xx xx xx xx xx xx xx xx xx xx or similar kernel debugging information on your screen or in your system log, please duplicate it *exactly*. The dump may look incomprehensible to you, but it does contain information that may help debugging the problem. The text above the dump is also important: it tells something about why the kernel dumped code (in the above example it's due to a bad kernel pointer). More information on making sense of the dump is in Documentation/oops-tracing.txt - If you compiled the kernel with CONFIG_KALLSYMS you can send the dump as is, otherwise you will have to use the "ksymoops" program to make sense of the dump. This utility can be downloaded from ftp://ftp.<country>.kernel.org/pub/linux/utils/kernel/ksymoops. Alternately you can do the dump lookup by hand: - In debugging dumps like the above, it helps enormously if you can look up what the EIP value means. The hex value as such doesn't help me or anybody else very much: it will depend on your particular kernel setup. What you should do is take the hex value from the EIP line (ignore the "0010:"), and look it up in the kernel namelist to see which kernel function contains the offending address. To find out the kernel function name, you'll need to find the system binary associated with the kernel that exhibited the symptom. This is the file 'linux/vmlinux'. To extract the namelist and match it against the EIP from the kernel crash, do: nm vmlinux | sort | less This will give you a list of kernel addresses sorted in ascending order, from which it is simple to find the function that contains the offending address. Note that the address given by the kernel debugging messages will not necessarily match exactly with the function addresses (in fact, that is very unlikely), so you can't just 'grep' the list: the list will, however, give you the starting point of each kernel function, so by looking for the function that has a starting address lower than the one you are searching for but is followed by a function with a higher address you will find the one you want. In fact, it may be a good idea to include a bit of "context" in your problem report, giving a few lines around the interesting one. If you for some reason cannot do the above (you have a pre-compiled kernel image or similar), telling me as much about your setup as possible will help. - Alternately, you can use gdb on a running kernel. (read-only; i.e. you cannot change values or set break points.) To do this, first compile the kernel with -g; edit arch/i386/Makefile appropriately, then do a "make clean". You'll also need to enable CONFIG_PROC_FS (via "make config"). After you've rebooted with the new kernel, do "gdb vmlinux /proc/kcore". You can now use all the usual gdb commands. The command to look up the point where your system crashed is "l *0xXXXXXXXX". (Replace the XXXes with the EIP value.) gdb'ing a non-running kernel currently fails because gdb (wrongly) disregards the starting offset for which the kernel is compiled.