kernel-ark/arch/ppc64/kernel/iSeries_setup.c
Arnd Bergmann 10f7e7c15e [PATCH] ppc64: consolidate calibrate_decr implementations
pSeries and maple have almost the same code for calibrate_decr,
and BPA would need yet another copy. Instead, I'm moving the
code to arch/ppc64/kernel/time.c.

Some of the related declarations were missing from header
files, so I'm moving those as well.

It makes sense to merge this with the pmac function of the
same name, so we end up having just one implemetation for
iSeries and one for Open Firmware based machines.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-06-23 09:43:07 +10:00

905 lines
25 KiB
C

/*
* Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
* Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
*
* Module name: iSeries_setup.c
*
* Description:
* Architecture- / platform-specific boot-time initialization code for
* the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
* code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
* <dan@net4x.com>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/config.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/smp.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/bootmem.h>
#include <linux/initrd.h>
#include <linux/seq_file.h>
#include <linux/kdev_t.h>
#include <linux/major.h>
#include <linux/root_dev.h>
#include <asm/processor.h>
#include <asm/machdep.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/iommu.h>
#include <asm/time.h>
#include "iSeries_setup.h"
#include <asm/naca.h>
#include <asm/paca.h>
#include <asm/cache.h>
#include <asm/sections.h>
#include <asm/abs_addr.h>
#include <asm/iSeries/HvCallHpt.h>
#include <asm/iSeries/HvLpConfig.h>
#include <asm/iSeries/HvCallEvent.h>
#include <asm/iSeries/HvCallSm.h>
#include <asm/iSeries/HvCallXm.h>
#include <asm/iSeries/ItLpQueue.h>
#include <asm/iSeries/IoHriMainStore.h>
#include <asm/iSeries/mf.h>
#include <asm/iSeries/HvLpEvent.h>
#include <asm/iSeries/iSeries_irq.h>
#include <asm/iSeries/IoHriProcessorVpd.h>
#include <asm/iSeries/ItVpdAreas.h>
#include <asm/iSeries/LparMap.h>
extern void hvlog(char *fmt, ...);
#ifdef DEBUG
#define DBG(fmt...) hvlog(fmt)
#else
#define DBG(fmt...)
#endif
/* Function Prototypes */
extern void ppcdbg_initialize(void);
static void build_iSeries_Memory_Map(void);
static void setup_iSeries_cache_sizes(void);
static void iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr);
#ifdef CONFIG_PCI
extern void iSeries_pci_final_fixup(void);
#else
static void iSeries_pci_final_fixup(void) { }
#endif
/* Global Variables */
static unsigned long procFreqHz;
static unsigned long procFreqMhz;
static unsigned long procFreqMhzHundreths;
static unsigned long tbFreqHz;
static unsigned long tbFreqMhz;
static unsigned long tbFreqMhzHundreths;
int piranha_simulator;
extern int rd_size; /* Defined in drivers/block/rd.c */
extern unsigned long klimit;
extern unsigned long embedded_sysmap_start;
extern unsigned long embedded_sysmap_end;
extern unsigned long iSeries_recal_tb;
extern unsigned long iSeries_recal_titan;
static int mf_initialized;
struct MemoryBlock {
unsigned long absStart;
unsigned long absEnd;
unsigned long logicalStart;
unsigned long logicalEnd;
};
/*
* Process the main store vpd to determine where the holes in memory are
* and return the number of physical blocks and fill in the array of
* block data.
*/
static unsigned long iSeries_process_Condor_mainstore_vpd(
struct MemoryBlock *mb_array, unsigned long max_entries)
{
unsigned long holeFirstChunk, holeSizeChunks;
unsigned long numMemoryBlocks = 1;
struct IoHriMainStoreSegment4 *msVpd =
(struct IoHriMainStoreSegment4 *)xMsVpd;
unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
unsigned long holeSize = holeEnd - holeStart;
printk("Mainstore_VPD: Condor\n");
/*
* Determine if absolute memory has any
* holes so that we can interpret the
* access map we get back from the hypervisor
* correctly.
*/
mb_array[0].logicalStart = 0;
mb_array[0].logicalEnd = 0x100000000;
mb_array[0].absStart = 0;
mb_array[0].absEnd = 0x100000000;
if (holeSize) {
numMemoryBlocks = 2;
holeStart = holeStart & 0x000fffffffffffff;
holeStart = addr_to_chunk(holeStart);
holeFirstChunk = holeStart;
holeSize = addr_to_chunk(holeSize);
holeSizeChunks = holeSize;
printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
holeFirstChunk, holeSizeChunks );
mb_array[0].logicalEnd = holeFirstChunk;
mb_array[0].absEnd = holeFirstChunk;
mb_array[1].logicalStart = holeFirstChunk;
mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
mb_array[1].absEnd = 0x100000000;
}
return numMemoryBlocks;
}
#define MaxSegmentAreas 32
#define MaxSegmentAdrRangeBlocks 128
#define MaxAreaRangeBlocks 4
static unsigned long iSeries_process_Regatta_mainstore_vpd(
struct MemoryBlock *mb_array, unsigned long max_entries)
{
struct IoHriMainStoreSegment5 *msVpdP =
(struct IoHriMainStoreSegment5 *)xMsVpd;
unsigned long numSegmentBlocks = 0;
u32 existsBits = msVpdP->msAreaExists;
unsigned long area_num;
printk("Mainstore_VPD: Regatta\n");
for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
unsigned long numAreaBlocks;
struct IoHriMainStoreArea4 *currentArea;
if (existsBits & 0x80000000) {
unsigned long block_num;
currentArea = &msVpdP->msAreaArray[area_num];
numAreaBlocks = currentArea->numAdrRangeBlocks;
printk("ms_vpd: processing area %2ld blocks=%ld",
area_num, numAreaBlocks);
for (block_num = 0; block_num < numAreaBlocks;
++block_num ) {
/* Process an address range block */
struct MemoryBlock tempBlock;
unsigned long i;
tempBlock.absStart =
(unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
tempBlock.absEnd =
(unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
tempBlock.logicalStart = 0;
tempBlock.logicalEnd = 0;
printk("\n block %ld absStart=%016lx absEnd=%016lx",
block_num, tempBlock.absStart,
tempBlock.absEnd);
for (i = 0; i < numSegmentBlocks; ++i) {
if (mb_array[i].absStart ==
tempBlock.absStart)
break;
}
if (i == numSegmentBlocks) {
if (numSegmentBlocks == max_entries)
panic("iSeries_process_mainstore_vpd: too many memory blocks");
mb_array[numSegmentBlocks] = tempBlock;
++numSegmentBlocks;
} else
printk(" (duplicate)");
}
printk("\n");
}
existsBits <<= 1;
}
/* Now sort the blocks found into ascending sequence */
if (numSegmentBlocks > 1) {
unsigned long m, n;
for (m = 0; m < numSegmentBlocks - 1; ++m) {
for (n = numSegmentBlocks - 1; m < n; --n) {
if (mb_array[n].absStart <
mb_array[n-1].absStart) {
struct MemoryBlock tempBlock;
tempBlock = mb_array[n];
mb_array[n] = mb_array[n-1];
mb_array[n-1] = tempBlock;
}
}
}
}
/*
* Assign "logical" addresses to each block. These
* addresses correspond to the hypervisor "bitmap" space.
* Convert all addresses into units of 256K chunks.
*/
{
unsigned long i, nextBitmapAddress;
printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
nextBitmapAddress = 0;
for (i = 0; i < numSegmentBlocks; ++i) {
unsigned long length = mb_array[i].absEnd -
mb_array[i].absStart;
mb_array[i].logicalStart = nextBitmapAddress;
mb_array[i].logicalEnd = nextBitmapAddress + length;
nextBitmapAddress += length;
printk(" Bitmap range: %016lx - %016lx\n"
" Absolute range: %016lx - %016lx\n",
mb_array[i].logicalStart,
mb_array[i].logicalEnd,
mb_array[i].absStart, mb_array[i].absEnd);
mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
0x000fffffffffffff);
mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
0x000fffffffffffff);
mb_array[i].logicalStart =
addr_to_chunk(mb_array[i].logicalStart);
mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
}
}
return numSegmentBlocks;
}
static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
unsigned long max_entries)
{
unsigned long i;
unsigned long mem_blocks = 0;
if (cpu_has_feature(CPU_FTR_SLB))
mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
max_entries);
else
mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
max_entries);
printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
for (i = 0; i < mem_blocks; ++i) {
printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
" abs chunks %016lx - %016lx\n",
i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
mb_array[i].absStart, mb_array[i].absEnd);
}
return mem_blocks;
}
static void __init iSeries_get_cmdline(void)
{
char *p, *q;
/* copy the command line parameter from the primary VSP */
HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
HvLpDma_Direction_RemoteToLocal);
p = cmd_line;
q = cmd_line + 255;
while(p < q) {
if (!*p || *p == '\n')
break;
++p;
}
*p = 0;
}
static void __init iSeries_init_early(void)
{
extern unsigned long memory_limit;
DBG(" -> iSeries_init_early()\n");
ppcdbg_initialize();
#if defined(CONFIG_BLK_DEV_INITRD)
/*
* If the init RAM disk has been configured and there is
* a non-zero starting address for it, set it up
*/
if (naca.xRamDisk) {
initrd_start = (unsigned long)__va(naca.xRamDisk);
initrd_end = initrd_start + naca.xRamDiskSize * PAGE_SIZE;
initrd_below_start_ok = 1; // ramdisk in kernel space
ROOT_DEV = Root_RAM0;
if (((rd_size * 1024) / PAGE_SIZE) < naca.xRamDiskSize)
rd_size = (naca.xRamDiskSize * PAGE_SIZE) / 1024;
} else
#endif /* CONFIG_BLK_DEV_INITRD */
{
/* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
}
iSeries_recal_tb = get_tb();
iSeries_recal_titan = HvCallXm_loadTod();
/*
* Cache sizes must be initialized before hpte_init_iSeries is called
* as the later need them for flush_icache_range()
*/
setup_iSeries_cache_sizes();
/*
* Initialize the hash table management pointers
*/
hpte_init_iSeries();
/*
* Initialize the DMA/TCE management
*/
iommu_init_early_iSeries();
/*
* Initialize the table which translate Linux physical addresses to
* AS/400 absolute addresses
*/
build_iSeries_Memory_Map();
iSeries_get_cmdline();
/* Save unparsed command line copy for /proc/cmdline */
strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
/* Parse early parameters, in particular mem=x */
parse_early_param();
if (memory_limit) {
if (memory_limit < systemcfg->physicalMemorySize)
systemcfg->physicalMemorySize = memory_limit;
else {
printk("Ignoring mem=%lu >= ram_top.\n", memory_limit);
memory_limit = 0;
}
}
/* Bolt kernel mappings for all of memory (or just a bit if we've got a limit) */
iSeries_bolt_kernel(0, systemcfg->physicalMemorySize);
lmb_init();
lmb_add(0, systemcfg->physicalMemorySize);
lmb_analyze();
lmb_reserve(0, __pa(klimit));
/* Initialize machine-dependency vectors */
#ifdef CONFIG_SMP
smp_init_iSeries();
#endif
if (itLpNaca.xPirEnvironMode == 0)
piranha_simulator = 1;
/* Associate Lp Event Queue 0 with processor 0 */
HvCallEvent_setLpEventQueueInterruptProc(0, 0);
mf_init();
mf_initialized = 1;
mb();
/* If we were passed an initrd, set the ROOT_DEV properly if the values
* look sensible. If not, clear initrd reference.
*/
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
initrd_end > initrd_start)
ROOT_DEV = Root_RAM0;
else
initrd_start = initrd_end = 0;
#endif /* CONFIG_BLK_DEV_INITRD */
DBG(" <- iSeries_init_early()\n");
}
/*
* The iSeries may have very large memories ( > 128 GB ) and a partition
* may get memory in "chunks" that may be anywhere in the 2**52 real
* address space. The chunks are 256K in size. To map this to the
* memory model Linux expects, the AS/400 specific code builds a
* translation table to translate what Linux thinks are "physical"
* addresses to the actual real addresses. This allows us to make
* it appear to Linux that we have contiguous memory starting at
* physical address zero while in fact this could be far from the truth.
* To avoid confusion, I'll let the words physical and/or real address
* apply to the Linux addresses while I'll use "absolute address" to
* refer to the actual hardware real address.
*
* build_iSeries_Memory_Map gets information from the Hypervisor and
* looks at the Main Store VPD to determine the absolute addresses
* of the memory that has been assigned to our partition and builds
* a table used to translate Linux's physical addresses to these
* absolute addresses. Absolute addresses are needed when
* communicating with the hypervisor (e.g. to build HPT entries)
*/
static void __init build_iSeries_Memory_Map(void)
{
u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
u32 nextPhysChunk;
u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
u32 num_ptegs;
u32 totalChunks,moreChunks;
u32 currChunk, thisChunk, absChunk;
u32 currDword;
u32 chunkBit;
u64 map;
struct MemoryBlock mb[32];
unsigned long numMemoryBlocks, curBlock;
/* Chunk size on iSeries is 256K bytes */
totalChunks = (u32)HvLpConfig_getMsChunks();
klimit = msChunks_alloc(klimit, totalChunks, 1UL << 18);
/*
* Get absolute address of our load area
* and map it to physical address 0
* This guarantees that the loadarea ends up at physical 0
* otherwise, it might not be returned by PLIC as the first
* chunks
*/
loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
loadAreaSize = itLpNaca.xLoadAreaChunks;
/*
* Only add the pages already mapped here.
* Otherwise we might add the hpt pages
* The rest of the pages of the load area
* aren't in the HPT yet and can still
* be assigned an arbitrary physical address
*/
if ((loadAreaSize * 64) > HvPagesToMap)
loadAreaSize = HvPagesToMap / 64;
loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
/*
* TODO Do we need to do something if the HPT is in the 64MB load area?
* This would be required if the itLpNaca.xLoadAreaChunks includes
* the HPT size
*/
printk("Mapping load area - physical addr = 0000000000000000\n"
" absolute addr = %016lx\n",
chunk_to_addr(loadAreaFirstChunk));
printk("Load area size %dK\n", loadAreaSize * 256);
for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
msChunks.abs[nextPhysChunk] =
loadAreaFirstChunk + nextPhysChunk;
/*
* Get absolute address of our HPT and remember it so
* we won't map it to any physical address
*/
hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
hptSizePages = (u32)HvCallHpt_getHptPages();
hptSizeChunks = hptSizePages >> (msChunks.chunk_shift - PAGE_SHIFT);
hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
printk("HPT absolute addr = %016lx, size = %dK\n",
chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
/* Fill in the hashed page table hash mask */
num_ptegs = hptSizePages *
(PAGE_SIZE / (sizeof(HPTE) * HPTES_PER_GROUP));
htab_hash_mask = num_ptegs - 1;
/*
* The actual hashed page table is in the hypervisor,
* we have no direct access
*/
htab_address = NULL;
/*
* Determine if absolute memory has any
* holes so that we can interpret the
* access map we get back from the hypervisor
* correctly.
*/
numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
/*
* Process the main store access map from the hypervisor
* to build up our physical -> absolute translation table
*/
curBlock = 0;
currChunk = 0;
currDword = 0;
moreChunks = totalChunks;
while (moreChunks) {
map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
currDword);
thisChunk = currChunk;
while (map) {
chunkBit = map >> 63;
map <<= 1;
if (chunkBit) {
--moreChunks;
while (thisChunk >= mb[curBlock].logicalEnd) {
++curBlock;
if (curBlock >= numMemoryBlocks)
panic("out of memory blocks");
}
if (thisChunk < mb[curBlock].logicalStart)
panic("memory block error");
absChunk = mb[curBlock].absStart +
(thisChunk - mb[curBlock].logicalStart);
if (((absChunk < hptFirstChunk) ||
(absChunk > hptLastChunk)) &&
((absChunk < loadAreaFirstChunk) ||
(absChunk > loadAreaLastChunk))) {
msChunks.abs[nextPhysChunk] = absChunk;
++nextPhysChunk;
}
}
++thisChunk;
}
++currDword;
currChunk += 64;
}
/*
* main store size (in chunks) is
* totalChunks - hptSizeChunks
* which should be equal to
* nextPhysChunk
*/
systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk);
}
/*
* Set up the variables that describe the cache line sizes
* for this machine.
*/
static void __init setup_iSeries_cache_sizes(void)
{
unsigned int i, n;
unsigned int procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;
systemcfg->icache_size =
ppc64_caches.isize = xIoHriProcessorVpd[procIx].xInstCacheSize * 1024;
systemcfg->icache_line_size =
ppc64_caches.iline_size =
xIoHriProcessorVpd[procIx].xInstCacheOperandSize;
systemcfg->dcache_size =
ppc64_caches.dsize =
xIoHriProcessorVpd[procIx].xDataL1CacheSizeKB * 1024;
systemcfg->dcache_line_size =
ppc64_caches.dline_size =
xIoHriProcessorVpd[procIx].xDataCacheOperandSize;
ppc64_caches.ilines_per_page = PAGE_SIZE / ppc64_caches.iline_size;
ppc64_caches.dlines_per_page = PAGE_SIZE / ppc64_caches.dline_size;
i = ppc64_caches.iline_size;
n = 0;
while ((i = (i / 2)))
++n;
ppc64_caches.log_iline_size = n;
i = ppc64_caches.dline_size;
n = 0;
while ((i = (i / 2)))
++n;
ppc64_caches.log_dline_size = n;
printk("D-cache line size = %d\n",
(unsigned int)ppc64_caches.dline_size);
printk("I-cache line size = %d\n",
(unsigned int)ppc64_caches.iline_size);
}
/*
* Create a pte. Used during initialization only.
*/
static void iSeries_make_pte(unsigned long va, unsigned long pa,
int mode)
{
HPTE local_hpte, rhpte;
unsigned long hash, vpn;
long slot;
vpn = va >> PAGE_SHIFT;
hash = hpt_hash(vpn, 0);
local_hpte.dw1.dword1 = pa | mode;
local_hpte.dw0.dword0 = 0;
local_hpte.dw0.dw0.avpn = va >> 23;
local_hpte.dw0.dw0.bolted = 1; /* bolted */
local_hpte.dw0.dw0.v = 1;
slot = HvCallHpt_findValid(&rhpte, vpn);
if (slot < 0) {
/* Must find space in primary group */
panic("hash_page: hpte already exists\n");
}
HvCallHpt_addValidate(slot, 0, (HPTE *)&local_hpte );
}
/*
* Bolt the kernel addr space into the HPT
*/
static void __init iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr)
{
unsigned long pa;
unsigned long mode_rw = _PAGE_ACCESSED | _PAGE_COHERENT | PP_RWXX;
HPTE hpte;
for (pa = saddr; pa < eaddr ;pa += PAGE_SIZE) {
unsigned long ea = (unsigned long)__va(pa);
unsigned long vsid = get_kernel_vsid(ea);
unsigned long va = (vsid << 28) | (pa & 0xfffffff);
unsigned long vpn = va >> PAGE_SHIFT;
unsigned long slot = HvCallHpt_findValid(&hpte, vpn);
/* Make non-kernel text non-executable */
if (!in_kernel_text(ea))
mode_rw |= HW_NO_EXEC;
if (hpte.dw0.dw0.v) {
/* HPTE exists, so just bolt it */
HvCallHpt_setSwBits(slot, 0x10, 0);
/* And make sure the pp bits are correct */
HvCallHpt_setPp(slot, PP_RWXX);
} else
/* No HPTE exists, so create a new bolted one */
iSeries_make_pte(va, phys_to_abs(pa), mode_rw);
}
}
/*
* Document me.
*/
static void __init iSeries_setup_arch(void)
{
void *eventStack;
unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;
/* Add an eye catcher and the systemcfg layout version number */
strcpy(systemcfg->eye_catcher, "SYSTEMCFG:PPC64");
systemcfg->version.major = SYSTEMCFG_MAJOR;
systemcfg->version.minor = SYSTEMCFG_MINOR;
/* Setup the Lp Event Queue */
/* Allocate a page for the Event Stack
* The hypervisor wants the absolute real address, so
* we subtract out the KERNELBASE and add in the
* absolute real address of the kernel load area
*/
eventStack = alloc_bootmem_pages(LpEventStackSize);
memset(eventStack, 0, LpEventStackSize);
/* Invoke the hypervisor to initialize the event stack */
HvCallEvent_setLpEventStack(0, eventStack, LpEventStackSize);
/* Initialize fields in our Lp Event Queue */
xItLpQueue.xSlicEventStackPtr = (char *)eventStack;
xItLpQueue.xSlicCurEventPtr = (char *)eventStack;
xItLpQueue.xSlicLastValidEventPtr = (char *)eventStack +
(LpEventStackSize - LpEventMaxSize);
xItLpQueue.xIndex = 0;
/* Compute processor frequency */
procFreqHz = ((1UL << 34) * 1000000) /
xIoHriProcessorVpd[procIx].xProcFreq;
procFreqMhz = procFreqHz / 1000000;
procFreqMhzHundreths = (procFreqHz / 10000) - (procFreqMhz * 100);
ppc_proc_freq = procFreqHz;
/* Compute time base frequency */
tbFreqHz = ((1UL << 32) * 1000000) /
xIoHriProcessorVpd[procIx].xTimeBaseFreq;
tbFreqMhz = tbFreqHz / 1000000;
tbFreqMhzHundreths = (tbFreqHz / 10000) - (tbFreqMhz * 100);
ppc_tb_freq = tbFreqHz;
printk("Max logical processors = %d\n",
itVpdAreas.xSlicMaxLogicalProcs);
printk("Max physical processors = %d\n",
itVpdAreas.xSlicMaxPhysicalProcs);
printk("Processor frequency = %lu.%02lu\n", procFreqMhz,
procFreqMhzHundreths);
printk("Time base frequency = %lu.%02lu\n", tbFreqMhz,
tbFreqMhzHundreths);
systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR;
printk("Processor version = %x\n", systemcfg->processor);
}
static void iSeries_get_cpuinfo(struct seq_file *m)
{
seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
}
/*
* Document me.
* and Implement me.
*/
static int iSeries_get_irq(struct pt_regs *regs)
{
/* -2 means ignore this interrupt */
return -2;
}
/*
* Document me.
*/
static void iSeries_restart(char *cmd)
{
mf_reboot();
}
/*
* Document me.
*/
static void iSeries_power_off(void)
{
mf_power_off();
}
/*
* Document me.
*/
static void iSeries_halt(void)
{
mf_power_off();
}
/*
* void __init iSeries_calibrate_decr()
*
* Description:
* This routine retrieves the internal processor frequency from the VPD,
* and sets up the kernel timer decrementer based on that value.
*
*/
static void __init iSeries_calibrate_decr(void)
{
unsigned long cyclesPerUsec;
struct div_result divres;
/* Compute decrementer (and TB) frequency in cycles/sec */
cyclesPerUsec = ppc_tb_freq / 1000000;
/*
* Set the amount to refresh the decrementer by. This
* is the number of decrementer ticks it takes for
* 1/HZ seconds.
*/
tb_ticks_per_jiffy = ppc_tb_freq / HZ;
#if 0
/* TEST CODE FOR ADJTIME */
tb_ticks_per_jiffy += tb_ticks_per_jiffy / 5000;
/* END OF TEST CODE */
#endif
/*
* tb_ticks_per_sec = freq; would give better accuracy
* but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures
* that jiffies (and xtime) will match the time returned
* by do_gettimeofday.
*/
tb_ticks_per_sec = tb_ticks_per_jiffy * HZ;
tb_ticks_per_usec = cyclesPerUsec;
tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
div128_by_32(1024 * 1024, 0, tb_ticks_per_sec, &divres);
tb_to_xs = divres.result_low;
setup_default_decr();
}
static void __init iSeries_progress(char * st, unsigned short code)
{
printk("Progress: [%04x] - %s\n", (unsigned)code, st);
if (!piranha_simulator && mf_initialized) {
if (code != 0xffff)
mf_display_progress(code);
else
mf_clear_src();
}
}
static void __init iSeries_fixup_klimit(void)
{
/*
* Change klimit to take into account any ram disk
* that may be included
*/
if (naca.xRamDisk)
klimit = KERNELBASE + (u64)naca.xRamDisk +
(naca.xRamDiskSize * PAGE_SIZE);
else {
/*
* No ram disk was included - check and see if there
* was an embedded system map. Change klimit to take
* into account any embedded system map
*/
if (embedded_sysmap_end)
klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
0xfffffffffffff000);
}
}
static int __init iSeries_src_init(void)
{
/* clear the progress line */
ppc_md.progress(" ", 0xffff);
return 0;
}
late_initcall(iSeries_src_init);
static int set_spread_lpevents(char *str)
{
unsigned long i;
unsigned long val = simple_strtoul(str, NULL, 0);
/*
* The parameter is the number of processors to share in processing
* lp events.
*/
if (( val > 0) && (val <= NR_CPUS)) {
for (i = 1; i < val; ++i)
paca[i].lpqueue_ptr = paca[0].lpqueue_ptr;
printk("lpevent processing spread over %ld processors\n", val);
} else {
printk("invalid spread_lpevents %ld\n", val);
}
return 1;
}
__setup("spread_lpevents=", set_spread_lpevents);
#ifndef CONFIG_PCI
void __init iSeries_init_IRQ(void) { }
#endif
void __init iSeries_early_setup(void)
{
iSeries_fixup_klimit();
ppc_md.setup_arch = iSeries_setup_arch;
ppc_md.get_cpuinfo = iSeries_get_cpuinfo;
ppc_md.init_IRQ = iSeries_init_IRQ;
ppc_md.get_irq = iSeries_get_irq;
ppc_md.init_early = iSeries_init_early,
ppc_md.pcibios_fixup = iSeries_pci_final_fixup;
ppc_md.restart = iSeries_restart;
ppc_md.power_off = iSeries_power_off;
ppc_md.halt = iSeries_halt;
ppc_md.get_boot_time = iSeries_get_boot_time;
ppc_md.set_rtc_time = iSeries_set_rtc_time;
ppc_md.get_rtc_time = iSeries_get_rtc_time;
ppc_md.calibrate_decr = iSeries_calibrate_decr;
ppc_md.progress = iSeries_progress;
}