kernel-ark/fs/xfs/xfs_log_recover.c
Christoph Hellwig 475ee413f3 xfs: merge xfs_itobp into xfs_imap_to_bp
All callers of xfs_imap_to_bp want the dinode pointer, so let's calculate it
inside xfs_imap_to_bp.  Once that is done xfs_itobp becomes a fairly pointless
wrapper which can be replaced with direct calls to xfs_imap_to_bp.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
2012-07-22 10:46:56 -05:00

3868 lines
105 KiB
C

/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_mount.h"
#include "xfs_error.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_alloc.h"
#include "xfs_ialloc.h"
#include "xfs_log_priv.h"
#include "xfs_buf_item.h"
#include "xfs_log_recover.h"
#include "xfs_extfree_item.h"
#include "xfs_trans_priv.h"
#include "xfs_quota.h"
#include "xfs_utils.h"
#include "xfs_trace.h"
STATIC int
xlog_find_zeroed(
struct xlog *,
xfs_daddr_t *);
STATIC int
xlog_clear_stale_blocks(
struct xlog *,
xfs_lsn_t);
#if defined(DEBUG)
STATIC void
xlog_recover_check_summary(
struct xlog *);
#else
#define xlog_recover_check_summary(log)
#endif
/*
* This structure is used during recovery to record the buf log items which
* have been canceled and should not be replayed.
*/
struct xfs_buf_cancel {
xfs_daddr_t bc_blkno;
uint bc_len;
int bc_refcount;
struct list_head bc_list;
};
/*
* Sector aligned buffer routines for buffer create/read/write/access
*/
/*
* Verify the given count of basic blocks is valid number of blocks
* to specify for an operation involving the given XFS log buffer.
* Returns nonzero if the count is valid, 0 otherwise.
*/
static inline int
xlog_buf_bbcount_valid(
struct xlog *log,
int bbcount)
{
return bbcount > 0 && bbcount <= log->l_logBBsize;
}
/*
* Allocate a buffer to hold log data. The buffer needs to be able
* to map to a range of nbblks basic blocks at any valid (basic
* block) offset within the log.
*/
STATIC xfs_buf_t *
xlog_get_bp(
struct xlog *log,
int nbblks)
{
struct xfs_buf *bp;
if (!xlog_buf_bbcount_valid(log, nbblks)) {
xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
nbblks);
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
return NULL;
}
/*
* We do log I/O in units of log sectors (a power-of-2
* multiple of the basic block size), so we round up the
* requested size to accommodate the basic blocks required
* for complete log sectors.
*
* In addition, the buffer may be used for a non-sector-
* aligned block offset, in which case an I/O of the
* requested size could extend beyond the end of the
* buffer. If the requested size is only 1 basic block it
* will never straddle a sector boundary, so this won't be
* an issue. Nor will this be a problem if the log I/O is
* done in basic blocks (sector size 1). But otherwise we
* extend the buffer by one extra log sector to ensure
* there's space to accommodate this possibility.
*/
if (nbblks > 1 && log->l_sectBBsize > 1)
nbblks += log->l_sectBBsize;
nbblks = round_up(nbblks, log->l_sectBBsize);
bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
if (bp)
xfs_buf_unlock(bp);
return bp;
}
STATIC void
xlog_put_bp(
xfs_buf_t *bp)
{
xfs_buf_free(bp);
}
/*
* Return the address of the start of the given block number's data
* in a log buffer. The buffer covers a log sector-aligned region.
*/
STATIC xfs_caddr_t
xlog_align(
struct xlog *log,
xfs_daddr_t blk_no,
int nbblks,
struct xfs_buf *bp)
{
xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
ASSERT(offset + nbblks <= bp->b_length);
return bp->b_addr + BBTOB(offset);
}
/*
* nbblks should be uint, but oh well. Just want to catch that 32-bit length.
*/
STATIC int
xlog_bread_noalign(
struct xlog *log,
xfs_daddr_t blk_no,
int nbblks,
struct xfs_buf *bp)
{
int error;
if (!xlog_buf_bbcount_valid(log, nbblks)) {
xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
nbblks);
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
return EFSCORRUPTED;
}
blk_no = round_down(blk_no, log->l_sectBBsize);
nbblks = round_up(nbblks, log->l_sectBBsize);
ASSERT(nbblks > 0);
ASSERT(nbblks <= bp->b_length);
XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
XFS_BUF_READ(bp);
bp->b_io_length = nbblks;
bp->b_error = 0;
xfsbdstrat(log->l_mp, bp);
error = xfs_buf_iowait(bp);
if (error)
xfs_buf_ioerror_alert(bp, __func__);
return error;
}
STATIC int
xlog_bread(
struct xlog *log,
xfs_daddr_t blk_no,
int nbblks,
struct xfs_buf *bp,
xfs_caddr_t *offset)
{
int error;
error = xlog_bread_noalign(log, blk_no, nbblks, bp);
if (error)
return error;
*offset = xlog_align(log, blk_no, nbblks, bp);
return 0;
}
/*
* Read at an offset into the buffer. Returns with the buffer in it's original
* state regardless of the result of the read.
*/
STATIC int
xlog_bread_offset(
struct xlog *log,
xfs_daddr_t blk_no, /* block to read from */
int nbblks, /* blocks to read */
struct xfs_buf *bp,
xfs_caddr_t offset)
{
xfs_caddr_t orig_offset = bp->b_addr;
int orig_len = BBTOB(bp->b_length);
int error, error2;
error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
if (error)
return error;
error = xlog_bread_noalign(log, blk_no, nbblks, bp);
/* must reset buffer pointer even on error */
error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
if (error)
return error;
return error2;
}
/*
* Write out the buffer at the given block for the given number of blocks.
* The buffer is kept locked across the write and is returned locked.
* This can only be used for synchronous log writes.
*/
STATIC int
xlog_bwrite(
struct xlog *log,
xfs_daddr_t blk_no,
int nbblks,
struct xfs_buf *bp)
{
int error;
if (!xlog_buf_bbcount_valid(log, nbblks)) {
xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
nbblks);
XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
return EFSCORRUPTED;
}
blk_no = round_down(blk_no, log->l_sectBBsize);
nbblks = round_up(nbblks, log->l_sectBBsize);
ASSERT(nbblks > 0);
ASSERT(nbblks <= bp->b_length);
XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
XFS_BUF_ZEROFLAGS(bp);
xfs_buf_hold(bp);
xfs_buf_lock(bp);
bp->b_io_length = nbblks;
bp->b_error = 0;
error = xfs_bwrite(bp);
if (error)
xfs_buf_ioerror_alert(bp, __func__);
xfs_buf_relse(bp);
return error;
}
#ifdef DEBUG
/*
* dump debug superblock and log record information
*/
STATIC void
xlog_header_check_dump(
xfs_mount_t *mp,
xlog_rec_header_t *head)
{
xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
}
#else
#define xlog_header_check_dump(mp, head)
#endif
/*
* check log record header for recovery
*/
STATIC int
xlog_header_check_recover(
xfs_mount_t *mp,
xlog_rec_header_t *head)
{
ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
/*
* IRIX doesn't write the h_fmt field and leaves it zeroed
* (XLOG_FMT_UNKNOWN). This stops us from trying to recover
* a dirty log created in IRIX.
*/
if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
xfs_warn(mp,
"dirty log written in incompatible format - can't recover");
xlog_header_check_dump(mp, head);
XFS_ERROR_REPORT("xlog_header_check_recover(1)",
XFS_ERRLEVEL_HIGH, mp);
return XFS_ERROR(EFSCORRUPTED);
} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
xfs_warn(mp,
"dirty log entry has mismatched uuid - can't recover");
xlog_header_check_dump(mp, head);
XFS_ERROR_REPORT("xlog_header_check_recover(2)",
XFS_ERRLEVEL_HIGH, mp);
return XFS_ERROR(EFSCORRUPTED);
}
return 0;
}
/*
* read the head block of the log and check the header
*/
STATIC int
xlog_header_check_mount(
xfs_mount_t *mp,
xlog_rec_header_t *head)
{
ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
if (uuid_is_nil(&head->h_fs_uuid)) {
/*
* IRIX doesn't write the h_fs_uuid or h_fmt fields. If
* h_fs_uuid is nil, we assume this log was last mounted
* by IRIX and continue.
*/
xfs_warn(mp, "nil uuid in log - IRIX style log");
} else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
xfs_warn(mp, "log has mismatched uuid - can't recover");
xlog_header_check_dump(mp, head);
XFS_ERROR_REPORT("xlog_header_check_mount",
XFS_ERRLEVEL_HIGH, mp);
return XFS_ERROR(EFSCORRUPTED);
}
return 0;
}
STATIC void
xlog_recover_iodone(
struct xfs_buf *bp)
{
if (bp->b_error) {
/*
* We're not going to bother about retrying
* this during recovery. One strike!
*/
xfs_buf_ioerror_alert(bp, __func__);
xfs_force_shutdown(bp->b_target->bt_mount,
SHUTDOWN_META_IO_ERROR);
}
bp->b_iodone = NULL;
xfs_buf_ioend(bp, 0);
}
/*
* This routine finds (to an approximation) the first block in the physical
* log which contains the given cycle. It uses a binary search algorithm.
* Note that the algorithm can not be perfect because the disk will not
* necessarily be perfect.
*/
STATIC int
xlog_find_cycle_start(
struct xlog *log,
struct xfs_buf *bp,
xfs_daddr_t first_blk,
xfs_daddr_t *last_blk,
uint cycle)
{
xfs_caddr_t offset;
xfs_daddr_t mid_blk;
xfs_daddr_t end_blk;
uint mid_cycle;
int error;
end_blk = *last_blk;
mid_blk = BLK_AVG(first_blk, end_blk);
while (mid_blk != first_blk && mid_blk != end_blk) {
error = xlog_bread(log, mid_blk, 1, bp, &offset);
if (error)
return error;
mid_cycle = xlog_get_cycle(offset);
if (mid_cycle == cycle)
end_blk = mid_blk; /* last_half_cycle == mid_cycle */
else
first_blk = mid_blk; /* first_half_cycle == mid_cycle */
mid_blk = BLK_AVG(first_blk, end_blk);
}
ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
(mid_blk == end_blk && mid_blk-1 == first_blk));
*last_blk = end_blk;
return 0;
}
/*
* Check that a range of blocks does not contain stop_on_cycle_no.
* Fill in *new_blk with the block offset where such a block is
* found, or with -1 (an invalid block number) if there is no such
* block in the range. The scan needs to occur from front to back
* and the pointer into the region must be updated since a later
* routine will need to perform another test.
*/
STATIC int
xlog_find_verify_cycle(
struct xlog *log,
xfs_daddr_t start_blk,
int nbblks,
uint stop_on_cycle_no,
xfs_daddr_t *new_blk)
{
xfs_daddr_t i, j;
uint cycle;
xfs_buf_t *bp;
xfs_daddr_t bufblks;
xfs_caddr_t buf = NULL;
int error = 0;
/*
* Greedily allocate a buffer big enough to handle the full
* range of basic blocks we'll be examining. If that fails,
* try a smaller size. We need to be able to read at least
* a log sector, or we're out of luck.
*/
bufblks = 1 << ffs(nbblks);
while (bufblks > log->l_logBBsize)
bufblks >>= 1;
while (!(bp = xlog_get_bp(log, bufblks))) {
bufblks >>= 1;
if (bufblks < log->l_sectBBsize)
return ENOMEM;
}
for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
int bcount;
bcount = min(bufblks, (start_blk + nbblks - i));
error = xlog_bread(log, i, bcount, bp, &buf);
if (error)
goto out;
for (j = 0; j < bcount; j++) {
cycle = xlog_get_cycle(buf);
if (cycle == stop_on_cycle_no) {
*new_blk = i+j;
goto out;
}
buf += BBSIZE;
}
}
*new_blk = -1;
out:
xlog_put_bp(bp);
return error;
}
/*
* Potentially backup over partial log record write.
*
* In the typical case, last_blk is the number of the block directly after
* a good log record. Therefore, we subtract one to get the block number
* of the last block in the given buffer. extra_bblks contains the number
* of blocks we would have read on a previous read. This happens when the
* last log record is split over the end of the physical log.
*
* extra_bblks is the number of blocks potentially verified on a previous
* call to this routine.
*/
STATIC int
xlog_find_verify_log_record(
struct xlog *log,
xfs_daddr_t start_blk,
xfs_daddr_t *last_blk,
int extra_bblks)
{
xfs_daddr_t i;
xfs_buf_t *bp;
xfs_caddr_t offset = NULL;
xlog_rec_header_t *head = NULL;
int error = 0;
int smallmem = 0;
int num_blks = *last_blk - start_blk;
int xhdrs;
ASSERT(start_blk != 0 || *last_blk != start_blk);
if (!(bp = xlog_get_bp(log, num_blks))) {
if (!(bp = xlog_get_bp(log, 1)))
return ENOMEM;
smallmem = 1;
} else {
error = xlog_bread(log, start_blk, num_blks, bp, &offset);
if (error)
goto out;
offset += ((num_blks - 1) << BBSHIFT);
}
for (i = (*last_blk) - 1; i >= 0; i--) {
if (i < start_blk) {
/* valid log record not found */
xfs_warn(log->l_mp,
"Log inconsistent (didn't find previous header)");
ASSERT(0);
error = XFS_ERROR(EIO);
goto out;
}
if (smallmem) {
error = xlog_bread(log, i, 1, bp, &offset);
if (error)
goto out;
}
head = (xlog_rec_header_t *)offset;
if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
break;
if (!smallmem)
offset -= BBSIZE;
}
/*
* We hit the beginning of the physical log & still no header. Return
* to caller. If caller can handle a return of -1, then this routine
* will be called again for the end of the physical log.
*/
if (i == -1) {
error = -1;
goto out;
}
/*
* We have the final block of the good log (the first block
* of the log record _before_ the head. So we check the uuid.
*/
if ((error = xlog_header_check_mount(log->l_mp, head)))
goto out;
/*
* We may have found a log record header before we expected one.
* last_blk will be the 1st block # with a given cycle #. We may end
* up reading an entire log record. In this case, we don't want to
* reset last_blk. Only when last_blk points in the middle of a log
* record do we update last_blk.
*/
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
uint h_size = be32_to_cpu(head->h_size);
xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
if (h_size % XLOG_HEADER_CYCLE_SIZE)
xhdrs++;
} else {
xhdrs = 1;
}
if (*last_blk - i + extra_bblks !=
BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
*last_blk = i;
out:
xlog_put_bp(bp);
return error;
}
/*
* Head is defined to be the point of the log where the next log write
* write could go. This means that incomplete LR writes at the end are
* eliminated when calculating the head. We aren't guaranteed that previous
* LR have complete transactions. We only know that a cycle number of
* current cycle number -1 won't be present in the log if we start writing
* from our current block number.
*
* last_blk contains the block number of the first block with a given
* cycle number.
*
* Return: zero if normal, non-zero if error.
*/
STATIC int
xlog_find_head(
struct xlog *log,
xfs_daddr_t *return_head_blk)
{
xfs_buf_t *bp;
xfs_caddr_t offset;
xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
int num_scan_bblks;
uint first_half_cycle, last_half_cycle;
uint stop_on_cycle;
int error, log_bbnum = log->l_logBBsize;
/* Is the end of the log device zeroed? */
if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
*return_head_blk = first_blk;
/* Is the whole lot zeroed? */
if (!first_blk) {
/* Linux XFS shouldn't generate totally zeroed logs -
* mkfs etc write a dummy unmount record to a fresh
* log so we can store the uuid in there
*/
xfs_warn(log->l_mp, "totally zeroed log");
}
return 0;
} else if (error) {
xfs_warn(log->l_mp, "empty log check failed");
return error;
}
first_blk = 0; /* get cycle # of 1st block */
bp = xlog_get_bp(log, 1);
if (!bp)
return ENOMEM;
error = xlog_bread(log, 0, 1, bp, &offset);
if (error)
goto bp_err;
first_half_cycle = xlog_get_cycle(offset);
last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
error = xlog_bread(log, last_blk, 1, bp, &offset);
if (error)
goto bp_err;
last_half_cycle = xlog_get_cycle(offset);
ASSERT(last_half_cycle != 0);
/*
* If the 1st half cycle number is equal to the last half cycle number,
* then the entire log is stamped with the same cycle number. In this
* case, head_blk can't be set to zero (which makes sense). The below
* math doesn't work out properly with head_blk equal to zero. Instead,
* we set it to log_bbnum which is an invalid block number, but this
* value makes the math correct. If head_blk doesn't changed through
* all the tests below, *head_blk is set to zero at the very end rather
* than log_bbnum. In a sense, log_bbnum and zero are the same block
* in a circular file.
*/
if (first_half_cycle == last_half_cycle) {
/*
* In this case we believe that the entire log should have
* cycle number last_half_cycle. We need to scan backwards
* from the end verifying that there are no holes still
* containing last_half_cycle - 1. If we find such a hole,
* then the start of that hole will be the new head. The
* simple case looks like
* x | x ... | x - 1 | x
* Another case that fits this picture would be
* x | x + 1 | x ... | x
* In this case the head really is somewhere at the end of the
* log, as one of the latest writes at the beginning was
* incomplete.
* One more case is
* x | x + 1 | x ... | x - 1 | x
* This is really the combination of the above two cases, and
* the head has to end up at the start of the x-1 hole at the
* end of the log.
*
* In the 256k log case, we will read from the beginning to the
* end of the log and search for cycle numbers equal to x-1.
* We don't worry about the x+1 blocks that we encounter,
* because we know that they cannot be the head since the log
* started with x.
*/
head_blk = log_bbnum;
stop_on_cycle = last_half_cycle - 1;
} else {
/*
* In this case we want to find the first block with cycle
* number matching last_half_cycle. We expect the log to be
* some variation on
* x + 1 ... | x ... | x
* The first block with cycle number x (last_half_cycle) will
* be where the new head belongs. First we do a binary search
* for the first occurrence of last_half_cycle. The binary
* search may not be totally accurate, so then we scan back
* from there looking for occurrences of last_half_cycle before
* us. If that backwards scan wraps around the beginning of
* the log, then we look for occurrences of last_half_cycle - 1
* at the end of the log. The cases we're looking for look
* like
* v binary search stopped here
* x + 1 ... | x | x + 1 | x ... | x
* ^ but we want to locate this spot
* or
* <---------> less than scan distance
* x + 1 ... | x ... | x - 1 | x
* ^ we want to locate this spot
*/
stop_on_cycle = last_half_cycle;
if ((error = xlog_find_cycle_start(log, bp, first_blk,
&head_blk, last_half_cycle)))
goto bp_err;
}
/*
* Now validate the answer. Scan back some number of maximum possible
* blocks and make sure each one has the expected cycle number. The
* maximum is determined by the total possible amount of buffering
* in the in-core log. The following number can be made tighter if
* we actually look at the block size of the filesystem.
*/
num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
if (head_blk >= num_scan_bblks) {
/*
* We are guaranteed that the entire check can be performed
* in one buffer.
*/
start_blk = head_blk - num_scan_bblks;
if ((error = xlog_find_verify_cycle(log,
start_blk, num_scan_bblks,
stop_on_cycle, &new_blk)))
goto bp_err;
if (new_blk != -1)
head_blk = new_blk;
} else { /* need to read 2 parts of log */
/*
* We are going to scan backwards in the log in two parts.
* First we scan the physical end of the log. In this part
* of the log, we are looking for blocks with cycle number
* last_half_cycle - 1.
* If we find one, then we know that the log starts there, as
* we've found a hole that didn't get written in going around
* the end of the physical log. The simple case for this is
* x + 1 ... | x ... | x - 1 | x
* <---------> less than scan distance
* If all of the blocks at the end of the log have cycle number
* last_half_cycle, then we check the blocks at the start of
* the log looking for occurrences of last_half_cycle. If we
* find one, then our current estimate for the location of the
* first occurrence of last_half_cycle is wrong and we move
* back to the hole we've found. This case looks like
* x + 1 ... | x | x + 1 | x ...
* ^ binary search stopped here
* Another case we need to handle that only occurs in 256k
* logs is
* x + 1 ... | x ... | x+1 | x ...
* ^ binary search stops here
* In a 256k log, the scan at the end of the log will see the
* x + 1 blocks. We need to skip past those since that is
* certainly not the head of the log. By searching for
* last_half_cycle-1 we accomplish that.
*/
ASSERT(head_blk <= INT_MAX &&
(xfs_daddr_t) num_scan_bblks >= head_blk);
start_blk = log_bbnum - (num_scan_bblks - head_blk);
if ((error = xlog_find_verify_cycle(log, start_blk,
num_scan_bblks - (int)head_blk,
(stop_on_cycle - 1), &new_blk)))
goto bp_err;
if (new_blk != -1) {
head_blk = new_blk;
goto validate_head;
}
/*
* Scan beginning of log now. The last part of the physical
* log is good. This scan needs to verify that it doesn't find
* the last_half_cycle.
*/
start_blk = 0;
ASSERT(head_blk <= INT_MAX);
if ((error = xlog_find_verify_cycle(log,
start_blk, (int)head_blk,
stop_on_cycle, &new_blk)))
goto bp_err;
if (new_blk != -1)
head_blk = new_blk;
}
validate_head:
/*
* Now we need to make sure head_blk is not pointing to a block in
* the middle of a log record.
*/
num_scan_bblks = XLOG_REC_SHIFT(log);
if (head_blk >= num_scan_bblks) {
start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
/* start ptr at last block ptr before head_blk */
if ((error = xlog_find_verify_log_record(log, start_blk,
&head_blk, 0)) == -1) {
error = XFS_ERROR(EIO);
goto bp_err;
} else if (error)
goto bp_err;
} else {
start_blk = 0;
ASSERT(head_blk <= INT_MAX);
if ((error = xlog_find_verify_log_record(log, start_blk,
&head_blk, 0)) == -1) {
/* We hit the beginning of the log during our search */
start_blk = log_bbnum - (num_scan_bblks - head_blk);
new_blk = log_bbnum;
ASSERT(start_blk <= INT_MAX &&
(xfs_daddr_t) log_bbnum-start_blk >= 0);
ASSERT(head_blk <= INT_MAX);
if ((error = xlog_find_verify_log_record(log,
start_blk, &new_blk,
(int)head_blk)) == -1) {
error = XFS_ERROR(EIO);
goto bp_err;
} else if (error)
goto bp_err;
if (new_blk != log_bbnum)
head_blk = new_blk;
} else if (error)
goto bp_err;
}
xlog_put_bp(bp);
if (head_blk == log_bbnum)
*return_head_blk = 0;
else
*return_head_blk = head_blk;
/*
* When returning here, we have a good block number. Bad block
* means that during a previous crash, we didn't have a clean break
* from cycle number N to cycle number N-1. In this case, we need
* to find the first block with cycle number N-1.
*/
return 0;
bp_err:
xlog_put_bp(bp);
if (error)
xfs_warn(log->l_mp, "failed to find log head");
return error;
}
/*
* Find the sync block number or the tail of the log.
*
* This will be the block number of the last record to have its
* associated buffers synced to disk. Every log record header has
* a sync lsn embedded in it. LSNs hold block numbers, so it is easy
* to get a sync block number. The only concern is to figure out which
* log record header to believe.
*
* The following algorithm uses the log record header with the largest
* lsn. The entire log record does not need to be valid. We only care
* that the header is valid.
*
* We could speed up search by using current head_blk buffer, but it is not
* available.
*/
STATIC int
xlog_find_tail(
struct xlog *log,
xfs_daddr_t *head_blk,
xfs_daddr_t *tail_blk)
{
xlog_rec_header_t *rhead;
xlog_op_header_t *op_head;
xfs_caddr_t offset = NULL;
xfs_buf_t *bp;
int error, i, found;
xfs_daddr_t umount_data_blk;
xfs_daddr_t after_umount_blk;
xfs_lsn_t tail_lsn;
int hblks;
found = 0;
/*
* Find previous log record
*/
if ((error = xlog_find_head(log, head_blk)))
return error;
bp = xlog_get_bp(log, 1);
if (!bp)
return ENOMEM;
if (*head_blk == 0) { /* special case */
error = xlog_bread(log, 0, 1, bp, &offset);
if (error)
goto done;
if (xlog_get_cycle(offset) == 0) {
*tail_blk = 0;
/* leave all other log inited values alone */
goto done;
}
}
/*
* Search backwards looking for log record header block
*/
ASSERT(*head_blk < INT_MAX);
for (i = (int)(*head_blk) - 1; i >= 0; i--) {
error = xlog_bread(log, i, 1, bp, &offset);
if (error)
goto done;
if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
found = 1;
break;
}
}
/*
* If we haven't found the log record header block, start looking
* again from the end of the physical log. XXXmiken: There should be
* a check here to make sure we didn't search more than N blocks in
* the previous code.
*/
if (!found) {
for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
error = xlog_bread(log, i, 1, bp, &offset);
if (error)
goto done;
if (*(__be32 *)offset ==
cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
found = 2;
break;
}
}
}
if (!found) {
xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
ASSERT(0);
return XFS_ERROR(EIO);
}
/* find blk_no of tail of log */
rhead = (xlog_rec_header_t *)offset;
*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
/*
* Reset log values according to the state of the log when we
* crashed. In the case where head_blk == 0, we bump curr_cycle
* one because the next write starts a new cycle rather than
* continuing the cycle of the last good log record. At this
* point we have guaranteed that all partial log records have been
* accounted for. Therefore, we know that the last good log record
* written was complete and ended exactly on the end boundary
* of the physical log.
*/
log->l_prev_block = i;
log->l_curr_block = (int)*head_blk;
log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
if (found == 2)
log->l_curr_cycle++;
atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
BBTOB(log->l_curr_block));
xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
BBTOB(log->l_curr_block));
/*
* Look for unmount record. If we find it, then we know there
* was a clean unmount. Since 'i' could be the last block in
* the physical log, we convert to a log block before comparing
* to the head_blk.
*
* Save the current tail lsn to use to pass to
* xlog_clear_stale_blocks() below. We won't want to clear the
* unmount record if there is one, so we pass the lsn of the
* unmount record rather than the block after it.
*/
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
int h_size = be32_to_cpu(rhead->h_size);
int h_version = be32_to_cpu(rhead->h_version);
if ((h_version & XLOG_VERSION_2) &&
(h_size > XLOG_HEADER_CYCLE_SIZE)) {
hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
if (h_size % XLOG_HEADER_CYCLE_SIZE)
hblks++;
} else {
hblks = 1;
}
} else {
hblks = 1;
}
after_umount_blk = (i + hblks + (int)
BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
tail_lsn = atomic64_read(&log->l_tail_lsn);
if (*head_blk == after_umount_blk &&
be32_to_cpu(rhead->h_num_logops) == 1) {
umount_data_blk = (i + hblks) % log->l_logBBsize;
error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
if (error)
goto done;
op_head = (xlog_op_header_t *)offset;
if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
/*
* Set tail and last sync so that newly written
* log records will point recovery to after the
* current unmount record.
*/
xlog_assign_atomic_lsn(&log->l_tail_lsn,
log->l_curr_cycle, after_umount_blk);
xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
log->l_curr_cycle, after_umount_blk);
*tail_blk = after_umount_blk;
/*
* Note that the unmount was clean. If the unmount
* was not clean, we need to know this to rebuild the
* superblock counters from the perag headers if we
* have a filesystem using non-persistent counters.
*/
log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
}
}
/*
* Make sure that there are no blocks in front of the head
* with the same cycle number as the head. This can happen
* because we allow multiple outstanding log writes concurrently,
* and the later writes might make it out before earlier ones.
*
* We use the lsn from before modifying it so that we'll never
* overwrite the unmount record after a clean unmount.
*
* Do this only if we are going to recover the filesystem
*
* NOTE: This used to say "if (!readonly)"
* However on Linux, we can & do recover a read-only filesystem.
* We only skip recovery if NORECOVERY is specified on mount,
* in which case we would not be here.
*
* But... if the -device- itself is readonly, just skip this.
* We can't recover this device anyway, so it won't matter.
*/
if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
error = xlog_clear_stale_blocks(log, tail_lsn);
done:
xlog_put_bp(bp);
if (error)
xfs_warn(log->l_mp, "failed to locate log tail");
return error;
}
/*
* Is the log zeroed at all?
*
* The last binary search should be changed to perform an X block read
* once X becomes small enough. You can then search linearly through
* the X blocks. This will cut down on the number of reads we need to do.
*
* If the log is partially zeroed, this routine will pass back the blkno
* of the first block with cycle number 0. It won't have a complete LR
* preceding it.
*
* Return:
* 0 => the log is completely written to
* -1 => use *blk_no as the first block of the log
* >0 => error has occurred
*/
STATIC int
xlog_find_zeroed(
struct xlog *log,
xfs_daddr_t *blk_no)
{
xfs_buf_t *bp;
xfs_caddr_t offset;
uint first_cycle, last_cycle;
xfs_daddr_t new_blk, last_blk, start_blk;
xfs_daddr_t num_scan_bblks;
int error, log_bbnum = log->l_logBBsize;
*blk_no = 0;
/* check totally zeroed log */
bp = xlog_get_bp(log, 1);
if (!bp)
return ENOMEM;
error = xlog_bread(log, 0, 1, bp, &offset);
if (error)
goto bp_err;
first_cycle = xlog_get_cycle(offset);
if (first_cycle == 0) { /* completely zeroed log */
*blk_no = 0;
xlog_put_bp(bp);
return -1;
}
/* check partially zeroed log */
error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
if (error)
goto bp_err;
last_cycle = xlog_get_cycle(offset);
if (last_cycle != 0) { /* log completely written to */
xlog_put_bp(bp);
return 0;
} else if (first_cycle != 1) {
/*
* If the cycle of the last block is zero, the cycle of
* the first block must be 1. If it's not, maybe we're
* not looking at a log... Bail out.
*/
xfs_warn(log->l_mp,
"Log inconsistent or not a log (last==0, first!=1)");
return XFS_ERROR(EINVAL);
}
/* we have a partially zeroed log */
last_blk = log_bbnum-1;
if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
goto bp_err;
/*
* Validate the answer. Because there is no way to guarantee that
* the entire log is made up of log records which are the same size,
* we scan over the defined maximum blocks. At this point, the maximum
* is not chosen to mean anything special. XXXmiken
*/
num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
ASSERT(num_scan_bblks <= INT_MAX);
if (last_blk < num_scan_bblks)
num_scan_bblks = last_blk;
start_blk = last_blk - num_scan_bblks;
/*
* We search for any instances of cycle number 0 that occur before
* our current estimate of the head. What we're trying to detect is
* 1 ... | 0 | 1 | 0...
* ^ binary search ends here
*/
if ((error = xlog_find_verify_cycle(log, start_blk,
(int)num_scan_bblks, 0, &new_blk)))
goto bp_err;
if (new_blk != -1)
last_blk = new_blk;
/*
* Potentially backup over partial log record write. We don't need
* to search the end of the log because we know it is zero.
*/
if ((error = xlog_find_verify_log_record(log, start_blk,
&last_blk, 0)) == -1) {
error = XFS_ERROR(EIO);
goto bp_err;
} else if (error)
goto bp_err;
*blk_no = last_blk;
bp_err:
xlog_put_bp(bp);
if (error)
return error;
return -1;
}
/*
* These are simple subroutines used by xlog_clear_stale_blocks() below
* to initialize a buffer full of empty log record headers and write
* them into the log.
*/
STATIC void
xlog_add_record(
struct xlog *log,
xfs_caddr_t buf,
int cycle,
int block,
int tail_cycle,
int tail_block)
{
xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
memset(buf, 0, BBSIZE);
recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
recp->h_cycle = cpu_to_be32(cycle);
recp->h_version = cpu_to_be32(
xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
recp->h_fmt = cpu_to_be32(XLOG_FMT);
memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
}
STATIC int
xlog_write_log_records(
struct xlog *log,
int cycle,
int start_block,
int blocks,
int tail_cycle,
int tail_block)
{
xfs_caddr_t offset;
xfs_buf_t *bp;
int balign, ealign;
int sectbb = log->l_sectBBsize;
int end_block = start_block + blocks;
int bufblks;
int error = 0;
int i, j = 0;
/*
* Greedily allocate a buffer big enough to handle the full
* range of basic blocks to be written. If that fails, try
* a smaller size. We need to be able to write at least a
* log sector, or we're out of luck.
*/
bufblks = 1 << ffs(blocks);
while (bufblks > log->l_logBBsize)
bufblks >>= 1;
while (!(bp = xlog_get_bp(log, bufblks))) {
bufblks >>= 1;
if (bufblks < sectbb)
return ENOMEM;
}
/* We may need to do a read at the start to fill in part of
* the buffer in the starting sector not covered by the first
* write below.
*/
balign = round_down(start_block, sectbb);
if (balign != start_block) {
error = xlog_bread_noalign(log, start_block, 1, bp);
if (error)
goto out_put_bp;
j = start_block - balign;
}
for (i = start_block; i < end_block; i += bufblks) {
int bcount, endcount;
bcount = min(bufblks, end_block - start_block);
endcount = bcount - j;
/* We may need to do a read at the end to fill in part of
* the buffer in the final sector not covered by the write.
* If this is the same sector as the above read, skip it.
*/
ealign = round_down(end_block, sectbb);
if (j == 0 && (start_block + endcount > ealign)) {
offset = bp->b_addr + BBTOB(ealign - start_block);
error = xlog_bread_offset(log, ealign, sectbb,
bp, offset);
if (error)
break;
}
offset = xlog_align(log, start_block, endcount, bp);
for (; j < endcount; j++) {
xlog_add_record(log, offset, cycle, i+j,
tail_cycle, tail_block);
offset += BBSIZE;
}
error = xlog_bwrite(log, start_block, endcount, bp);
if (error)
break;
start_block += endcount;
j = 0;
}
out_put_bp:
xlog_put_bp(bp);
return error;
}
/*
* This routine is called to blow away any incomplete log writes out
* in front of the log head. We do this so that we won't become confused
* if we come up, write only a little bit more, and then crash again.
* If we leave the partial log records out there, this situation could
* cause us to think those partial writes are valid blocks since they
* have the current cycle number. We get rid of them by overwriting them
* with empty log records with the old cycle number rather than the
* current one.
*
* The tail lsn is passed in rather than taken from
* the log so that we will not write over the unmount record after a
* clean unmount in a 512 block log. Doing so would leave the log without
* any valid log records in it until a new one was written. If we crashed
* during that time we would not be able to recover.
*/
STATIC int
xlog_clear_stale_blocks(
struct xlog *log,
xfs_lsn_t tail_lsn)
{
int tail_cycle, head_cycle;
int tail_block, head_block;
int tail_distance, max_distance;
int distance;
int error;
tail_cycle = CYCLE_LSN(tail_lsn);
tail_block = BLOCK_LSN(tail_lsn);
head_cycle = log->l_curr_cycle;
head_block = log->l_curr_block;
/*
* Figure out the distance between the new head of the log
* and the tail. We want to write over any blocks beyond the
* head that we may have written just before the crash, but
* we don't want to overwrite the tail of the log.
*/
if (head_cycle == tail_cycle) {
/*
* The tail is behind the head in the physical log,
* so the distance from the head to the tail is the
* distance from the head to the end of the log plus
* the distance from the beginning of the log to the
* tail.
*/
if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
XFS_ERRLEVEL_LOW, log->l_mp);
return XFS_ERROR(EFSCORRUPTED);
}
tail_distance = tail_block + (log->l_logBBsize - head_block);
} else {
/*
* The head is behind the tail in the physical log,
* so the distance from the head to the tail is just
* the tail block minus the head block.
*/
if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
XFS_ERRLEVEL_LOW, log->l_mp);
return XFS_ERROR(EFSCORRUPTED);
}
tail_distance = tail_block - head_block;
}
/*
* If the head is right up against the tail, we can't clear
* anything.
*/
if (tail_distance <= 0) {
ASSERT(tail_distance == 0);
return 0;
}
max_distance = XLOG_TOTAL_REC_SHIFT(log);
/*
* Take the smaller of the maximum amount of outstanding I/O
* we could have and the distance to the tail to clear out.
* We take the smaller so that we don't overwrite the tail and
* we don't waste all day writing from the head to the tail
* for no reason.
*/
max_distance = MIN(max_distance, tail_distance);
if ((head_block + max_distance) <= log->l_logBBsize) {
/*
* We can stomp all the blocks we need to without
* wrapping around the end of the log. Just do it
* in a single write. Use the cycle number of the
* current cycle minus one so that the log will look like:
* n ... | n - 1 ...
*/
error = xlog_write_log_records(log, (head_cycle - 1),
head_block, max_distance, tail_cycle,
tail_block);
if (error)
return error;
} else {
/*
* We need to wrap around the end of the physical log in
* order to clear all the blocks. Do it in two separate
* I/Os. The first write should be from the head to the
* end of the physical log, and it should use the current
* cycle number minus one just like above.
*/
distance = log->l_logBBsize - head_block;
error = xlog_write_log_records(log, (head_cycle - 1),
head_block, distance, tail_cycle,
tail_block);
if (error)
return error;
/*
* Now write the blocks at the start of the physical log.
* This writes the remainder of the blocks we want to clear.
* It uses the current cycle number since we're now on the
* same cycle as the head so that we get:
* n ... n ... | n - 1 ...
* ^^^^^ blocks we're writing
*/
distance = max_distance - (log->l_logBBsize - head_block);
error = xlog_write_log_records(log, head_cycle, 0, distance,
tail_cycle, tail_block);
if (error)
return error;
}
return 0;
}
/******************************************************************************
*
* Log recover routines
*
******************************************************************************
*/
STATIC xlog_recover_t *
xlog_recover_find_tid(
struct hlist_head *head,
xlog_tid_t tid)
{
xlog_recover_t *trans;
struct hlist_node *n;
hlist_for_each_entry(trans, n, head, r_list) {
if (trans->r_log_tid == tid)
return trans;
}
return NULL;
}
STATIC void
xlog_recover_new_tid(
struct hlist_head *head,
xlog_tid_t tid,
xfs_lsn_t lsn)
{
xlog_recover_t *trans;
trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
trans->r_log_tid = tid;
trans->r_lsn = lsn;
INIT_LIST_HEAD(&trans->r_itemq);
INIT_HLIST_NODE(&trans->r_list);
hlist_add_head(&trans->r_list, head);
}
STATIC void
xlog_recover_add_item(
struct list_head *head)
{
xlog_recover_item_t *item;
item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
INIT_LIST_HEAD(&item->ri_list);
list_add_tail(&item->ri_list, head);
}
STATIC int
xlog_recover_add_to_cont_trans(
struct xlog *log,
struct xlog_recover *trans,
xfs_caddr_t dp,
int len)
{
xlog_recover_item_t *item;
xfs_caddr_t ptr, old_ptr;
int old_len;
if (list_empty(&trans->r_itemq)) {
/* finish copying rest of trans header */
xlog_recover_add_item(&trans->r_itemq);
ptr = (xfs_caddr_t) &trans->r_theader +
sizeof(xfs_trans_header_t) - len;
memcpy(ptr, dp, len); /* d, s, l */
return 0;
}
/* take the tail entry */
item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
old_len = item->ri_buf[item->ri_cnt-1].i_len;
ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
memcpy(&ptr[old_len], dp, len); /* d, s, l */
item->ri_buf[item->ri_cnt-1].i_len += len;
item->ri_buf[item->ri_cnt-1].i_addr = ptr;
trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
return 0;
}
/*
* The next region to add is the start of a new region. It could be
* a whole region or it could be the first part of a new region. Because
* of this, the assumption here is that the type and size fields of all
* format structures fit into the first 32 bits of the structure.
*
* This works because all regions must be 32 bit aligned. Therefore, we
* either have both fields or we have neither field. In the case we have
* neither field, the data part of the region is zero length. We only have
* a log_op_header and can throw away the header since a new one will appear
* later. If we have at least 4 bytes, then we can determine how many regions
* will appear in the current log item.
*/
STATIC int
xlog_recover_add_to_trans(
struct xlog *log,
struct xlog_recover *trans,
xfs_caddr_t dp,
int len)
{
xfs_inode_log_format_t *in_f; /* any will do */
xlog_recover_item_t *item;
xfs_caddr_t ptr;
if (!len)
return 0;
if (list_empty(&trans->r_itemq)) {
/* we need to catch log corruptions here */
if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
xfs_warn(log->l_mp, "%s: bad header magic number",
__func__);
ASSERT(0);
return XFS_ERROR(EIO);
}
if (len == sizeof(xfs_trans_header_t))
xlog_recover_add_item(&trans->r_itemq);
memcpy(&trans->r_theader, dp, len); /* d, s, l */
return 0;
}
ptr = kmem_alloc(len, KM_SLEEP);
memcpy(ptr, dp, len);
in_f = (xfs_inode_log_format_t *)ptr;
/* take the tail entry */
item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
if (item->ri_total != 0 &&
item->ri_total == item->ri_cnt) {
/* tail item is in use, get a new one */
xlog_recover_add_item(&trans->r_itemq);
item = list_entry(trans->r_itemq.prev,
xlog_recover_item_t, ri_list);
}
if (item->ri_total == 0) { /* first region to be added */
if (in_f->ilf_size == 0 ||
in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
xfs_warn(log->l_mp,
"bad number of regions (%d) in inode log format",
in_f->ilf_size);
ASSERT(0);
return XFS_ERROR(EIO);
}
item->ri_total = in_f->ilf_size;
item->ri_buf =
kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
KM_SLEEP);
}
ASSERT(item->ri_total > item->ri_cnt);
/* Description region is ri_buf[0] */
item->ri_buf[item->ri_cnt].i_addr = ptr;
item->ri_buf[item->ri_cnt].i_len = len;
item->ri_cnt++;
trace_xfs_log_recover_item_add(log, trans, item, 0);
return 0;
}
/*
* Sort the log items in the transaction. Cancelled buffers need
* to be put first so they are processed before any items that might
* modify the buffers. If they are cancelled, then the modifications
* don't need to be replayed.
*/
STATIC int
xlog_recover_reorder_trans(
struct xlog *log,
struct xlog_recover *trans,
int pass)
{
xlog_recover_item_t *item, *n;
LIST_HEAD(sort_list);
list_splice_init(&trans->r_itemq, &sort_list);
list_for_each_entry_safe(item, n, &sort_list, ri_list) {
xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
switch (ITEM_TYPE(item)) {
case XFS_LI_BUF:
if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
trace_xfs_log_recover_item_reorder_head(log,
trans, item, pass);
list_move(&item->ri_list, &trans->r_itemq);
break;
}
case XFS_LI_INODE:
case XFS_LI_DQUOT:
case XFS_LI_QUOTAOFF:
case XFS_LI_EFD:
case XFS_LI_EFI:
trace_xfs_log_recover_item_reorder_tail(log,
trans, item, pass);
list_move_tail(&item->ri_list, &trans->r_itemq);
break;
default:
xfs_warn(log->l_mp,
"%s: unrecognized type of log operation",
__func__);
ASSERT(0);
return XFS_ERROR(EIO);
}
}
ASSERT(list_empty(&sort_list));
return 0;
}
/*
* Build up the table of buf cancel records so that we don't replay
* cancelled data in the second pass. For buffer records that are
* not cancel records, there is nothing to do here so we just return.
*
* If we get a cancel record which is already in the table, this indicates
* that the buffer was cancelled multiple times. In order to ensure
* that during pass 2 we keep the record in the table until we reach its
* last occurrence in the log, we keep a reference count in the cancel
* record in the table to tell us how many times we expect to see this
* record during the second pass.
*/
STATIC int
xlog_recover_buffer_pass1(
struct xlog *log,
struct xlog_recover_item *item)
{
xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
struct list_head *bucket;
struct xfs_buf_cancel *bcp;
/*
* If this isn't a cancel buffer item, then just return.
*/
if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
trace_xfs_log_recover_buf_not_cancel(log, buf_f);
return 0;
}
/*
* Insert an xfs_buf_cancel record into the hash table of them.
* If there is already an identical record, bump its reference count.
*/
bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
list_for_each_entry(bcp, bucket, bc_list) {
if (bcp->bc_blkno == buf_f->blf_blkno &&
bcp->bc_len == buf_f->blf_len) {
bcp->bc_refcount++;
trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
return 0;
}
}
bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
bcp->bc_blkno = buf_f->blf_blkno;
bcp->bc_len = buf_f->blf_len;
bcp->bc_refcount = 1;
list_add_tail(&bcp->bc_list, bucket);
trace_xfs_log_recover_buf_cancel_add(log, buf_f);
return 0;
}
/*
* Check to see whether the buffer being recovered has a corresponding
* entry in the buffer cancel record table. If it does then return 1
* so that it will be cancelled, otherwise return 0. If the buffer is
* actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
* the refcount on the entry in the table and remove it from the table
* if this is the last reference.
*
* We remove the cancel record from the table when we encounter its
* last occurrence in the log so that if the same buffer is re-used
* again after its last cancellation we actually replay the changes
* made at that point.
*/
STATIC int
xlog_check_buffer_cancelled(
struct xlog *log,
xfs_daddr_t blkno,
uint len,
ushort flags)
{
struct list_head *bucket;
struct xfs_buf_cancel *bcp;
if (log->l_buf_cancel_table == NULL) {
/*
* There is nothing in the table built in pass one,
* so this buffer must not be cancelled.
*/
ASSERT(!(flags & XFS_BLF_CANCEL));
return 0;
}
/*
* Search for an entry in the cancel table that matches our buffer.
*/
bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
list_for_each_entry(bcp, bucket, bc_list) {
if (bcp->bc_blkno == blkno && bcp->bc_len == len)
goto found;
}
/*
* We didn't find a corresponding entry in the table, so return 0 so
* that the buffer is NOT cancelled.
*/
ASSERT(!(flags & XFS_BLF_CANCEL));
return 0;
found:
/*
* We've go a match, so return 1 so that the recovery of this buffer
* is cancelled. If this buffer is actually a buffer cancel log
* item, then decrement the refcount on the one in the table and
* remove it if this is the last reference.
*/
if (flags & XFS_BLF_CANCEL) {
if (--bcp->bc_refcount == 0) {
list_del(&bcp->bc_list);
kmem_free(bcp);
}
}
return 1;
}
/*
* Perform recovery for a buffer full of inodes. In these buffers, the only
* data which should be recovered is that which corresponds to the
* di_next_unlinked pointers in the on disk inode structures. The rest of the
* data for the inodes is always logged through the inodes themselves rather
* than the inode buffer and is recovered in xlog_recover_inode_pass2().
*
* The only time when buffers full of inodes are fully recovered is when the
* buffer is full of newly allocated inodes. In this case the buffer will
* not be marked as an inode buffer and so will be sent to
* xlog_recover_do_reg_buffer() below during recovery.
*/
STATIC int
xlog_recover_do_inode_buffer(
struct xfs_mount *mp,
xlog_recover_item_t *item,
struct xfs_buf *bp,
xfs_buf_log_format_t *buf_f)
{
int i;
int item_index = 0;
int bit = 0;
int nbits = 0;
int reg_buf_offset = 0;
int reg_buf_bytes = 0;
int next_unlinked_offset;
int inodes_per_buf;
xfs_agino_t *logged_nextp;
xfs_agino_t *buffer_nextp;
trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
for (i = 0; i < inodes_per_buf; i++) {
next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
offsetof(xfs_dinode_t, di_next_unlinked);
while (next_unlinked_offset >=
(reg_buf_offset + reg_buf_bytes)) {
/*
* The next di_next_unlinked field is beyond
* the current logged region. Find the next
* logged region that contains or is beyond
* the current di_next_unlinked field.
*/
bit += nbits;
bit = xfs_next_bit(buf_f->blf_data_map,
buf_f->blf_map_size, bit);
/*
* If there are no more logged regions in the
* buffer, then we're done.
*/
if (bit == -1)
return 0;
nbits = xfs_contig_bits(buf_f->blf_data_map,
buf_f->blf_map_size, bit);
ASSERT(nbits > 0);
reg_buf_offset = bit << XFS_BLF_SHIFT;
reg_buf_bytes = nbits << XFS_BLF_SHIFT;
item_index++;
}
/*
* If the current logged region starts after the current
* di_next_unlinked field, then move on to the next
* di_next_unlinked field.
*/
if (next_unlinked_offset < reg_buf_offset)
continue;
ASSERT(item->ri_buf[item_index].i_addr != NULL);
ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
ASSERT((reg_buf_offset + reg_buf_bytes) <=
BBTOB(bp->b_io_length));
/*
* The current logged region contains a copy of the
* current di_next_unlinked field. Extract its value
* and copy it to the buffer copy.
*/
logged_nextp = item->ri_buf[item_index].i_addr +
next_unlinked_offset - reg_buf_offset;
if (unlikely(*logged_nextp == 0)) {
xfs_alert(mp,
"Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
"Trying to replay bad (0) inode di_next_unlinked field.",
item, bp);
XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
XFS_ERRLEVEL_LOW, mp);
return XFS_ERROR(EFSCORRUPTED);
}
buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
next_unlinked_offset);
*buffer_nextp = *logged_nextp;
}
return 0;
}
/*
* Perform a 'normal' buffer recovery. Each logged region of the
* buffer should be copied over the corresponding region in the
* given buffer. The bitmap in the buf log format structure indicates
* where to place the logged data.
*/
STATIC void
xlog_recover_do_reg_buffer(
struct xfs_mount *mp,
xlog_recover_item_t *item,
struct xfs_buf *bp,
xfs_buf_log_format_t *buf_f)
{
int i;
int bit;
int nbits;
int error;
trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
bit = 0;
i = 1; /* 0 is the buf format structure */
while (1) {
bit = xfs_next_bit(buf_f->blf_data_map,
buf_f->blf_map_size, bit);
if (bit == -1)
break;
nbits = xfs_contig_bits(buf_f->blf_data_map,
buf_f->blf_map_size, bit);
ASSERT(nbits > 0);
ASSERT(item->ri_buf[i].i_addr != NULL);
ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
ASSERT(BBTOB(bp->b_io_length) >=
((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
/*
* Do a sanity check if this is a dquot buffer. Just checking
* the first dquot in the buffer should do. XXXThis is
* probably a good thing to do for other buf types also.
*/
error = 0;
if (buf_f->blf_flags &
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
if (item->ri_buf[i].i_addr == NULL) {
xfs_alert(mp,
"XFS: NULL dquot in %s.", __func__);
goto next;
}
if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
xfs_alert(mp,
"XFS: dquot too small (%d) in %s.",
item->ri_buf[i].i_len, __func__);
goto next;
}
error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
-1, 0, XFS_QMOPT_DOWARN,
"dquot_buf_recover");
if (error)
goto next;
}
memcpy(xfs_buf_offset(bp,
(uint)bit << XFS_BLF_SHIFT), /* dest */
item->ri_buf[i].i_addr, /* source */
nbits<<XFS_BLF_SHIFT); /* length */
next:
i++;
bit += nbits;
}
/* Shouldn't be any more regions */
ASSERT(i == item->ri_total);
}
/*
* Do some primitive error checking on ondisk dquot data structures.
*/
int
xfs_qm_dqcheck(
struct xfs_mount *mp,
xfs_disk_dquot_t *ddq,
xfs_dqid_t id,
uint type, /* used only when IO_dorepair is true */
uint flags,
char *str)
{
xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
int errs = 0;
/*
* We can encounter an uninitialized dquot buffer for 2 reasons:
* 1. If we crash while deleting the quotainode(s), and those blks got
* used for user data. This is because we take the path of regular
* file deletion; however, the size field of quotainodes is never
* updated, so all the tricks that we play in itruncate_finish
* don't quite matter.
*
* 2. We don't play the quota buffers when there's a quotaoff logitem.
* But the allocation will be replayed so we'll end up with an
* uninitialized quota block.
*
* This is all fine; things are still consistent, and we haven't lost
* any quota information. Just don't complain about bad dquot blks.
*/
if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
if (flags & XFS_QMOPT_DOWARN)
xfs_alert(mp,
"%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
errs++;
}
if (ddq->d_version != XFS_DQUOT_VERSION) {
if (flags & XFS_QMOPT_DOWARN)
xfs_alert(mp,
"%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
str, id, ddq->d_version, XFS_DQUOT_VERSION);
errs++;
}
if (ddq->d_flags != XFS_DQ_USER &&
ddq->d_flags != XFS_DQ_PROJ &&
ddq->d_flags != XFS_DQ_GROUP) {
if (flags & XFS_QMOPT_DOWARN)
xfs_alert(mp,
"%s : XFS dquot ID 0x%x, unknown flags 0x%x",
str, id, ddq->d_flags);
errs++;
}
if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
if (flags & XFS_QMOPT_DOWARN)
xfs_alert(mp,
"%s : ondisk-dquot 0x%p, ID mismatch: "
"0x%x expected, found id 0x%x",
str, ddq, id, be32_to_cpu(ddq->d_id));
errs++;
}
if (!errs && ddq->d_id) {
if (ddq->d_blk_softlimit &&
be64_to_cpu(ddq->d_bcount) >
be64_to_cpu(ddq->d_blk_softlimit)) {
if (!ddq->d_btimer) {
if (flags & XFS_QMOPT_DOWARN)
xfs_alert(mp,
"%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
str, (int)be32_to_cpu(ddq->d_id), ddq);
errs++;
}
}
if (ddq->d_ino_softlimit &&
be64_to_cpu(ddq->d_icount) >
be64_to_cpu(ddq->d_ino_softlimit)) {
if (!ddq->d_itimer) {
if (flags & XFS_QMOPT_DOWARN)
xfs_alert(mp,
"%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
str, (int)be32_to_cpu(ddq->d_id), ddq);
errs++;
}
}
if (ddq->d_rtb_softlimit &&
be64_to_cpu(ddq->d_rtbcount) >
be64_to_cpu(ddq->d_rtb_softlimit)) {
if (!ddq->d_rtbtimer) {
if (flags & XFS_QMOPT_DOWARN)
xfs_alert(mp,
"%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
str, (int)be32_to_cpu(ddq->d_id), ddq);
errs++;
}
}
}
if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
return errs;
if (flags & XFS_QMOPT_DOWARN)
xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
/*
* Typically, a repair is only requested by quotacheck.
*/
ASSERT(id != -1);
ASSERT(flags & XFS_QMOPT_DQREPAIR);
memset(d, 0, sizeof(xfs_dqblk_t));
d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
d->dd_diskdq.d_flags = type;
d->dd_diskdq.d_id = cpu_to_be32(id);
return errs;
}
/*
* Perform a dquot buffer recovery.
* Simple algorithm: if we have found a QUOTAOFF logitem of the same type
* (ie. USR or GRP), then just toss this buffer away; don't recover it.
* Else, treat it as a regular buffer and do recovery.
*/
STATIC void
xlog_recover_do_dquot_buffer(
struct xfs_mount *mp,
struct xlog *log,
struct xlog_recover_item *item,
struct xfs_buf *bp,
struct xfs_buf_log_format *buf_f)
{
uint type;
trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
/*
* Filesystems are required to send in quota flags at mount time.
*/
if (mp->m_qflags == 0) {
return;
}
type = 0;
if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
type |= XFS_DQ_USER;
if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
type |= XFS_DQ_PROJ;
if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
type |= XFS_DQ_GROUP;
/*
* This type of quotas was turned off, so ignore this buffer
*/
if (log->l_quotaoffs_flag & type)
return;
xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
}
/*
* This routine replays a modification made to a buffer at runtime.
* There are actually two types of buffer, regular and inode, which
* are handled differently. Inode buffers are handled differently
* in that we only recover a specific set of data from them, namely
* the inode di_next_unlinked fields. This is because all other inode
* data is actually logged via inode records and any data we replay
* here which overlaps that may be stale.
*
* When meta-data buffers are freed at run time we log a buffer item
* with the XFS_BLF_CANCEL bit set to indicate that previous copies
* of the buffer in the log should not be replayed at recovery time.
* This is so that if the blocks covered by the buffer are reused for
* file data before we crash we don't end up replaying old, freed
* meta-data into a user's file.
*
* To handle the cancellation of buffer log items, we make two passes
* over the log during recovery. During the first we build a table of
* those buffers which have been cancelled, and during the second we
* only replay those buffers which do not have corresponding cancel
* records in the table. See xlog_recover_do_buffer_pass[1,2] above
* for more details on the implementation of the table of cancel records.
*/
STATIC int
xlog_recover_buffer_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item)
{
xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
xfs_mount_t *mp = log->l_mp;
xfs_buf_t *bp;
int error;
uint buf_flags;
/*
* In this pass we only want to recover all the buffers which have
* not been cancelled and are not cancellation buffers themselves.
*/
if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
buf_f->blf_len, buf_f->blf_flags)) {
trace_xfs_log_recover_buf_cancel(log, buf_f);
return 0;
}
trace_xfs_log_recover_buf_recover(log, buf_f);
buf_flags = 0;
if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
buf_flags |= XBF_UNMAPPED;
bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
buf_flags);
if (!bp)
return XFS_ERROR(ENOMEM);
error = bp->b_error;
if (error) {
xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
xfs_buf_relse(bp);
return error;
}
if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
} else if (buf_f->blf_flags &
(XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
} else {
xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
}
if (error)
return XFS_ERROR(error);
/*
* Perform delayed write on the buffer. Asynchronous writes will be
* slower when taking into account all the buffers to be flushed.
*
* Also make sure that only inode buffers with good sizes stay in
* the buffer cache. The kernel moves inodes in buffers of 1 block
* or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
* buffers in the log can be a different size if the log was generated
* by an older kernel using unclustered inode buffers or a newer kernel
* running with a different inode cluster size. Regardless, if the
* the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
* for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
* the buffer out of the buffer cache so that the buffer won't
* overlap with future reads of those inodes.
*/
if (XFS_DINODE_MAGIC ==
be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
(BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
(__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
xfs_buf_stale(bp);
error = xfs_bwrite(bp);
} else {
ASSERT(bp->b_target->bt_mount == mp);
bp->b_iodone = xlog_recover_iodone;
xfs_buf_delwri_queue(bp, buffer_list);
}
xfs_buf_relse(bp);
return error;
}
STATIC int
xlog_recover_inode_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item)
{
xfs_inode_log_format_t *in_f;
xfs_mount_t *mp = log->l_mp;
xfs_buf_t *bp;
xfs_dinode_t *dip;
int len;
xfs_caddr_t src;
xfs_caddr_t dest;
int error;
int attr_index;
uint fields;
xfs_icdinode_t *dicp;
int need_free = 0;
if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
in_f = item->ri_buf[0].i_addr;
} else {
in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
need_free = 1;
error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
if (error)
goto error;
}
/*
* Inode buffers can be freed, look out for it,
* and do not replay the inode.
*/
if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
in_f->ilf_len, 0)) {
error = 0;
trace_xfs_log_recover_inode_cancel(log, in_f);
goto error;
}
trace_xfs_log_recover_inode_recover(log, in_f);
bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0);
if (!bp) {
error = ENOMEM;
goto error;
}
error = bp->b_error;
if (error) {
xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
xfs_buf_relse(bp);
goto error;
}
ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
/*
* Make sure the place we're flushing out to really looks
* like an inode!
*/
if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
xfs_buf_relse(bp);
xfs_alert(mp,
"%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
__func__, dip, bp, in_f->ilf_ino);
XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
XFS_ERRLEVEL_LOW, mp);
error = EFSCORRUPTED;
goto error;
}
dicp = item->ri_buf[1].i_addr;
if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
xfs_buf_relse(bp);
xfs_alert(mp,
"%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
__func__, item, in_f->ilf_ino);
XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
XFS_ERRLEVEL_LOW, mp);
error = EFSCORRUPTED;
goto error;
}
/* Skip replay when the on disk inode is newer than the log one */
if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
/*
* Deal with the wrap case, DI_MAX_FLUSH is less
* than smaller numbers
*/
if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
/* do nothing */
} else {
xfs_buf_relse(bp);
trace_xfs_log_recover_inode_skip(log, in_f);
error = 0;
goto error;
}
}
/* Take the opportunity to reset the flush iteration count */
dicp->di_flushiter = 0;
if (unlikely(S_ISREG(dicp->di_mode))) {
if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
(dicp->di_format != XFS_DINODE_FMT_BTREE)) {
XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
XFS_ERRLEVEL_LOW, mp, dicp);
xfs_buf_relse(bp);
xfs_alert(mp,
"%s: Bad regular inode log record, rec ptr 0x%p, "
"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
__func__, item, dip, bp, in_f->ilf_ino);
error = EFSCORRUPTED;
goto error;
}
} else if (unlikely(S_ISDIR(dicp->di_mode))) {
if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
(dicp->di_format != XFS_DINODE_FMT_BTREE) &&
(dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
XFS_ERRLEVEL_LOW, mp, dicp);
xfs_buf_relse(bp);
xfs_alert(mp,
"%s: Bad dir inode log record, rec ptr 0x%p, "
"ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
__func__, item, dip, bp, in_f->ilf_ino);
error = EFSCORRUPTED;
goto error;
}
}
if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
XFS_ERRLEVEL_LOW, mp, dicp);
xfs_buf_relse(bp);
xfs_alert(mp,
"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
"dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
__func__, item, dip, bp, in_f->ilf_ino,
dicp->di_nextents + dicp->di_anextents,
dicp->di_nblocks);
error = EFSCORRUPTED;
goto error;
}
if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
XFS_ERRLEVEL_LOW, mp, dicp);
xfs_buf_relse(bp);
xfs_alert(mp,
"%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
"dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
error = EFSCORRUPTED;
goto error;
}
if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
XFS_ERRLEVEL_LOW, mp, dicp);
xfs_buf_relse(bp);
xfs_alert(mp,
"%s: Bad inode log record length %d, rec ptr 0x%p",
__func__, item->ri_buf[1].i_len, item);
error = EFSCORRUPTED;
goto error;
}
/* The core is in in-core format */
xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
/* the rest is in on-disk format */
if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
}
fields = in_f->ilf_fields;
switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
case XFS_ILOG_DEV:
xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
break;
case XFS_ILOG_UUID:
memcpy(XFS_DFORK_DPTR(dip),
&in_f->ilf_u.ilfu_uuid,
sizeof(uuid_t));
break;
}
if (in_f->ilf_size == 2)
goto write_inode_buffer;
len = item->ri_buf[2].i_len;
src = item->ri_buf[2].i_addr;
ASSERT(in_f->ilf_size <= 4);
ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
ASSERT(!(fields & XFS_ILOG_DFORK) ||
(len == in_f->ilf_dsize));
switch (fields & XFS_ILOG_DFORK) {
case XFS_ILOG_DDATA:
case XFS_ILOG_DEXT:
memcpy(XFS_DFORK_DPTR(dip), src, len);
break;
case XFS_ILOG_DBROOT:
xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
(xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
XFS_DFORK_DSIZE(dip, mp));
break;
default:
/*
* There are no data fork flags set.
*/
ASSERT((fields & XFS_ILOG_DFORK) == 0);
break;
}
/*
* If we logged any attribute data, recover it. There may or
* may not have been any other non-core data logged in this
* transaction.
*/
if (in_f->ilf_fields & XFS_ILOG_AFORK) {
if (in_f->ilf_fields & XFS_ILOG_DFORK) {
attr_index = 3;
} else {
attr_index = 2;
}
len = item->ri_buf[attr_index].i_len;
src = item->ri_buf[attr_index].i_addr;
ASSERT(len == in_f->ilf_asize);
switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
case XFS_ILOG_ADATA:
case XFS_ILOG_AEXT:
dest = XFS_DFORK_APTR(dip);
ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
memcpy(dest, src, len);
break;
case XFS_ILOG_ABROOT:
dest = XFS_DFORK_APTR(dip);
xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
len, (xfs_bmdr_block_t*)dest,
XFS_DFORK_ASIZE(dip, mp));
break;
default:
xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
ASSERT(0);
xfs_buf_relse(bp);
error = EIO;
goto error;
}
}
write_inode_buffer:
ASSERT(bp->b_target->bt_mount == mp);
bp->b_iodone = xlog_recover_iodone;
xfs_buf_delwri_queue(bp, buffer_list);
xfs_buf_relse(bp);
error:
if (need_free)
kmem_free(in_f);
return XFS_ERROR(error);
}
/*
* Recover QUOTAOFF records. We simply make a note of it in the xlog
* structure, so that we know not to do any dquot item or dquot buffer recovery,
* of that type.
*/
STATIC int
xlog_recover_quotaoff_pass1(
struct xlog *log,
struct xlog_recover_item *item)
{
xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
ASSERT(qoff_f);
/*
* The logitem format's flag tells us if this was user quotaoff,
* group/project quotaoff or both.
*/
if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
log->l_quotaoffs_flag |= XFS_DQ_USER;
if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
log->l_quotaoffs_flag |= XFS_DQ_PROJ;
if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
log->l_quotaoffs_flag |= XFS_DQ_GROUP;
return (0);
}
/*
* Recover a dquot record
*/
STATIC int
xlog_recover_dquot_pass2(
struct xlog *log,
struct list_head *buffer_list,
struct xlog_recover_item *item)
{
xfs_mount_t *mp = log->l_mp;
xfs_buf_t *bp;
struct xfs_disk_dquot *ddq, *recddq;
int error;
xfs_dq_logformat_t *dq_f;
uint type;
/*
* Filesystems are required to send in quota flags at mount time.
*/
if (mp->m_qflags == 0)
return (0);
recddq = item->ri_buf[1].i_addr;
if (recddq == NULL) {
xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
return XFS_ERROR(EIO);
}
if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
item->ri_buf[1].i_len, __func__);
return XFS_ERROR(EIO);
}
/*
* This type of quotas was turned off, so ignore this record.
*/
type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
ASSERT(type);
if (log->l_quotaoffs_flag & type)
return (0);
/*
* At this point we know that quota was _not_ turned off.
* Since the mount flags are not indicating to us otherwise, this
* must mean that quota is on, and the dquot needs to be replayed.
* Remember that we may not have fully recovered the superblock yet,
* so we can't do the usual trick of looking at the SB quota bits.
*
* The other possibility, of course, is that the quota subsystem was
* removed since the last mount - ENOSYS.
*/
dq_f = item->ri_buf[0].i_addr;
ASSERT(dq_f);
error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
"xlog_recover_dquot_pass2 (log copy)");
if (error)
return XFS_ERROR(EIO);
ASSERT(dq_f->qlf_len == 1);
error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp);
if (error)
return error;
ASSERT(bp);
ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
/*
* At least the magic num portion should be on disk because this
* was among a chunk of dquots created earlier, and we did some
* minimal initialization then.
*/
error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
"xlog_recover_dquot_pass2");
if (error) {
xfs_buf_relse(bp);
return XFS_ERROR(EIO);
}
memcpy(ddq, recddq, item->ri_buf[1].i_len);
ASSERT(dq_f->qlf_size == 2);
ASSERT(bp->b_target->bt_mount == mp);
bp->b_iodone = xlog_recover_iodone;
xfs_buf_delwri_queue(bp, buffer_list);
xfs_buf_relse(bp);
return (0);
}
/*
* This routine is called to create an in-core extent free intent
* item from the efi format structure which was logged on disk.
* It allocates an in-core efi, copies the extents from the format
* structure into it, and adds the efi to the AIL with the given
* LSN.
*/
STATIC int
xlog_recover_efi_pass2(
struct xlog *log,
struct xlog_recover_item *item,
xfs_lsn_t lsn)
{
int error;
xfs_mount_t *mp = log->l_mp;
xfs_efi_log_item_t *efip;
xfs_efi_log_format_t *efi_formatp;
efi_formatp = item->ri_buf[0].i_addr;
efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
&(efip->efi_format)))) {
xfs_efi_item_free(efip);
return error;
}
atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
spin_lock(&log->l_ailp->xa_lock);
/*
* xfs_trans_ail_update() drops the AIL lock.
*/
xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
return 0;
}
/*
* This routine is called when an efd format structure is found in
* a committed transaction in the log. It's purpose is to cancel
* the corresponding efi if it was still in the log. To do this
* it searches the AIL for the efi with an id equal to that in the
* efd format structure. If we find it, we remove the efi from the
* AIL and free it.
*/
STATIC int
xlog_recover_efd_pass2(
struct xlog *log,
struct xlog_recover_item *item)
{
xfs_efd_log_format_t *efd_formatp;
xfs_efi_log_item_t *efip = NULL;
xfs_log_item_t *lip;
__uint64_t efi_id;
struct xfs_ail_cursor cur;
struct xfs_ail *ailp = log->l_ailp;
efd_formatp = item->ri_buf[0].i_addr;
ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
(item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
efi_id = efd_formatp->efd_efi_id;
/*
* Search for the efi with the id in the efd format structure
* in the AIL.
*/
spin_lock(&ailp->xa_lock);
lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
while (lip != NULL) {
if (lip->li_type == XFS_LI_EFI) {
efip = (xfs_efi_log_item_t *)lip;
if (efip->efi_format.efi_id == efi_id) {
/*
* xfs_trans_ail_delete() drops the
* AIL lock.
*/
xfs_trans_ail_delete(ailp, lip,
SHUTDOWN_CORRUPT_INCORE);
xfs_efi_item_free(efip);
spin_lock(&ailp->xa_lock);
break;
}
}
lip = xfs_trans_ail_cursor_next(ailp, &cur);
}
xfs_trans_ail_cursor_done(ailp, &cur);
spin_unlock(&ailp->xa_lock);
return 0;
}
/*
* Free up any resources allocated by the transaction
*
* Remember that EFIs, EFDs, and IUNLINKs are handled later.
*/
STATIC void
xlog_recover_free_trans(
struct xlog_recover *trans)
{
xlog_recover_item_t *item, *n;
int i;
list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
/* Free the regions in the item. */
list_del(&item->ri_list);
for (i = 0; i < item->ri_cnt; i++)
kmem_free(item->ri_buf[i].i_addr);
/* Free the item itself */
kmem_free(item->ri_buf);
kmem_free(item);
}
/* Free the transaction recover structure */
kmem_free(trans);
}
STATIC int
xlog_recover_commit_pass1(
struct xlog *log,
struct xlog_recover *trans,
struct xlog_recover_item *item)
{
trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
switch (ITEM_TYPE(item)) {
case XFS_LI_BUF:
return xlog_recover_buffer_pass1(log, item);
case XFS_LI_QUOTAOFF:
return xlog_recover_quotaoff_pass1(log, item);
case XFS_LI_INODE:
case XFS_LI_EFI:
case XFS_LI_EFD:
case XFS_LI_DQUOT:
/* nothing to do in pass 1 */
return 0;
default:
xfs_warn(log->l_mp, "%s: invalid item type (%d)",
__func__, ITEM_TYPE(item));
ASSERT(0);
return XFS_ERROR(EIO);
}
}
STATIC int
xlog_recover_commit_pass2(
struct xlog *log,
struct xlog_recover *trans,
struct list_head *buffer_list,
struct xlog_recover_item *item)
{
trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
switch (ITEM_TYPE(item)) {
case XFS_LI_BUF:
return xlog_recover_buffer_pass2(log, buffer_list, item);
case XFS_LI_INODE:
return xlog_recover_inode_pass2(log, buffer_list, item);
case XFS_LI_EFI:
return xlog_recover_efi_pass2(log, item, trans->r_lsn);
case XFS_LI_EFD:
return xlog_recover_efd_pass2(log, item);
case XFS_LI_DQUOT:
return xlog_recover_dquot_pass2(log, buffer_list, item);
case XFS_LI_QUOTAOFF:
/* nothing to do in pass2 */
return 0;
default:
xfs_warn(log->l_mp, "%s: invalid item type (%d)",
__func__, ITEM_TYPE(item));
ASSERT(0);
return XFS_ERROR(EIO);
}
}
/*
* Perform the transaction.
*
* If the transaction modifies a buffer or inode, do it now. Otherwise,
* EFIs and EFDs get queued up by adding entries into the AIL for them.
*/
STATIC int
xlog_recover_commit_trans(
struct xlog *log,
struct xlog_recover *trans,
int pass)
{
int error = 0, error2;
xlog_recover_item_t *item;
LIST_HEAD (buffer_list);
hlist_del(&trans->r_list);
error = xlog_recover_reorder_trans(log, trans, pass);
if (error)
return error;
list_for_each_entry(item, &trans->r_itemq, ri_list) {
switch (pass) {
case XLOG_RECOVER_PASS1:
error = xlog_recover_commit_pass1(log, trans, item);
break;
case XLOG_RECOVER_PASS2:
error = xlog_recover_commit_pass2(log, trans,
&buffer_list, item);
break;
default:
ASSERT(0);
}
if (error)
goto out;
}
xlog_recover_free_trans(trans);
out:
error2 = xfs_buf_delwri_submit(&buffer_list);
return error ? error : error2;
}
STATIC int
xlog_recover_unmount_trans(
struct xlog *log,
struct xlog_recover *trans)
{
/* Do nothing now */
xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
return 0;
}
/*
* There are two valid states of the r_state field. 0 indicates that the
* transaction structure is in a normal state. We have either seen the
* start of the transaction or the last operation we added was not a partial
* operation. If the last operation we added to the transaction was a
* partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
*
* NOTE: skip LRs with 0 data length.
*/
STATIC int
xlog_recover_process_data(
struct xlog *log,
struct hlist_head rhash[],
struct xlog_rec_header *rhead,
xfs_caddr_t dp,
int pass)
{
xfs_caddr_t lp;
int num_logops;
xlog_op_header_t *ohead;
xlog_recover_t *trans;
xlog_tid_t tid;
int error;
unsigned long hash;
uint flags;
lp = dp + be32_to_cpu(rhead->h_len);
num_logops = be32_to_cpu(rhead->h_num_logops);
/* check the log format matches our own - else we can't recover */
if (xlog_header_check_recover(log->l_mp, rhead))
return (XFS_ERROR(EIO));
while ((dp < lp) && num_logops) {
ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
ohead = (xlog_op_header_t *)dp;
dp += sizeof(xlog_op_header_t);
if (ohead->oh_clientid != XFS_TRANSACTION &&
ohead->oh_clientid != XFS_LOG) {
xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
__func__, ohead->oh_clientid);
ASSERT(0);
return (XFS_ERROR(EIO));
}
tid = be32_to_cpu(ohead->oh_tid);
hash = XLOG_RHASH(tid);
trans = xlog_recover_find_tid(&rhash[hash], tid);
if (trans == NULL) { /* not found; add new tid */
if (ohead->oh_flags & XLOG_START_TRANS)
xlog_recover_new_tid(&rhash[hash], tid,
be64_to_cpu(rhead->h_lsn));
} else {
if (dp + be32_to_cpu(ohead->oh_len) > lp) {
xfs_warn(log->l_mp, "%s: bad length 0x%x",
__func__, be32_to_cpu(ohead->oh_len));
WARN_ON(1);
return (XFS_ERROR(EIO));
}
flags = ohead->oh_flags & ~XLOG_END_TRANS;
if (flags & XLOG_WAS_CONT_TRANS)
flags &= ~XLOG_CONTINUE_TRANS;
switch (flags) {
case XLOG_COMMIT_TRANS:
error = xlog_recover_commit_trans(log,
trans, pass);
break;
case XLOG_UNMOUNT_TRANS:
error = xlog_recover_unmount_trans(log, trans);
break;
case XLOG_WAS_CONT_TRANS:
error = xlog_recover_add_to_cont_trans(log,
trans, dp,
be32_to_cpu(ohead->oh_len));
break;
case XLOG_START_TRANS:
xfs_warn(log->l_mp, "%s: bad transaction",
__func__);
ASSERT(0);
error = XFS_ERROR(EIO);
break;
case 0:
case XLOG_CONTINUE_TRANS:
error = xlog_recover_add_to_trans(log, trans,
dp, be32_to_cpu(ohead->oh_len));
break;
default:
xfs_warn(log->l_mp, "%s: bad flag 0x%x",
__func__, flags);
ASSERT(0);
error = XFS_ERROR(EIO);
break;
}
if (error)
return error;
}
dp += be32_to_cpu(ohead->oh_len);
num_logops--;
}
return 0;
}
/*
* Process an extent free intent item that was recovered from
* the log. We need to free the extents that it describes.
*/
STATIC int
xlog_recover_process_efi(
xfs_mount_t *mp,
xfs_efi_log_item_t *efip)
{
xfs_efd_log_item_t *efdp;
xfs_trans_t *tp;
int i;
int error = 0;
xfs_extent_t *extp;
xfs_fsblock_t startblock_fsb;
ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
/*
* First check the validity of the extents described by the
* EFI. If any are bad, then assume that all are bad and
* just toss the EFI.
*/
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
extp = &(efip->efi_format.efi_extents[i]);
startblock_fsb = XFS_BB_TO_FSB(mp,
XFS_FSB_TO_DADDR(mp, extp->ext_start));
if ((startblock_fsb == 0) ||
(extp->ext_len == 0) ||
(startblock_fsb >= mp->m_sb.sb_dblocks) ||
(extp->ext_len >= mp->m_sb.sb_agblocks)) {
/*
* This will pull the EFI from the AIL and
* free the memory associated with it.
*/
xfs_efi_release(efip, efip->efi_format.efi_nextents);
return XFS_ERROR(EIO);
}
}
tp = xfs_trans_alloc(mp, 0);
error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
if (error)
goto abort_error;
efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
for (i = 0; i < efip->efi_format.efi_nextents; i++) {
extp = &(efip->efi_format.efi_extents[i]);
error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
if (error)
goto abort_error;
xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
extp->ext_len);
}
set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
error = xfs_trans_commit(tp, 0);
return error;
abort_error:
xfs_trans_cancel(tp, XFS_TRANS_ABORT);
return error;
}
/*
* When this is called, all of the EFIs which did not have
* corresponding EFDs should be in the AIL. What we do now
* is free the extents associated with each one.
*
* Since we process the EFIs in normal transactions, they
* will be removed at some point after the commit. This prevents
* us from just walking down the list processing each one.
* We'll use a flag in the EFI to skip those that we've already
* processed and use the AIL iteration mechanism's generation
* count to try to speed this up at least a bit.
*
* When we start, we know that the EFIs are the only things in
* the AIL. As we process them, however, other items are added
* to the AIL. Since everything added to the AIL must come after
* everything already in the AIL, we stop processing as soon as
* we see something other than an EFI in the AIL.
*/
STATIC int
xlog_recover_process_efis(
struct xlog *log)
{
xfs_log_item_t *lip;
xfs_efi_log_item_t *efip;
int error = 0;
struct xfs_ail_cursor cur;
struct xfs_ail *ailp;
ailp = log->l_ailp;
spin_lock(&ailp->xa_lock);
lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
while (lip != NULL) {
/*
* We're done when we see something other than an EFI.
* There should be no EFIs left in the AIL now.
*/
if (lip->li_type != XFS_LI_EFI) {
#ifdef DEBUG
for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
ASSERT(lip->li_type != XFS_LI_EFI);
#endif
break;
}
/*
* Skip EFIs that we've already processed.
*/
efip = (xfs_efi_log_item_t *)lip;
if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
lip = xfs_trans_ail_cursor_next(ailp, &cur);
continue;
}
spin_unlock(&ailp->xa_lock);
error = xlog_recover_process_efi(log->l_mp, efip);
spin_lock(&ailp->xa_lock);
if (error)
goto out;
lip = xfs_trans_ail_cursor_next(ailp, &cur);
}
out:
xfs_trans_ail_cursor_done(ailp, &cur);
spin_unlock(&ailp->xa_lock);
return error;
}
/*
* This routine performs a transaction to null out a bad inode pointer
* in an agi unlinked inode hash bucket.
*/
STATIC void
xlog_recover_clear_agi_bucket(
xfs_mount_t *mp,
xfs_agnumber_t agno,
int bucket)
{
xfs_trans_t *tp;
xfs_agi_t *agi;
xfs_buf_t *agibp;
int offset;
int error;
tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
0, 0, 0);
if (error)
goto out_abort;
error = xfs_read_agi(mp, tp, agno, &agibp);
if (error)
goto out_abort;
agi = XFS_BUF_TO_AGI(agibp);
agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
offset = offsetof(xfs_agi_t, agi_unlinked) +
(sizeof(xfs_agino_t) * bucket);
xfs_trans_log_buf(tp, agibp, offset,
(offset + sizeof(xfs_agino_t) - 1));
error = xfs_trans_commit(tp, 0);
if (error)
goto out_error;
return;
out_abort:
xfs_trans_cancel(tp, XFS_TRANS_ABORT);
out_error:
xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
return;
}
STATIC xfs_agino_t
xlog_recover_process_one_iunlink(
struct xfs_mount *mp,
xfs_agnumber_t agno,
xfs_agino_t agino,
int bucket)
{
struct xfs_buf *ibp;
struct xfs_dinode *dip;
struct xfs_inode *ip;
xfs_ino_t ino;
int error;
ino = XFS_AGINO_TO_INO(mp, agno, agino);
error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
if (error)
goto fail;
/*
* Get the on disk inode to find the next inode in the bucket.
*/
error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
if (error)
goto fail_iput;
ASSERT(ip->i_d.di_nlink == 0);
ASSERT(ip->i_d.di_mode != 0);
/* setup for the next pass */
agino = be32_to_cpu(dip->di_next_unlinked);
xfs_buf_relse(ibp);
/*
* Prevent any DMAPI event from being sent when the reference on
* the inode is dropped.
*/
ip->i_d.di_dmevmask = 0;
IRELE(ip);
return agino;
fail_iput:
IRELE(ip);
fail:
/*
* We can't read in the inode this bucket points to, or this inode
* is messed up. Just ditch this bucket of inodes. We will lose
* some inodes and space, but at least we won't hang.
*
* Call xlog_recover_clear_agi_bucket() to perform a transaction to
* clear the inode pointer in the bucket.
*/
xlog_recover_clear_agi_bucket(mp, agno, bucket);
return NULLAGINO;
}
/*
* xlog_iunlink_recover
*
* This is called during recovery to process any inodes which
* we unlinked but not freed when the system crashed. These
* inodes will be on the lists in the AGI blocks. What we do
* here is scan all the AGIs and fully truncate and free any
* inodes found on the lists. Each inode is removed from the
* lists when it has been fully truncated and is freed. The
* freeing of the inode and its removal from the list must be
* atomic.
*/
STATIC void
xlog_recover_process_iunlinks(
struct xlog *log)
{
xfs_mount_t *mp;
xfs_agnumber_t agno;
xfs_agi_t *agi;
xfs_buf_t *agibp;
xfs_agino_t agino;
int bucket;
int error;
uint mp_dmevmask;
mp = log->l_mp;
/*
* Prevent any DMAPI event from being sent while in this function.
*/
mp_dmevmask = mp->m_dmevmask;
mp->m_dmevmask = 0;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
/*
* Find the agi for this ag.
*/
error = xfs_read_agi(mp, NULL, agno, &agibp);
if (error) {
/*
* AGI is b0rked. Don't process it.
*
* We should probably mark the filesystem as corrupt
* after we've recovered all the ag's we can....
*/
continue;
}
/*
* Unlock the buffer so that it can be acquired in the normal
* course of the transaction to truncate and free each inode.
* Because we are not racing with anyone else here for the AGI
* buffer, we don't even need to hold it locked to read the
* initial unlinked bucket entries out of the buffer. We keep
* buffer reference though, so that it stays pinned in memory
* while we need the buffer.
*/
agi = XFS_BUF_TO_AGI(agibp);
xfs_buf_unlock(agibp);
for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
agino = be32_to_cpu(agi->agi_unlinked[bucket]);
while (agino != NULLAGINO) {
agino = xlog_recover_process_one_iunlink(mp,
agno, agino, bucket);
}
}
xfs_buf_rele(agibp);
}
mp->m_dmevmask = mp_dmevmask;
}
#ifdef DEBUG
STATIC void
xlog_pack_data_checksum(
struct xlog *log,
struct xlog_in_core *iclog,
int size)
{
int i;
__be32 *up;
uint chksum = 0;
up = (__be32 *)iclog->ic_datap;
/* divide length by 4 to get # words */
for (i = 0; i < (size >> 2); i++) {
chksum ^= be32_to_cpu(*up);
up++;
}
iclog->ic_header.h_chksum = cpu_to_be32(chksum);
}
#else
#define xlog_pack_data_checksum(log, iclog, size)
#endif
/*
* Stamp cycle number in every block
*/
void
xlog_pack_data(
struct xlog *log,
struct xlog_in_core *iclog,
int roundoff)
{
int i, j, k;
int size = iclog->ic_offset + roundoff;
__be32 cycle_lsn;
xfs_caddr_t dp;
xlog_pack_data_checksum(log, iclog, size);
cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
dp = iclog->ic_datap;
for (i = 0; i < BTOBB(size) &&
i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
*(__be32 *)dp = cycle_lsn;
dp += BBSIZE;
}
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
xlog_in_core_2_t *xhdr = iclog->ic_data;
for ( ; i < BTOBB(size); i++) {
j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
*(__be32 *)dp = cycle_lsn;
dp += BBSIZE;
}
for (i = 1; i < log->l_iclog_heads; i++) {
xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
}
}
}
STATIC void
xlog_unpack_data(
struct xlog_rec_header *rhead,
xfs_caddr_t dp,
struct xlog *log)
{
int i, j, k;
for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
dp += BBSIZE;
}
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
dp += BBSIZE;
}
}
}
STATIC int
xlog_valid_rec_header(
struct xlog *log,
struct xlog_rec_header *rhead,
xfs_daddr_t blkno)
{
int hlen;
if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
XFS_ERRLEVEL_LOW, log->l_mp);
return XFS_ERROR(EFSCORRUPTED);
}
if (unlikely(
(!rhead->h_version ||
(be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
__func__, be32_to_cpu(rhead->h_version));
return XFS_ERROR(EIO);
}
/* LR body must have data or it wouldn't have been written */
hlen = be32_to_cpu(rhead->h_len);
if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
XFS_ERRLEVEL_LOW, log->l_mp);
return XFS_ERROR(EFSCORRUPTED);
}
if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
XFS_ERRLEVEL_LOW, log->l_mp);
return XFS_ERROR(EFSCORRUPTED);
}
return 0;
}
/*
* Read the log from tail to head and process the log records found.
* Handle the two cases where the tail and head are in the same cycle
* and where the active portion of the log wraps around the end of
* the physical log separately. The pass parameter is passed through
* to the routines called to process the data and is not looked at
* here.
*/
STATIC int
xlog_do_recovery_pass(
struct xlog *log,
xfs_daddr_t head_blk,
xfs_daddr_t tail_blk,
int pass)
{
xlog_rec_header_t *rhead;
xfs_daddr_t blk_no;
xfs_caddr_t offset;
xfs_buf_t *hbp, *dbp;
int error = 0, h_size;
int bblks, split_bblks;
int hblks, split_hblks, wrapped_hblks;
struct hlist_head rhash[XLOG_RHASH_SIZE];
ASSERT(head_blk != tail_blk);
/*
* Read the header of the tail block and get the iclog buffer size from
* h_size. Use this to tell how many sectors make up the log header.
*/
if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
/*
* When using variable length iclogs, read first sector of
* iclog header and extract the header size from it. Get a
* new hbp that is the correct size.
*/
hbp = xlog_get_bp(log, 1);
if (!hbp)
return ENOMEM;
error = xlog_bread(log, tail_blk, 1, hbp, &offset);
if (error)
goto bread_err1;
rhead = (xlog_rec_header_t *)offset;
error = xlog_valid_rec_header(log, rhead, tail_blk);
if (error)
goto bread_err1;
h_size = be32_to_cpu(rhead->h_size);
if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
(h_size > XLOG_HEADER_CYCLE_SIZE)) {
hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
if (h_size % XLOG_HEADER_CYCLE_SIZE)
hblks++;
xlog_put_bp(hbp);
hbp = xlog_get_bp(log, hblks);
} else {
hblks = 1;
}
} else {
ASSERT(log->l_sectBBsize == 1);
hblks = 1;
hbp = xlog_get_bp(log, 1);
h_size = XLOG_BIG_RECORD_BSIZE;
}
if (!hbp)
return ENOMEM;
dbp = xlog_get_bp(log, BTOBB(h_size));
if (!dbp) {
xlog_put_bp(hbp);
return ENOMEM;
}
memset(rhash, 0, sizeof(rhash));
if (tail_blk <= head_blk) {
for (blk_no = tail_blk; blk_no < head_blk; ) {
error = xlog_bread(log, blk_no, hblks, hbp, &offset);
if (error)
goto bread_err2;
rhead = (xlog_rec_header_t *)offset;
error = xlog_valid_rec_header(log, rhead, blk_no);
if (error)
goto bread_err2;
/* blocks in data section */
bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
error = xlog_bread(log, blk_no + hblks, bblks, dbp,
&offset);
if (error)
goto bread_err2;
xlog_unpack_data(rhead, offset, log);
if ((error = xlog_recover_process_data(log,
rhash, rhead, offset, pass)))
goto bread_err2;
blk_no += bblks + hblks;
}
} else {
/*
* Perform recovery around the end of the physical log.
* When the head is not on the same cycle number as the tail,
* we can't do a sequential recovery as above.
*/
blk_no = tail_blk;
while (blk_no < log->l_logBBsize) {
/*
* Check for header wrapping around physical end-of-log
*/
offset = hbp->b_addr;
split_hblks = 0;
wrapped_hblks = 0;
if (blk_no + hblks <= log->l_logBBsize) {
/* Read header in one read */
error = xlog_bread(log, blk_no, hblks, hbp,
&offset);
if (error)
goto bread_err2;
} else {
/* This LR is split across physical log end */
if (blk_no != log->l_logBBsize) {
/* some data before physical log end */
ASSERT(blk_no <= INT_MAX);
split_hblks = log->l_logBBsize - (int)blk_no;
ASSERT(split_hblks > 0);
error = xlog_bread(log, blk_no,
split_hblks, hbp,
&offset);
if (error)
goto bread_err2;
}
/*
* Note: this black magic still works with
* large sector sizes (non-512) only because:
* - we increased the buffer size originally
* by 1 sector giving us enough extra space
* for the second read;
* - the log start is guaranteed to be sector
* aligned;
* - we read the log end (LR header start)
* _first_, then the log start (LR header end)
* - order is important.
*/
wrapped_hblks = hblks - split_hblks;
error = xlog_bread_offset(log, 0,
wrapped_hblks, hbp,
offset + BBTOB(split_hblks));
if (error)
goto bread_err2;
}
rhead = (xlog_rec_header_t *)offset;
error = xlog_valid_rec_header(log, rhead,
split_hblks ? blk_no : 0);
if (error)
goto bread_err2;
bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
blk_no += hblks;
/* Read in data for log record */
if (blk_no + bblks <= log->l_logBBsize) {
error = xlog_bread(log, blk_no, bblks, dbp,
&offset);
if (error)
goto bread_err2;
} else {
/* This log record is split across the
* physical end of log */
offset = dbp->b_addr;
split_bblks = 0;
if (blk_no != log->l_logBBsize) {
/* some data is before the physical
* end of log */
ASSERT(!wrapped_hblks);
ASSERT(blk_no <= INT_MAX);
split_bblks =
log->l_logBBsize - (int)blk_no;
ASSERT(split_bblks > 0);
error = xlog_bread(log, blk_no,
split_bblks, dbp,
&offset);
if (error)
goto bread_err2;
}
/*
* Note: this black magic still works with
* large sector sizes (non-512) only because:
* - we increased the buffer size originally
* by 1 sector giving us enough extra space
* for the second read;
* - the log start is guaranteed to be sector
* aligned;
* - we read the log end (LR header start)
* _first_, then the log start (LR header end)
* - order is important.
*/
error = xlog_bread_offset(log, 0,
bblks - split_bblks, hbp,
offset + BBTOB(split_bblks));
if (error)
goto bread_err2;
}
xlog_unpack_data(rhead, offset, log);
if ((error = xlog_recover_process_data(log, rhash,
rhead, offset, pass)))
goto bread_err2;
blk_no += bblks;
}
ASSERT(blk_no >= log->l_logBBsize);
blk_no -= log->l_logBBsize;
/* read first part of physical log */
while (blk_no < head_blk) {
error = xlog_bread(log, blk_no, hblks, hbp, &offset);
if (error)
goto bread_err2;
rhead = (xlog_rec_header_t *)offset;
error = xlog_valid_rec_header(log, rhead, blk_no);
if (error)
goto bread_err2;
bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
error = xlog_bread(log, blk_no+hblks, bblks, dbp,
&offset);
if (error)
goto bread_err2;
xlog_unpack_data(rhead, offset, log);
if ((error = xlog_recover_process_data(log, rhash,
rhead, offset, pass)))
goto bread_err2;
blk_no += bblks + hblks;
}
}
bread_err2:
xlog_put_bp(dbp);
bread_err1:
xlog_put_bp(hbp);
return error;
}
/*
* Do the recovery of the log. We actually do this in two phases.
* The two passes are necessary in order to implement the function
* of cancelling a record written into the log. The first pass
* determines those things which have been cancelled, and the
* second pass replays log items normally except for those which
* have been cancelled. The handling of the replay and cancellations
* takes place in the log item type specific routines.
*
* The table of items which have cancel records in the log is allocated
* and freed at this level, since only here do we know when all of
* the log recovery has been completed.
*/
STATIC int
xlog_do_log_recovery(
struct xlog *log,
xfs_daddr_t head_blk,
xfs_daddr_t tail_blk)
{
int error, i;
ASSERT(head_blk != tail_blk);
/*
* First do a pass to find all of the cancelled buf log items.
* Store them in the buf_cancel_table for use in the second pass.
*/
log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
sizeof(struct list_head),
KM_SLEEP);
for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
error = xlog_do_recovery_pass(log, head_blk, tail_blk,
XLOG_RECOVER_PASS1);
if (error != 0) {
kmem_free(log->l_buf_cancel_table);
log->l_buf_cancel_table = NULL;
return error;
}
/*
* Then do a second pass to actually recover the items in the log.
* When it is complete free the table of buf cancel items.
*/
error = xlog_do_recovery_pass(log, head_blk, tail_blk,
XLOG_RECOVER_PASS2);
#ifdef DEBUG
if (!error) {
int i;
for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
ASSERT(list_empty(&log->l_buf_cancel_table[i]));
}
#endif /* DEBUG */
kmem_free(log->l_buf_cancel_table);
log->l_buf_cancel_table = NULL;
return error;
}
/*
* Do the actual recovery
*/
STATIC int
xlog_do_recover(
struct xlog *log,
xfs_daddr_t head_blk,
xfs_daddr_t tail_blk)
{
int error;
xfs_buf_t *bp;
xfs_sb_t *sbp;
/*
* First replay the images in the log.
*/
error = xlog_do_log_recovery(log, head_blk, tail_blk);
if (error)
return error;
/*
* If IO errors happened during recovery, bail out.
*/
if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
return (EIO);
}
/*
* We now update the tail_lsn since much of the recovery has completed
* and there may be space available to use. If there were no extent
* or iunlinks, we can free up the entire log and set the tail_lsn to
* be the last_sync_lsn. This was set in xlog_find_tail to be the
* lsn of the last known good LR on disk. If there are extent frees
* or iunlinks they will have some entries in the AIL; so we look at
* the AIL to determine how to set the tail_lsn.
*/
xlog_assign_tail_lsn(log->l_mp);
/*
* Now that we've finished replaying all buffer and inode
* updates, re-read in the superblock.
*/
bp = xfs_getsb(log->l_mp, 0);
XFS_BUF_UNDONE(bp);
ASSERT(!(XFS_BUF_ISWRITE(bp)));
XFS_BUF_READ(bp);
XFS_BUF_UNASYNC(bp);
xfsbdstrat(log->l_mp, bp);
error = xfs_buf_iowait(bp);
if (error) {
xfs_buf_ioerror_alert(bp, __func__);
ASSERT(0);
xfs_buf_relse(bp);
return error;
}
/* Convert superblock from on-disk format */
sbp = &log->l_mp->m_sb;
xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp));
ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
ASSERT(xfs_sb_good_version(sbp));
xfs_buf_relse(bp);
/* We've re-read the superblock so re-initialize per-cpu counters */
xfs_icsb_reinit_counters(log->l_mp);
xlog_recover_check_summary(log);
/* Normal transactions can now occur */
log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
return 0;
}
/*
* Perform recovery and re-initialize some log variables in xlog_find_tail.
*
* Return error or zero.
*/
int
xlog_recover(
struct xlog *log)
{
xfs_daddr_t head_blk, tail_blk;
int error;
/* find the tail of the log */
if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
return error;
if (tail_blk != head_blk) {
/* There used to be a comment here:
*
* disallow recovery on read-only mounts. note -- mount
* checks for ENOSPC and turns it into an intelligent
* error message.
* ...but this is no longer true. Now, unless you specify
* NORECOVERY (in which case this function would never be
* called), we just go ahead and recover. We do this all
* under the vfs layer, so we can get away with it unless
* the device itself is read-only, in which case we fail.
*/
if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
return error;
}
xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
log->l_mp->m_logname ? log->l_mp->m_logname
: "internal");
error = xlog_do_recover(log, head_blk, tail_blk);
log->l_flags |= XLOG_RECOVERY_NEEDED;
}
return error;
}
/*
* In the first part of recovery we replay inodes and buffers and build
* up the list of extent free items which need to be processed. Here
* we process the extent free items and clean up the on disk unlinked
* inode lists. This is separated from the first part of recovery so
* that the root and real-time bitmap inodes can be read in from disk in
* between the two stages. This is necessary so that we can free space
* in the real-time portion of the file system.
*/
int
xlog_recover_finish(
struct xlog *log)
{
/*
* Now we're ready to do the transactions needed for the
* rest of recovery. Start with completing all the extent
* free intent records and then process the unlinked inode
* lists. At this point, we essentially run in normal mode
* except that we're still performing recovery actions
* rather than accepting new requests.
*/
if (log->l_flags & XLOG_RECOVERY_NEEDED) {
int error;
error = xlog_recover_process_efis(log);
if (error) {
xfs_alert(log->l_mp, "Failed to recover EFIs");
return error;
}
/*
* Sync the log to get all the EFIs out of the AIL.
* This isn't absolutely necessary, but it helps in
* case the unlink transactions would have problems
* pushing the EFIs out of the way.
*/
xfs_log_force(log->l_mp, XFS_LOG_SYNC);
xlog_recover_process_iunlinks(log);
xlog_recover_check_summary(log);
xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
log->l_mp->m_logname ? log->l_mp->m_logname
: "internal");
log->l_flags &= ~XLOG_RECOVERY_NEEDED;
} else {
xfs_info(log->l_mp, "Ending clean mount");
}
return 0;
}
#if defined(DEBUG)
/*
* Read all of the agf and agi counters and check that they
* are consistent with the superblock counters.
*/
void
xlog_recover_check_summary(
struct xlog *log)
{
xfs_mount_t *mp;
xfs_agf_t *agfp;
xfs_buf_t *agfbp;
xfs_buf_t *agibp;
xfs_agnumber_t agno;
__uint64_t freeblks;
__uint64_t itotal;
__uint64_t ifree;
int error;
mp = log->l_mp;
freeblks = 0LL;
itotal = 0LL;
ifree = 0LL;
for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
if (error) {
xfs_alert(mp, "%s agf read failed agno %d error %d",
__func__, agno, error);
} else {
agfp = XFS_BUF_TO_AGF(agfbp);
freeblks += be32_to_cpu(agfp->agf_freeblks) +
be32_to_cpu(agfp->agf_flcount);
xfs_buf_relse(agfbp);
}
error = xfs_read_agi(mp, NULL, agno, &agibp);
if (error) {
xfs_alert(mp, "%s agi read failed agno %d error %d",
__func__, agno, error);
} else {
struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
itotal += be32_to_cpu(agi->agi_count);
ifree += be32_to_cpu(agi->agi_freecount);
xfs_buf_relse(agibp);
}
}
}
#endif /* DEBUG */