kernel-ark/sound/pci/azt3328.h
Andreas Mohr dfbf951115 ALSA: azt3328: large codec cleanup, add I2S port etc.
- fully separate codec I/O port handling, enabling the use of a single
  function each for all codecs (playback, capture, I2S out)
- add a new separate pcm for I2S out port (UNTESTED, no I2S DAC
  available yet)
- switch gameport to low frequency while idle, to try to reduce noise/power
- improve snd_azf3328_codec_setdmaa() calculation
- minor variable type cleanup (u16, bool etc.)
- add some doc updates (help those lost Windows users, debug help, ...)

Note that due to the large cleanup aspect of the codec I/O change,
I was able to fit everything including all improvements into the
same binary size!! (a measly 10 bytes more or so)

This should now be the almost last patch to this driver
(minus some possible kernel clocksource patch and x86_64 fixes or so).
I just felt like taking a break from the usual stuff and wanted to
get this driver's structure finished, and it's rather clean now...

Tested, working and checkpatch.pl:ed on 2.6.30-rc5,
applies cleanly to 2.6.30 proper.

Signed-off-by: Andreas Mohr <andi@lisas.de>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2009-07-06 08:24:47 +02:00

337 lines
15 KiB
C

#ifndef __SOUND_AZT3328_H
#define __SOUND_AZT3328_H
/* "PU" == "power-up value", as tested on PCI168 PCI rev. 10
* "WRITE_ONLY" == register does not indicate actual bit values */
/*** main I/O area port indices ***/
/* (only 0x70 of 0x80 bytes saved/restored by Windows driver) */
#define AZF_IO_SIZE_CTRL 0x80
#define AZF_IO_SIZE_CTRL_PM 0x70
/* the driver initialisation suggests a layout of 4 areas
* within the main card control I/O:
* from 0x00 (playback codec), from 0x20 (recording codec)
* and from 0x40 (most certainly I2S out codec).
* And another area from 0x60 to 0x6f (DirectX timer, IRQ management,
* power management etc.???). */
#define AZF_IO_OFFS_CODEC_PLAYBACK 0x00
#define AZF_IO_OFFS_CODEC_CAPTURE 0x20
#define AZF_IO_OFFS_CODEC_I2S_OUT 0x40
#define IDX_IO_CODEC_DMA_FLAGS 0x00 /* PU:0x0000 */
/* able to reactivate output after output muting due to 8/16bit
* output change, just like 0x0002.
* 0x0001 is the only bit that's able to start the DMA counter */
#define DMA_RESUME 0x0001 /* paused if cleared? */
/* 0x0002 *temporarily* set during DMA stopping. hmm
* both 0x0002 and 0x0004 set in playback setup. */
/* able to reactivate output after output muting due to 8/16bit
* output change, just like 0x0001. */
#define DMA_RUN_SOMETHING1 0x0002 /* \ alternated (toggled) */
/* 0x0004: NOT able to reactivate output */
#define DMA_RUN_SOMETHING2 0x0004 /* / bits */
#define SOMETHING_ALMOST_ALWAYS_SET 0x0008 /* ???; can be modified */
#define DMA_EPILOGUE_SOMETHING 0x0010
#define DMA_SOMETHING_ELSE 0x0020 /* ??? */
#define SOMETHING_UNMODIFIABLE 0xffc0 /* unused? not modifiable */
#define IDX_IO_CODEC_IRQTYPE 0x02 /* PU:0x0001 */
/* write back to flags in case flags are set, in order to ACK IRQ in handler
* (bit 1 of port 0x64 indicates interrupt for one of these three types)
* sometimes in this case it just writes 0xffff to globally ACK all IRQs
* settings written are not reflected when reading back, though.
* seems to be IRQ, too (frequently used: port |= 0x07 !), but who knows? */
#define IRQ_SOMETHING 0x0001 /* something & ACK */
#define IRQ_FINISHED_DMABUF_1 0x0002 /* 1st dmabuf finished & ACK */
#define IRQ_FINISHED_DMABUF_2 0x0004 /* 2nd dmabuf finished & ACK */
#define IRQMASK_SOME_STATUS_1 0x0008 /* \ related bits */
#define IRQMASK_SOME_STATUS_2 0x0010 /* / (checked together in loop) */
#define IRQMASK_UNMODIFIABLE 0xffe0 /* unused? not modifiable */
/* start address of 1st DMA transfer area, PU:0x00000000 */
#define IDX_IO_CODEC_DMA_START_1 0x04
/* start address of 2nd DMA transfer area, PU:0x00000000 */
#define IDX_IO_CODEC_DMA_START_2 0x08
/* both lengths of DMA transfer areas, PU:0x00000000
length1: offset 0x0c, length2: offset 0x0e */
#define IDX_IO_CODEC_DMA_LENGTHS 0x0c
#define IDX_IO_CODEC_DMA_CURRPOS 0x10 /* current DMA position, PU:0x00000000 */
/* offset within current DMA transfer area, PU:0x0000 */
#define IDX_IO_CODEC_DMA_CURROFS 0x14
#define IDX_IO_CODEC_SOUNDFORMAT 0x16 /* PU:0x0010 */
/* all unspecified bits can't be modified */
#define SOUNDFORMAT_FREQUENCY_MASK 0x000f
#define SOUNDFORMAT_XTAL1 0x00
#define SOUNDFORMAT_XTAL2 0x01
/* all _SUSPECTED_ values are not used by Windows drivers, so we don't
* have any hard facts, only rough measurements.
* All we know is that the crystal used on the board has 24.576MHz,
* like many soundcards (which results in the frequencies below when
* using certain divider values selected by the values below) */
#define SOUNDFORMAT_FREQ_SUSPECTED_4000 0x0c | SOUNDFORMAT_XTAL1
#define SOUNDFORMAT_FREQ_SUSPECTED_4800 0x0a | SOUNDFORMAT_XTAL1
#define SOUNDFORMAT_FREQ_5510 0x0c | SOUNDFORMAT_XTAL2
#define SOUNDFORMAT_FREQ_6620 0x0a | SOUNDFORMAT_XTAL2
#define SOUNDFORMAT_FREQ_8000 0x00 | SOUNDFORMAT_XTAL1 /* also 0x0e | SOUNDFORMAT_XTAL1? */
#define SOUNDFORMAT_FREQ_9600 0x08 | SOUNDFORMAT_XTAL1
#define SOUNDFORMAT_FREQ_11025 0x00 | SOUNDFORMAT_XTAL2 /* also 0x0e | SOUNDFORMAT_XTAL2? */
#define SOUNDFORMAT_FREQ_SUSPECTED_13240 0x08 | SOUNDFORMAT_XTAL2 /* seems to be 6620 *2 */
#define SOUNDFORMAT_FREQ_16000 0x02 | SOUNDFORMAT_XTAL1
#define SOUNDFORMAT_FREQ_22050 0x02 | SOUNDFORMAT_XTAL2
#define SOUNDFORMAT_FREQ_32000 0x04 | SOUNDFORMAT_XTAL1
#define SOUNDFORMAT_FREQ_44100 0x04 | SOUNDFORMAT_XTAL2
#define SOUNDFORMAT_FREQ_48000 0x06 | SOUNDFORMAT_XTAL1
#define SOUNDFORMAT_FREQ_SUSPECTED_66200 0x06 | SOUNDFORMAT_XTAL2 /* 66200 (13240 * 5); 64000 may have been nicer :-\ */
#define SOUNDFORMAT_FLAG_16BIT 0x0010
#define SOUNDFORMAT_FLAG_2CHANNELS 0x0020
/* define frequency helpers, for maximum value safety */
enum azf_freq_t {
#define AZF_FREQ(rate) AZF_FREQ_##rate = rate
AZF_FREQ(4000),
AZF_FREQ(4800),
AZF_FREQ(5512),
AZF_FREQ(6620),
AZF_FREQ(8000),
AZF_FREQ(9600),
AZF_FREQ(11025),
AZF_FREQ(13240),
AZF_FREQ(16000),
AZF_FREQ(22050),
AZF_FREQ(32000),
AZF_FREQ(44100),
AZF_FREQ(48000),
AZF_FREQ(66200),
#undef AZF_FREQ
};
/** DirectX timer, main interrupt area (FIXME: and something else?) **/
#define IDX_IO_TIMER_VALUE 0x60 /* found this timer area by pure luck :-) */
/* timer countdown value; triggers IRQ when timer is finished */
#define TIMER_VALUE_MASK 0x000fffffUL
/* activate timer countdown */
#define TIMER_COUNTDOWN_ENABLE 0x01000000UL
/* trigger timer IRQ on zero transition */
#define TIMER_IRQ_ENABLE 0x02000000UL
/* being set in IRQ handler in case port 0x00 (hmm, not port 0x64!?!?)
* had 0x0020 set upon IRQ handler */
#define TIMER_IRQ_ACK 0x04000000UL
#define IDX_IO_IRQSTATUS 0x64
/* some IRQ bit in here might also be used to signal a power-management timer
* timeout, to request shutdown of the chip (e.g. AD1815JS has such a thing).
* Some OPL3 hardware (e.g. in LM4560) has some special timer hardware which
* can trigger an OPL3 timer IRQ, so maybe there's such a thing as well... */
#define IRQ_PLAYBACK 0x0001
#define IRQ_RECORDING 0x0002
#define IRQ_I2S_OUT 0x0004 /* this IS I2S, right!? (untested) */
#define IRQ_GAMEPORT 0x0008 /* Interrupt of Digital(ly) Enhanced Game Port */
#define IRQ_MPU401 0x0010
#define IRQ_TIMER 0x0020 /* DirectX timer */
#define IRQ_UNKNOWN2 0x0040 /* probably unused, or possibly I2S port? */
#define IRQ_UNKNOWN3 0x0080 /* probably unused, or possibly I2S port? */
#define IDX_IO_66H 0x66 /* writing 0xffff returns 0x0000 */
/* this is set to e.g. 0x3ff or 0x300, and writable;
* maybe some buffer limit, but I couldn't find out more, PU:0x00ff: */
#define IDX_IO_SOME_VALUE 0x68
#define IO_68_RANDOM_TOGGLE1 0x0100 /* toggles randomly */
#define IO_68_RANDOM_TOGGLE2 0x0200 /* toggles randomly */
/* umm, nope, behaviour of these bits changes depending on what we wrote
* to 0x6b!!
* And they change upon playback/stop, too:
* Writing a value to 0x68 will display this exact value during playback,
* too but when stopped it can fall back to a rather different
* seemingly random value). Hmm, possibly this is a register which
* has a remote shadow which needs proper device supply which only exists
* in case playback is active? Or is this driver-induced?
*/
/* this WORD can be set to have bits 0x0028 activated (FIXME: correct??);
* actually inhibits PCM playback!!! maybe power management??: */
#define IDX_IO_6AH 0x6A /* WRITE_ONLY! */
/* bit 5: enabling this will activate permanent counting of bytes 2/3
* at gameport I/O (0xb402/3) (equal values each) and cause
* gameport legacy I/O at 0x0200 to be _DISABLED_!
* Is this Digital Enhanced Game Port Enable??? Or maybe it's Testmode
* for Enhanced Digital Gameport (see 4D Wave DX card): */
#define IO_6A_SOMETHING1_GAMEPORT 0x0020
/* bit 8; sure, this _pauses_ playback (later resumes at same spot!),
* but what the heck is this really about??: */
#define IO_6A_PAUSE_PLAYBACK_BIT8 0x0100
/* bit 9; sure, this _pauses_ playback (later resumes at same spot!),
* but what the heck is this really about??: */
#define IO_6A_PAUSE_PLAYBACK_BIT9 0x0200
/* BIT8 and BIT9 are _NOT_ able to affect OPL3 MIDI playback,
* thus it suggests influence on PCM only!!
* However OTOH there seems to be no bit anywhere around here
* which is able to disable OPL3... */
/* bit 10: enabling this actually changes values at legacy gameport
* I/O address (0x200); is this enabling of the Digital Enhanced Game Port???
* Or maybe this simply switches off the NE558 circuit, since enabling this
* still lets us evaluate button states, but not axis states */
#define IO_6A_SOMETHING2_GAMEPORT 0x0400
/* writing 0x0300: causes quite some crackling during
* PC activity such as switching windows (PCI traffic??
* --> FIFO/timing settings???) */
/* writing 0x0100 plus/or 0x0200 inhibits playback */
/* since the Windows .INF file has Flag_Enable_JoyStick and
* Flag_Enable_SB_DOS_Emulation directly together, it stands to reason
* that some other bit in this same register might be responsible
* for SB DOS Emulation activation (note that the file did NOT define
* a switch for OPL3!) */
#define IDX_IO_6CH 0x6C /* unknown; fully read-writable */
#define IDX_IO_6EH 0x6E
/* writing 0xffff returns 0x83fe (or 0x03fe only).
* writing 0x83 (and only 0x83!!) to 0x6f will cause 0x6c to switch
* from 0000 to ffff. */
/* further I/O indices not saved/restored and not readable after writing,
* so probably not used */
/*** Gameport area port indices ***/
/* (only 0x06 of 0x08 bytes saved/restored by Windows driver) */
#define AZF_IO_SIZE_GAME 0x08
#define AZF_IO_SIZE_GAME_PM 0x06
enum {
AZF_GAME_LEGACY_IO_PORT = 0x200
};
#define IDX_GAME_LEGACY_COMPATIBLE 0x00
/* in some operation mode, writing anything to this port
* triggers an interrupt:
* yup, that's in case IDX_GAME_01H has one of the
* axis measurement bits enabled
* (and of course one needs to have GAME_HWCFG_IRQ_ENABLE, too) */
#define IDX_GAME_AXES_CONFIG 0x01
/* NOTE: layout of this register awfully similar (read: "identical??")
* to AD1815JS.pdf (p.29) */
/* enables axis 1 (X axis) measurement: */
#define GAME_AXES_ENABLE_1 0x01
/* enables axis 2 (Y axis) measurement: */
#define GAME_AXES_ENABLE_2 0x02
/* enables axis 3 (X axis) measurement: */
#define GAME_AXES_ENABLE_3 0x04
/* enables axis 4 (Y axis) measurement: */
#define GAME_AXES_ENABLE_4 0x08
/* selects the current axis to read the measured value of
* (at IDX_GAME_AXIS_VALUE):
* 00 = axis 1, 01 = axis 2, 10 = axis 3, 11 = axis 4: */
#define GAME_AXES_READ_MASK 0x30
/* enable to have the latch continuously accept ADC values
* (and continuously cause interrupts in case interrupts are enabled);
* AD1815JS.pdf says it's ~16ms interval there: */
#define GAME_AXES_LATCH_ENABLE 0x40
/* joystick data (measured axes) ready for reading: */
#define GAME_AXES_SAMPLING_READY 0x80
/* NOTE: other card specs (SiS960 and others!) state that the
* game position latches should be frozen when reading and be freed
* (== reset?) after reading!!!
* Freezing most likely means disabling 0x40 (GAME_AXES_LATCH_ENABLE),
* but how to free the value? */
/* An internet search for "gameport latch ADC" should provide some insight
* into how to program such a gameport system. */
/* writing 0xf0 to 01H once reset both counters to 0, in some special mode!?
* yup, in case 6AH 0x20 is not enabled
* (and 0x40 is sufficient, 0xf0 is not needed) */
#define IDX_GAME_AXIS_VALUE 0x02
/* R: value of currently configured axis (word value!);
* W: trigger axis measurement */
#define IDX_GAME_HWCONFIG 0x04
/* note: bits 4 to 7 are never set (== 0) when reading!
* --> reserved bits? */
/* enables IRQ notification upon axes measurement ready: */
#define GAME_HWCFG_IRQ_ENABLE 0x01
/* these bits choose a different frequency for the
* internal ADC counter increment.
* hmm, seems to be a combo of bits:
* 00 --> standard frequency
* 10 --> 1/2
* 01 --> 1/20
* 11 --> 1/200: */
#define GAME_HWCFG_ADC_COUNTER_FREQ_MASK 0x06
/* FIXME: these values might be reversed... */
#define GAME_HWCFG_ADC_COUNTER_FREQ_STD 0
#define GAME_HWCFG_ADC_COUNTER_FREQ_1_2 1
#define GAME_HWCFG_ADC_COUNTER_FREQ_1_20 2
#define GAME_HWCFG_ADC_COUNTER_FREQ_1_200 3
/* enable gameport legacy I/O address (0x200)
* I was unable to locate any configurability for a different address: */
#define GAME_HWCFG_LEGACY_ADDRESS_ENABLE 0x08
/*** MPU401 ***/
#define AZF_IO_SIZE_MPU 0x04
#define AZF_IO_SIZE_MPU_PM 0x04
/*** OPL3 synth ***/
#define AZF_IO_SIZE_OPL3 0x08
#define AZF_IO_SIZE_OPL3_PM 0x06
/* hmm, given that a standard OPL3 has 4 registers only,
* there might be some enhanced functionality lurking at the end
* (especially since register 0x04 has a "non-empty" value 0xfe) */
/*** mixer I/O area port indices ***/
/* (only 0x22 of 0x40 bytes saved/restored by Windows driver)
* UNFORTUNATELY azf3328 is NOT truly AC97 compliant: see main file intro */
#define AZF_IO_SIZE_MIXER 0x40
#define AZF_IO_SIZE_MIXER_PM 0x22
#define MIXER_VOLUME_RIGHT_MASK 0x001f
#define MIXER_VOLUME_LEFT_MASK 0x1f00
#define MIXER_MUTE_MASK 0x8000
#define IDX_MIXER_RESET 0x00 /* does NOT seem to have AC97 ID bits */
#define IDX_MIXER_PLAY_MASTER 0x02
#define IDX_MIXER_MODEMOUT 0x04
#define IDX_MIXER_BASSTREBLE 0x06
#define MIXER_BASSTREBLE_TREBLE_VOLUME_MASK 0x000e
#define MIXER_BASSTREBLE_BASS_VOLUME_MASK 0x0e00
#define IDX_MIXER_PCBEEP 0x08
#define IDX_MIXER_MODEMIN 0x0a
#define IDX_MIXER_MIC 0x0c
#define MIXER_MIC_MICGAIN_20DB_ENHANCEMENT_MASK 0x0040
#define IDX_MIXER_LINEIN 0x0e
#define IDX_MIXER_CDAUDIO 0x10
#define IDX_MIXER_VIDEO 0x12
#define IDX_MIXER_AUX 0x14
#define IDX_MIXER_WAVEOUT 0x16
#define IDX_MIXER_FMSYNTH 0x18
#define IDX_MIXER_REC_SELECT 0x1a
#define MIXER_REC_SELECT_MIC 0x00
#define MIXER_REC_SELECT_CD 0x01
#define MIXER_REC_SELECT_VIDEO 0x02
#define MIXER_REC_SELECT_AUX 0x03
#define MIXER_REC_SELECT_LINEIN 0x04
#define MIXER_REC_SELECT_MIXSTEREO 0x05
#define MIXER_REC_SELECT_MIXMONO 0x06
#define MIXER_REC_SELECT_MONOIN 0x07
#define IDX_MIXER_REC_VOLUME 0x1c
#define IDX_MIXER_ADVCTL1 0x1e
/* unlisted bits are unmodifiable */
#define MIXER_ADVCTL1_3DWIDTH_MASK 0x000e
#define MIXER_ADVCTL1_HIFI3D_MASK 0x0300 /* yup, this is missing the high bit that official AC97 contains, plus it doesn't have linear bit value range behaviour but instead acts weirdly (possibly we're dealing with two *different* 3D settings here??) */
#define IDX_MIXER_ADVCTL2 0x20 /* subset of AC97_GENERAL_PURPOSE reg! */
/* unlisted bits are unmodifiable */
#define MIXER_ADVCTL2_LPBK 0x0080 /* Loopback mode -- Win driver: "WaveOut3DBypass"? mutes WaveOut at LineOut */
#define MIXER_ADVCTL2_MS 0x0100 /* Mic Select 0=Mic1, 1=Mic2 -- Win driver: "ModemOutSelect"?? */
#define MIXER_ADVCTL2_MIX 0x0200 /* Mono output select 0=Mix, 1=Mic; Win driver: "MonoSelectSource"?? */
#define MIXER_ADVCTL2_3D 0x2000 /* 3D Enhancement 1=on */
#define MIXER_ADVCTL2_POP 0x8000 /* Pcm Out Path, 0=pre 3D, 1=post 3D */
#define IDX_MIXER_SOMETHING30H 0x30 /* used, but unknown??? */
/* driver internal flags */
#define SET_CHAN_LEFT 1
#define SET_CHAN_RIGHT 2
#endif /* __SOUND_AZT3328_H */