a56daeb7d5
sparc64: net/sunrpc/xprtrdma/verbs.c:1264: warning: long long unsigned int format, u64 arg (arg 3) net/sunrpc/xprtrdma/verbs.c:1264: warning: long long unsigned int format, u64 arg (arg 4) Cc: Trond Myklebust <trond.myklebust@fys.uio.no> Cc: "David S. Miller" <davem@davemloft.net> Cc: "J. Bruce Fields" <bfields@fieldses.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1628 lines
42 KiB
C
1628 lines
42 KiB
C
/*
|
|
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the BSD-type
|
|
* license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
*
|
|
* Neither the name of the Network Appliance, Inc. nor the names of
|
|
* its contributors may be used to endorse or promote products
|
|
* derived from this software without specific prior written
|
|
* permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* verbs.c
|
|
*
|
|
* Encapsulates the major functions managing:
|
|
* o adapters
|
|
* o endpoints
|
|
* o connections
|
|
* o buffer memory
|
|
*/
|
|
|
|
#include <linux/pci.h> /* for Tavor hack below */
|
|
|
|
#include "xprt_rdma.h"
|
|
|
|
/*
|
|
* Globals/Macros
|
|
*/
|
|
|
|
#ifdef RPC_DEBUG
|
|
# define RPCDBG_FACILITY RPCDBG_TRANS
|
|
#endif
|
|
|
|
/*
|
|
* internal functions
|
|
*/
|
|
|
|
/*
|
|
* handle replies in tasklet context, using a single, global list
|
|
* rdma tasklet function -- just turn around and call the func
|
|
* for all replies on the list
|
|
*/
|
|
|
|
static DEFINE_SPINLOCK(rpcrdma_tk_lock_g);
|
|
static LIST_HEAD(rpcrdma_tasklets_g);
|
|
|
|
static void
|
|
rpcrdma_run_tasklet(unsigned long data)
|
|
{
|
|
struct rpcrdma_rep *rep;
|
|
void (*func)(struct rpcrdma_rep *);
|
|
unsigned long flags;
|
|
|
|
data = data;
|
|
spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
|
|
while (!list_empty(&rpcrdma_tasklets_g)) {
|
|
rep = list_entry(rpcrdma_tasklets_g.next,
|
|
struct rpcrdma_rep, rr_list);
|
|
list_del(&rep->rr_list);
|
|
func = rep->rr_func;
|
|
rep->rr_func = NULL;
|
|
spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
|
|
|
|
if (func)
|
|
func(rep);
|
|
else
|
|
rpcrdma_recv_buffer_put(rep);
|
|
|
|
spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
|
|
}
|
|
spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
|
|
}
|
|
|
|
static DECLARE_TASKLET(rpcrdma_tasklet_g, rpcrdma_run_tasklet, 0UL);
|
|
|
|
static inline void
|
|
rpcrdma_schedule_tasklet(struct rpcrdma_rep *rep)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&rpcrdma_tk_lock_g, flags);
|
|
list_add_tail(&rep->rr_list, &rpcrdma_tasklets_g);
|
|
spin_unlock_irqrestore(&rpcrdma_tk_lock_g, flags);
|
|
tasklet_schedule(&rpcrdma_tasklet_g);
|
|
}
|
|
|
|
static void
|
|
rpcrdma_qp_async_error_upcall(struct ib_event *event, void *context)
|
|
{
|
|
struct rpcrdma_ep *ep = context;
|
|
|
|
dprintk("RPC: %s: QP error %X on device %s ep %p\n",
|
|
__func__, event->event, event->device->name, context);
|
|
if (ep->rep_connected == 1) {
|
|
ep->rep_connected = -EIO;
|
|
ep->rep_func(ep);
|
|
wake_up_all(&ep->rep_connect_wait);
|
|
}
|
|
}
|
|
|
|
static void
|
|
rpcrdma_cq_async_error_upcall(struct ib_event *event, void *context)
|
|
{
|
|
struct rpcrdma_ep *ep = context;
|
|
|
|
dprintk("RPC: %s: CQ error %X on device %s ep %p\n",
|
|
__func__, event->event, event->device->name, context);
|
|
if (ep->rep_connected == 1) {
|
|
ep->rep_connected = -EIO;
|
|
ep->rep_func(ep);
|
|
wake_up_all(&ep->rep_connect_wait);
|
|
}
|
|
}
|
|
|
|
static inline
|
|
void rpcrdma_event_process(struct ib_wc *wc)
|
|
{
|
|
struct rpcrdma_rep *rep =
|
|
(struct rpcrdma_rep *)(unsigned long) wc->wr_id;
|
|
|
|
dprintk("RPC: %s: event rep %p status %X opcode %X length %u\n",
|
|
__func__, rep, wc->status, wc->opcode, wc->byte_len);
|
|
|
|
if (!rep) /* send or bind completion that we don't care about */
|
|
return;
|
|
|
|
if (IB_WC_SUCCESS != wc->status) {
|
|
dprintk("RPC: %s: %s WC status %X, connection lost\n",
|
|
__func__, (wc->opcode & IB_WC_RECV) ? "recv" : "send",
|
|
wc->status);
|
|
rep->rr_len = ~0U;
|
|
rpcrdma_schedule_tasklet(rep);
|
|
return;
|
|
}
|
|
|
|
switch (wc->opcode) {
|
|
case IB_WC_RECV:
|
|
rep->rr_len = wc->byte_len;
|
|
ib_dma_sync_single_for_cpu(
|
|
rdmab_to_ia(rep->rr_buffer)->ri_id->device,
|
|
rep->rr_iov.addr, rep->rr_len, DMA_FROM_DEVICE);
|
|
/* Keep (only) the most recent credits, after check validity */
|
|
if (rep->rr_len >= 16) {
|
|
struct rpcrdma_msg *p =
|
|
(struct rpcrdma_msg *) rep->rr_base;
|
|
unsigned int credits = ntohl(p->rm_credit);
|
|
if (credits == 0) {
|
|
dprintk("RPC: %s: server"
|
|
" dropped credits to 0!\n", __func__);
|
|
/* don't deadlock */
|
|
credits = 1;
|
|
} else if (credits > rep->rr_buffer->rb_max_requests) {
|
|
dprintk("RPC: %s: server"
|
|
" over-crediting: %d (%d)\n",
|
|
__func__, credits,
|
|
rep->rr_buffer->rb_max_requests);
|
|
credits = rep->rr_buffer->rb_max_requests;
|
|
}
|
|
atomic_set(&rep->rr_buffer->rb_credits, credits);
|
|
}
|
|
/* fall through */
|
|
case IB_WC_BIND_MW:
|
|
rpcrdma_schedule_tasklet(rep);
|
|
break;
|
|
default:
|
|
dprintk("RPC: %s: unexpected WC event %X\n",
|
|
__func__, wc->opcode);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
rpcrdma_cq_poll(struct ib_cq *cq)
|
|
{
|
|
struct ib_wc wc;
|
|
int rc;
|
|
|
|
for (;;) {
|
|
rc = ib_poll_cq(cq, 1, &wc);
|
|
if (rc < 0) {
|
|
dprintk("RPC: %s: ib_poll_cq failed %i\n",
|
|
__func__, rc);
|
|
return rc;
|
|
}
|
|
if (rc == 0)
|
|
break;
|
|
|
|
rpcrdma_event_process(&wc);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* rpcrdma_cq_event_upcall
|
|
*
|
|
* This upcall handles recv, send, bind and unbind events.
|
|
* It is reentrant but processes single events in order to maintain
|
|
* ordering of receives to keep server credits.
|
|
*
|
|
* It is the responsibility of the scheduled tasklet to return
|
|
* recv buffers to the pool. NOTE: this affects synchronization of
|
|
* connection shutdown. That is, the structures required for
|
|
* the completion of the reply handler must remain intact until
|
|
* all memory has been reclaimed.
|
|
*
|
|
* Note that send events are suppressed and do not result in an upcall.
|
|
*/
|
|
static void
|
|
rpcrdma_cq_event_upcall(struct ib_cq *cq, void *context)
|
|
{
|
|
int rc;
|
|
|
|
rc = rpcrdma_cq_poll(cq);
|
|
if (rc)
|
|
return;
|
|
|
|
rc = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
|
|
if (rc) {
|
|
dprintk("RPC: %s: ib_req_notify_cq failed %i\n",
|
|
__func__, rc);
|
|
return;
|
|
}
|
|
|
|
rpcrdma_cq_poll(cq);
|
|
}
|
|
|
|
#ifdef RPC_DEBUG
|
|
static const char * const conn[] = {
|
|
"address resolved",
|
|
"address error",
|
|
"route resolved",
|
|
"route error",
|
|
"connect request",
|
|
"connect response",
|
|
"connect error",
|
|
"unreachable",
|
|
"rejected",
|
|
"established",
|
|
"disconnected",
|
|
"device removal"
|
|
};
|
|
#endif
|
|
|
|
static int
|
|
rpcrdma_conn_upcall(struct rdma_cm_id *id, struct rdma_cm_event *event)
|
|
{
|
|
struct rpcrdma_xprt *xprt = id->context;
|
|
struct rpcrdma_ia *ia = &xprt->rx_ia;
|
|
struct rpcrdma_ep *ep = &xprt->rx_ep;
|
|
struct sockaddr_in *addr = (struct sockaddr_in *) &ep->rep_remote_addr;
|
|
struct ib_qp_attr attr;
|
|
struct ib_qp_init_attr iattr;
|
|
int connstate = 0;
|
|
|
|
switch (event->event) {
|
|
case RDMA_CM_EVENT_ADDR_RESOLVED:
|
|
case RDMA_CM_EVENT_ROUTE_RESOLVED:
|
|
complete(&ia->ri_done);
|
|
break;
|
|
case RDMA_CM_EVENT_ADDR_ERROR:
|
|
ia->ri_async_rc = -EHOSTUNREACH;
|
|
dprintk("RPC: %s: CM address resolution error, ep 0x%p\n",
|
|
__func__, ep);
|
|
complete(&ia->ri_done);
|
|
break;
|
|
case RDMA_CM_EVENT_ROUTE_ERROR:
|
|
ia->ri_async_rc = -ENETUNREACH;
|
|
dprintk("RPC: %s: CM route resolution error, ep 0x%p\n",
|
|
__func__, ep);
|
|
complete(&ia->ri_done);
|
|
break;
|
|
case RDMA_CM_EVENT_ESTABLISHED:
|
|
connstate = 1;
|
|
ib_query_qp(ia->ri_id->qp, &attr,
|
|
IB_QP_MAX_QP_RD_ATOMIC | IB_QP_MAX_DEST_RD_ATOMIC,
|
|
&iattr);
|
|
dprintk("RPC: %s: %d responder resources"
|
|
" (%d initiator)\n",
|
|
__func__, attr.max_dest_rd_atomic, attr.max_rd_atomic);
|
|
goto connected;
|
|
case RDMA_CM_EVENT_CONNECT_ERROR:
|
|
connstate = -ENOTCONN;
|
|
goto connected;
|
|
case RDMA_CM_EVENT_UNREACHABLE:
|
|
connstate = -ENETDOWN;
|
|
goto connected;
|
|
case RDMA_CM_EVENT_REJECTED:
|
|
connstate = -ECONNREFUSED;
|
|
goto connected;
|
|
case RDMA_CM_EVENT_DISCONNECTED:
|
|
connstate = -ECONNABORTED;
|
|
goto connected;
|
|
case RDMA_CM_EVENT_DEVICE_REMOVAL:
|
|
connstate = -ENODEV;
|
|
connected:
|
|
dprintk("RPC: %s: %s: %u.%u.%u.%u:%u"
|
|
" (ep 0x%p event 0x%x)\n",
|
|
__func__,
|
|
(event->event <= 11) ? conn[event->event] :
|
|
"unknown connection error",
|
|
NIPQUAD(addr->sin_addr.s_addr),
|
|
ntohs(addr->sin_port),
|
|
ep, event->event);
|
|
atomic_set(&rpcx_to_rdmax(ep->rep_xprt)->rx_buf.rb_credits, 1);
|
|
dprintk("RPC: %s: %sconnected\n",
|
|
__func__, connstate > 0 ? "" : "dis");
|
|
ep->rep_connected = connstate;
|
|
ep->rep_func(ep);
|
|
wake_up_all(&ep->rep_connect_wait);
|
|
break;
|
|
default:
|
|
ia->ri_async_rc = -EINVAL;
|
|
dprintk("RPC: %s: unexpected CM event %X\n",
|
|
__func__, event->event);
|
|
complete(&ia->ri_done);
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct rdma_cm_id *
|
|
rpcrdma_create_id(struct rpcrdma_xprt *xprt,
|
|
struct rpcrdma_ia *ia, struct sockaddr *addr)
|
|
{
|
|
struct rdma_cm_id *id;
|
|
int rc;
|
|
|
|
id = rdma_create_id(rpcrdma_conn_upcall, xprt, RDMA_PS_TCP);
|
|
if (IS_ERR(id)) {
|
|
rc = PTR_ERR(id);
|
|
dprintk("RPC: %s: rdma_create_id() failed %i\n",
|
|
__func__, rc);
|
|
return id;
|
|
}
|
|
|
|
ia->ri_async_rc = 0;
|
|
rc = rdma_resolve_addr(id, NULL, addr, RDMA_RESOLVE_TIMEOUT);
|
|
if (rc) {
|
|
dprintk("RPC: %s: rdma_resolve_addr() failed %i\n",
|
|
__func__, rc);
|
|
goto out;
|
|
}
|
|
wait_for_completion(&ia->ri_done);
|
|
rc = ia->ri_async_rc;
|
|
if (rc)
|
|
goto out;
|
|
|
|
ia->ri_async_rc = 0;
|
|
rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
|
|
if (rc) {
|
|
dprintk("RPC: %s: rdma_resolve_route() failed %i\n",
|
|
__func__, rc);
|
|
goto out;
|
|
}
|
|
wait_for_completion(&ia->ri_done);
|
|
rc = ia->ri_async_rc;
|
|
if (rc)
|
|
goto out;
|
|
|
|
return id;
|
|
|
|
out:
|
|
rdma_destroy_id(id);
|
|
return ERR_PTR(rc);
|
|
}
|
|
|
|
/*
|
|
* Drain any cq, prior to teardown.
|
|
*/
|
|
static void
|
|
rpcrdma_clean_cq(struct ib_cq *cq)
|
|
{
|
|
struct ib_wc wc;
|
|
int count = 0;
|
|
|
|
while (1 == ib_poll_cq(cq, 1, &wc))
|
|
++count;
|
|
|
|
if (count)
|
|
dprintk("RPC: %s: flushed %d events (last 0x%x)\n",
|
|
__func__, count, wc.opcode);
|
|
}
|
|
|
|
/*
|
|
* Exported functions.
|
|
*/
|
|
|
|
/*
|
|
* Open and initialize an Interface Adapter.
|
|
* o initializes fields of struct rpcrdma_ia, including
|
|
* interface and provider attributes and protection zone.
|
|
*/
|
|
int
|
|
rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg)
|
|
{
|
|
int rc;
|
|
struct rpcrdma_ia *ia = &xprt->rx_ia;
|
|
|
|
init_completion(&ia->ri_done);
|
|
|
|
ia->ri_id = rpcrdma_create_id(xprt, ia, addr);
|
|
if (IS_ERR(ia->ri_id)) {
|
|
rc = PTR_ERR(ia->ri_id);
|
|
goto out1;
|
|
}
|
|
|
|
ia->ri_pd = ib_alloc_pd(ia->ri_id->device);
|
|
if (IS_ERR(ia->ri_pd)) {
|
|
rc = PTR_ERR(ia->ri_pd);
|
|
dprintk("RPC: %s: ib_alloc_pd() failed %i\n",
|
|
__func__, rc);
|
|
goto out2;
|
|
}
|
|
|
|
/*
|
|
* Optionally obtain an underlying physical identity mapping in
|
|
* order to do a memory window-based bind. This base registration
|
|
* is protected from remote access - that is enabled only by binding
|
|
* for the specific bytes targeted during each RPC operation, and
|
|
* revoked after the corresponding completion similar to a storage
|
|
* adapter.
|
|
*/
|
|
if (memreg > RPCRDMA_REGISTER) {
|
|
int mem_priv = IB_ACCESS_LOCAL_WRITE;
|
|
switch (memreg) {
|
|
#if RPCRDMA_PERSISTENT_REGISTRATION
|
|
case RPCRDMA_ALLPHYSICAL:
|
|
mem_priv |= IB_ACCESS_REMOTE_WRITE;
|
|
mem_priv |= IB_ACCESS_REMOTE_READ;
|
|
break;
|
|
#endif
|
|
case RPCRDMA_MEMWINDOWS_ASYNC:
|
|
case RPCRDMA_MEMWINDOWS:
|
|
mem_priv |= IB_ACCESS_MW_BIND;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
ia->ri_bind_mem = ib_get_dma_mr(ia->ri_pd, mem_priv);
|
|
if (IS_ERR(ia->ri_bind_mem)) {
|
|
printk(KERN_ALERT "%s: ib_get_dma_mr for "
|
|
"phys register failed with %lX\n\t"
|
|
"Will continue with degraded performance\n",
|
|
__func__, PTR_ERR(ia->ri_bind_mem));
|
|
memreg = RPCRDMA_REGISTER;
|
|
ia->ri_bind_mem = NULL;
|
|
}
|
|
}
|
|
|
|
/* Else will do memory reg/dereg for each chunk */
|
|
ia->ri_memreg_strategy = memreg;
|
|
|
|
return 0;
|
|
out2:
|
|
rdma_destroy_id(ia->ri_id);
|
|
out1:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Clean up/close an IA.
|
|
* o if event handles and PD have been initialized, free them.
|
|
* o close the IA
|
|
*/
|
|
void
|
|
rpcrdma_ia_close(struct rpcrdma_ia *ia)
|
|
{
|
|
int rc;
|
|
|
|
dprintk("RPC: %s: entering\n", __func__);
|
|
if (ia->ri_bind_mem != NULL) {
|
|
rc = ib_dereg_mr(ia->ri_bind_mem);
|
|
dprintk("RPC: %s: ib_dereg_mr returned %i\n",
|
|
__func__, rc);
|
|
}
|
|
if (ia->ri_id != NULL && !IS_ERR(ia->ri_id) && ia->ri_id->qp)
|
|
rdma_destroy_qp(ia->ri_id);
|
|
if (ia->ri_pd != NULL && !IS_ERR(ia->ri_pd)) {
|
|
rc = ib_dealloc_pd(ia->ri_pd);
|
|
dprintk("RPC: %s: ib_dealloc_pd returned %i\n",
|
|
__func__, rc);
|
|
}
|
|
if (ia->ri_id != NULL && !IS_ERR(ia->ri_id))
|
|
rdma_destroy_id(ia->ri_id);
|
|
}
|
|
|
|
/*
|
|
* Create unconnected endpoint.
|
|
*/
|
|
int
|
|
rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
|
|
struct rpcrdma_create_data_internal *cdata)
|
|
{
|
|
struct ib_device_attr devattr;
|
|
int rc;
|
|
|
|
rc = ib_query_device(ia->ri_id->device, &devattr);
|
|
if (rc) {
|
|
dprintk("RPC: %s: ib_query_device failed %d\n",
|
|
__func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
/* check provider's send/recv wr limits */
|
|
if (cdata->max_requests > devattr.max_qp_wr)
|
|
cdata->max_requests = devattr.max_qp_wr;
|
|
|
|
ep->rep_attr.event_handler = rpcrdma_qp_async_error_upcall;
|
|
ep->rep_attr.qp_context = ep;
|
|
/* send_cq and recv_cq initialized below */
|
|
ep->rep_attr.srq = NULL;
|
|
ep->rep_attr.cap.max_send_wr = cdata->max_requests;
|
|
switch (ia->ri_memreg_strategy) {
|
|
case RPCRDMA_MEMWINDOWS_ASYNC:
|
|
case RPCRDMA_MEMWINDOWS:
|
|
/* Add room for mw_binds+unbinds - overkill! */
|
|
ep->rep_attr.cap.max_send_wr++;
|
|
ep->rep_attr.cap.max_send_wr *= (2 * RPCRDMA_MAX_SEGS);
|
|
if (ep->rep_attr.cap.max_send_wr > devattr.max_qp_wr)
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
ep->rep_attr.cap.max_recv_wr = cdata->max_requests;
|
|
ep->rep_attr.cap.max_send_sge = (cdata->padding ? 4 : 2);
|
|
ep->rep_attr.cap.max_recv_sge = 1;
|
|
ep->rep_attr.cap.max_inline_data = 0;
|
|
ep->rep_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
|
|
ep->rep_attr.qp_type = IB_QPT_RC;
|
|
ep->rep_attr.port_num = ~0;
|
|
|
|
dprintk("RPC: %s: requested max: dtos: send %d recv %d; "
|
|
"iovs: send %d recv %d\n",
|
|
__func__,
|
|
ep->rep_attr.cap.max_send_wr,
|
|
ep->rep_attr.cap.max_recv_wr,
|
|
ep->rep_attr.cap.max_send_sge,
|
|
ep->rep_attr.cap.max_recv_sge);
|
|
|
|
/* set trigger for requesting send completion */
|
|
ep->rep_cqinit = ep->rep_attr.cap.max_send_wr/2 /* - 1*/;
|
|
switch (ia->ri_memreg_strategy) {
|
|
case RPCRDMA_MEMWINDOWS_ASYNC:
|
|
case RPCRDMA_MEMWINDOWS:
|
|
ep->rep_cqinit -= RPCRDMA_MAX_SEGS;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (ep->rep_cqinit <= 2)
|
|
ep->rep_cqinit = 0;
|
|
INIT_CQCOUNT(ep);
|
|
ep->rep_ia = ia;
|
|
init_waitqueue_head(&ep->rep_connect_wait);
|
|
|
|
/*
|
|
* Create a single cq for receive dto and mw_bind (only ever
|
|
* care about unbind, really). Send completions are suppressed.
|
|
* Use single threaded tasklet upcalls to maintain ordering.
|
|
*/
|
|
ep->rep_cq = ib_create_cq(ia->ri_id->device, rpcrdma_cq_event_upcall,
|
|
rpcrdma_cq_async_error_upcall, NULL,
|
|
ep->rep_attr.cap.max_recv_wr +
|
|
ep->rep_attr.cap.max_send_wr + 1, 0);
|
|
if (IS_ERR(ep->rep_cq)) {
|
|
rc = PTR_ERR(ep->rep_cq);
|
|
dprintk("RPC: %s: ib_create_cq failed: %i\n",
|
|
__func__, rc);
|
|
goto out1;
|
|
}
|
|
|
|
rc = ib_req_notify_cq(ep->rep_cq, IB_CQ_NEXT_COMP);
|
|
if (rc) {
|
|
dprintk("RPC: %s: ib_req_notify_cq failed: %i\n",
|
|
__func__, rc);
|
|
goto out2;
|
|
}
|
|
|
|
ep->rep_attr.send_cq = ep->rep_cq;
|
|
ep->rep_attr.recv_cq = ep->rep_cq;
|
|
|
|
/* Initialize cma parameters */
|
|
|
|
/* RPC/RDMA does not use private data */
|
|
ep->rep_remote_cma.private_data = NULL;
|
|
ep->rep_remote_cma.private_data_len = 0;
|
|
|
|
/* Client offers RDMA Read but does not initiate */
|
|
switch (ia->ri_memreg_strategy) {
|
|
case RPCRDMA_BOUNCEBUFFERS:
|
|
ep->rep_remote_cma.responder_resources = 0;
|
|
break;
|
|
case RPCRDMA_MTHCAFMR:
|
|
case RPCRDMA_REGISTER:
|
|
ep->rep_remote_cma.responder_resources = cdata->max_requests *
|
|
(RPCRDMA_MAX_DATA_SEGS / 8);
|
|
break;
|
|
case RPCRDMA_MEMWINDOWS:
|
|
case RPCRDMA_MEMWINDOWS_ASYNC:
|
|
#if RPCRDMA_PERSISTENT_REGISTRATION
|
|
case RPCRDMA_ALLPHYSICAL:
|
|
#endif
|
|
ep->rep_remote_cma.responder_resources = cdata->max_requests *
|
|
(RPCRDMA_MAX_DATA_SEGS / 2);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (ep->rep_remote_cma.responder_resources > devattr.max_qp_rd_atom)
|
|
ep->rep_remote_cma.responder_resources = devattr.max_qp_rd_atom;
|
|
ep->rep_remote_cma.initiator_depth = 0;
|
|
|
|
ep->rep_remote_cma.retry_count = 7;
|
|
ep->rep_remote_cma.flow_control = 0;
|
|
ep->rep_remote_cma.rnr_retry_count = 0;
|
|
|
|
return 0;
|
|
|
|
out2:
|
|
if (ib_destroy_cq(ep->rep_cq))
|
|
;
|
|
out1:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* rpcrdma_ep_destroy
|
|
*
|
|
* Disconnect and destroy endpoint. After this, the only
|
|
* valid operations on the ep are to free it (if dynamically
|
|
* allocated) or re-create it.
|
|
*
|
|
* The caller's error handling must be sure to not leak the endpoint
|
|
* if this function fails.
|
|
*/
|
|
int
|
|
rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
|
|
{
|
|
int rc;
|
|
|
|
dprintk("RPC: %s: entering, connected is %d\n",
|
|
__func__, ep->rep_connected);
|
|
|
|
if (ia->ri_id->qp) {
|
|
rc = rpcrdma_ep_disconnect(ep, ia);
|
|
if (rc)
|
|
dprintk("RPC: %s: rpcrdma_ep_disconnect"
|
|
" returned %i\n", __func__, rc);
|
|
}
|
|
|
|
ep->rep_func = NULL;
|
|
|
|
/* padding - could be done in rpcrdma_buffer_destroy... */
|
|
if (ep->rep_pad_mr) {
|
|
rpcrdma_deregister_internal(ia, ep->rep_pad_mr, &ep->rep_pad);
|
|
ep->rep_pad_mr = NULL;
|
|
}
|
|
|
|
if (ia->ri_id->qp) {
|
|
rdma_destroy_qp(ia->ri_id);
|
|
ia->ri_id->qp = NULL;
|
|
}
|
|
|
|
rpcrdma_clean_cq(ep->rep_cq);
|
|
rc = ib_destroy_cq(ep->rep_cq);
|
|
if (rc)
|
|
dprintk("RPC: %s: ib_destroy_cq returned %i\n",
|
|
__func__, rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Connect unconnected endpoint.
|
|
*/
|
|
int
|
|
rpcrdma_ep_connect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
|
|
{
|
|
struct rdma_cm_id *id;
|
|
int rc = 0;
|
|
int retry_count = 0;
|
|
int reconnect = (ep->rep_connected != 0);
|
|
|
|
if (reconnect) {
|
|
struct rpcrdma_xprt *xprt;
|
|
retry:
|
|
rc = rpcrdma_ep_disconnect(ep, ia);
|
|
if (rc && rc != -ENOTCONN)
|
|
dprintk("RPC: %s: rpcrdma_ep_disconnect"
|
|
" status %i\n", __func__, rc);
|
|
rpcrdma_clean_cq(ep->rep_cq);
|
|
|
|
xprt = container_of(ia, struct rpcrdma_xprt, rx_ia);
|
|
id = rpcrdma_create_id(xprt, ia,
|
|
(struct sockaddr *)&xprt->rx_data.addr);
|
|
if (IS_ERR(id)) {
|
|
rc = PTR_ERR(id);
|
|
goto out;
|
|
}
|
|
/* TEMP TEMP TEMP - fail if new device:
|
|
* Deregister/remarshal *all* requests!
|
|
* Close and recreate adapter, pd, etc!
|
|
* Re-determine all attributes still sane!
|
|
* More stuff I haven't thought of!
|
|
* Rrrgh!
|
|
*/
|
|
if (ia->ri_id->device != id->device) {
|
|
printk("RPC: %s: can't reconnect on "
|
|
"different device!\n", __func__);
|
|
rdma_destroy_id(id);
|
|
rc = -ENETDOWN;
|
|
goto out;
|
|
}
|
|
/* END TEMP */
|
|
rdma_destroy_id(ia->ri_id);
|
|
ia->ri_id = id;
|
|
}
|
|
|
|
rc = rdma_create_qp(ia->ri_id, ia->ri_pd, &ep->rep_attr);
|
|
if (rc) {
|
|
dprintk("RPC: %s: rdma_create_qp failed %i\n",
|
|
__func__, rc);
|
|
goto out;
|
|
}
|
|
|
|
/* XXX Tavor device performs badly with 2K MTU! */
|
|
if (strnicmp(ia->ri_id->device->dma_device->bus->name, "pci", 3) == 0) {
|
|
struct pci_dev *pcid = to_pci_dev(ia->ri_id->device->dma_device);
|
|
if (pcid->device == PCI_DEVICE_ID_MELLANOX_TAVOR &&
|
|
(pcid->vendor == PCI_VENDOR_ID_MELLANOX ||
|
|
pcid->vendor == PCI_VENDOR_ID_TOPSPIN)) {
|
|
struct ib_qp_attr attr = {
|
|
.path_mtu = IB_MTU_1024
|
|
};
|
|
rc = ib_modify_qp(ia->ri_id->qp, &attr, IB_QP_PATH_MTU);
|
|
}
|
|
}
|
|
|
|
/* Theoretically a client initiator_depth > 0 is not needed,
|
|
* but many peers fail to complete the connection unless they
|
|
* == responder_resources! */
|
|
if (ep->rep_remote_cma.initiator_depth !=
|
|
ep->rep_remote_cma.responder_resources)
|
|
ep->rep_remote_cma.initiator_depth =
|
|
ep->rep_remote_cma.responder_resources;
|
|
|
|
ep->rep_connected = 0;
|
|
|
|
rc = rdma_connect(ia->ri_id, &ep->rep_remote_cma);
|
|
if (rc) {
|
|
dprintk("RPC: %s: rdma_connect() failed with %i\n",
|
|
__func__, rc);
|
|
goto out;
|
|
}
|
|
|
|
if (reconnect)
|
|
return 0;
|
|
|
|
wait_event_interruptible(ep->rep_connect_wait, ep->rep_connected != 0);
|
|
|
|
/*
|
|
* Check state. A non-peer reject indicates no listener
|
|
* (ECONNREFUSED), which may be a transient state. All
|
|
* others indicate a transport condition which has already
|
|
* undergone a best-effort.
|
|
*/
|
|
if (ep->rep_connected == -ECONNREFUSED
|
|
&& ++retry_count <= RDMA_CONNECT_RETRY_MAX) {
|
|
dprintk("RPC: %s: non-peer_reject, retry\n", __func__);
|
|
goto retry;
|
|
}
|
|
if (ep->rep_connected <= 0) {
|
|
/* Sometimes, the only way to reliably connect to remote
|
|
* CMs is to use same nonzero values for ORD and IRD. */
|
|
ep->rep_remote_cma.initiator_depth =
|
|
ep->rep_remote_cma.responder_resources;
|
|
if (ep->rep_remote_cma.initiator_depth == 0)
|
|
++ep->rep_remote_cma.initiator_depth;
|
|
if (ep->rep_remote_cma.responder_resources == 0)
|
|
++ep->rep_remote_cma.responder_resources;
|
|
if (retry_count++ == 0)
|
|
goto retry;
|
|
rc = ep->rep_connected;
|
|
} else {
|
|
dprintk("RPC: %s: connected\n", __func__);
|
|
}
|
|
|
|
out:
|
|
if (rc)
|
|
ep->rep_connected = rc;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* rpcrdma_ep_disconnect
|
|
*
|
|
* This is separate from destroy to facilitate the ability
|
|
* to reconnect without recreating the endpoint.
|
|
*
|
|
* This call is not reentrant, and must not be made in parallel
|
|
* on the same endpoint.
|
|
*/
|
|
int
|
|
rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
|
|
{
|
|
int rc;
|
|
|
|
rpcrdma_clean_cq(ep->rep_cq);
|
|
rc = rdma_disconnect(ia->ri_id);
|
|
if (!rc) {
|
|
/* returns without wait if not connected */
|
|
wait_event_interruptible(ep->rep_connect_wait,
|
|
ep->rep_connected != 1);
|
|
dprintk("RPC: %s: after wait, %sconnected\n", __func__,
|
|
(ep->rep_connected == 1) ? "still " : "dis");
|
|
} else {
|
|
dprintk("RPC: %s: rdma_disconnect %i\n", __func__, rc);
|
|
ep->rep_connected = rc;
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Initialize buffer memory
|
|
*/
|
|
int
|
|
rpcrdma_buffer_create(struct rpcrdma_buffer *buf, struct rpcrdma_ep *ep,
|
|
struct rpcrdma_ia *ia, struct rpcrdma_create_data_internal *cdata)
|
|
{
|
|
char *p;
|
|
size_t len;
|
|
int i, rc;
|
|
|
|
buf->rb_max_requests = cdata->max_requests;
|
|
spin_lock_init(&buf->rb_lock);
|
|
atomic_set(&buf->rb_credits, 1);
|
|
|
|
/* Need to allocate:
|
|
* 1. arrays for send and recv pointers
|
|
* 2. arrays of struct rpcrdma_req to fill in pointers
|
|
* 3. array of struct rpcrdma_rep for replies
|
|
* 4. padding, if any
|
|
* 5. mw's, if any
|
|
* Send/recv buffers in req/rep need to be registered
|
|
*/
|
|
|
|
len = buf->rb_max_requests *
|
|
(sizeof(struct rpcrdma_req *) + sizeof(struct rpcrdma_rep *));
|
|
len += cdata->padding;
|
|
switch (ia->ri_memreg_strategy) {
|
|
case RPCRDMA_MTHCAFMR:
|
|
/* TBD we are perhaps overallocating here */
|
|
len += (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS *
|
|
sizeof(struct rpcrdma_mw);
|
|
break;
|
|
case RPCRDMA_MEMWINDOWS_ASYNC:
|
|
case RPCRDMA_MEMWINDOWS:
|
|
len += (buf->rb_max_requests + 1) * RPCRDMA_MAX_SEGS *
|
|
sizeof(struct rpcrdma_mw);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* allocate 1, 4 and 5 in one shot */
|
|
p = kzalloc(len, GFP_KERNEL);
|
|
if (p == NULL) {
|
|
dprintk("RPC: %s: req_t/rep_t/pad kzalloc(%zd) failed\n",
|
|
__func__, len);
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
buf->rb_pool = p; /* for freeing it later */
|
|
|
|
buf->rb_send_bufs = (struct rpcrdma_req **) p;
|
|
p = (char *) &buf->rb_send_bufs[buf->rb_max_requests];
|
|
buf->rb_recv_bufs = (struct rpcrdma_rep **) p;
|
|
p = (char *) &buf->rb_recv_bufs[buf->rb_max_requests];
|
|
|
|
/*
|
|
* Register the zeroed pad buffer, if any.
|
|
*/
|
|
if (cdata->padding) {
|
|
rc = rpcrdma_register_internal(ia, p, cdata->padding,
|
|
&ep->rep_pad_mr, &ep->rep_pad);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
p += cdata->padding;
|
|
|
|
/*
|
|
* Allocate the fmr's, or mw's for mw_bind chunk registration.
|
|
* We "cycle" the mw's in order to minimize rkey reuse,
|
|
* and also reduce unbind-to-bind collision.
|
|
*/
|
|
INIT_LIST_HEAD(&buf->rb_mws);
|
|
switch (ia->ri_memreg_strategy) {
|
|
case RPCRDMA_MTHCAFMR:
|
|
{
|
|
struct rpcrdma_mw *r = (struct rpcrdma_mw *)p;
|
|
struct ib_fmr_attr fa = {
|
|
RPCRDMA_MAX_DATA_SEGS, 1, PAGE_SHIFT
|
|
};
|
|
/* TBD we are perhaps overallocating here */
|
|
for (i = (buf->rb_max_requests+1) * RPCRDMA_MAX_SEGS; i; i--) {
|
|
r->r.fmr = ib_alloc_fmr(ia->ri_pd,
|
|
IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ,
|
|
&fa);
|
|
if (IS_ERR(r->r.fmr)) {
|
|
rc = PTR_ERR(r->r.fmr);
|
|
dprintk("RPC: %s: ib_alloc_fmr"
|
|
" failed %i\n", __func__, rc);
|
|
goto out;
|
|
}
|
|
list_add(&r->mw_list, &buf->rb_mws);
|
|
++r;
|
|
}
|
|
}
|
|
break;
|
|
case RPCRDMA_MEMWINDOWS_ASYNC:
|
|
case RPCRDMA_MEMWINDOWS:
|
|
{
|
|
struct rpcrdma_mw *r = (struct rpcrdma_mw *)p;
|
|
/* Allocate one extra request's worth, for full cycling */
|
|
for (i = (buf->rb_max_requests+1) * RPCRDMA_MAX_SEGS; i; i--) {
|
|
r->r.mw = ib_alloc_mw(ia->ri_pd);
|
|
if (IS_ERR(r->r.mw)) {
|
|
rc = PTR_ERR(r->r.mw);
|
|
dprintk("RPC: %s: ib_alloc_mw"
|
|
" failed %i\n", __func__, rc);
|
|
goto out;
|
|
}
|
|
list_add(&r->mw_list, &buf->rb_mws);
|
|
++r;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Allocate/init the request/reply buffers. Doing this
|
|
* using kmalloc for now -- one for each buf.
|
|
*/
|
|
for (i = 0; i < buf->rb_max_requests; i++) {
|
|
struct rpcrdma_req *req;
|
|
struct rpcrdma_rep *rep;
|
|
|
|
len = cdata->inline_wsize + sizeof(struct rpcrdma_req);
|
|
/* RPC layer requests *double* size + 1K RPC_SLACK_SPACE! */
|
|
/* Typical ~2400b, so rounding up saves work later */
|
|
if (len < 4096)
|
|
len = 4096;
|
|
req = kmalloc(len, GFP_KERNEL);
|
|
if (req == NULL) {
|
|
dprintk("RPC: %s: request buffer %d alloc"
|
|
" failed\n", __func__, i);
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
memset(req, 0, sizeof(struct rpcrdma_req));
|
|
buf->rb_send_bufs[i] = req;
|
|
buf->rb_send_bufs[i]->rl_buffer = buf;
|
|
|
|
rc = rpcrdma_register_internal(ia, req->rl_base,
|
|
len - offsetof(struct rpcrdma_req, rl_base),
|
|
&buf->rb_send_bufs[i]->rl_handle,
|
|
&buf->rb_send_bufs[i]->rl_iov);
|
|
if (rc)
|
|
goto out;
|
|
|
|
buf->rb_send_bufs[i]->rl_size = len-sizeof(struct rpcrdma_req);
|
|
|
|
len = cdata->inline_rsize + sizeof(struct rpcrdma_rep);
|
|
rep = kmalloc(len, GFP_KERNEL);
|
|
if (rep == NULL) {
|
|
dprintk("RPC: %s: reply buffer %d alloc failed\n",
|
|
__func__, i);
|
|
rc = -ENOMEM;
|
|
goto out;
|
|
}
|
|
memset(rep, 0, sizeof(struct rpcrdma_rep));
|
|
buf->rb_recv_bufs[i] = rep;
|
|
buf->rb_recv_bufs[i]->rr_buffer = buf;
|
|
init_waitqueue_head(&rep->rr_unbind);
|
|
|
|
rc = rpcrdma_register_internal(ia, rep->rr_base,
|
|
len - offsetof(struct rpcrdma_rep, rr_base),
|
|
&buf->rb_recv_bufs[i]->rr_handle,
|
|
&buf->rb_recv_bufs[i]->rr_iov);
|
|
if (rc)
|
|
goto out;
|
|
|
|
}
|
|
dprintk("RPC: %s: max_requests %d\n",
|
|
__func__, buf->rb_max_requests);
|
|
/* done */
|
|
return 0;
|
|
out:
|
|
rpcrdma_buffer_destroy(buf);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Unregister and destroy buffer memory. Need to deal with
|
|
* partial initialization, so it's callable from failed create.
|
|
* Must be called before destroying endpoint, as registrations
|
|
* reference it.
|
|
*/
|
|
void
|
|
rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
|
|
{
|
|
int rc, i;
|
|
struct rpcrdma_ia *ia = rdmab_to_ia(buf);
|
|
|
|
/* clean up in reverse order from create
|
|
* 1. recv mr memory (mr free, then kfree)
|
|
* 1a. bind mw memory
|
|
* 2. send mr memory (mr free, then kfree)
|
|
* 3. padding (if any) [moved to rpcrdma_ep_destroy]
|
|
* 4. arrays
|
|
*/
|
|
dprintk("RPC: %s: entering\n", __func__);
|
|
|
|
for (i = 0; i < buf->rb_max_requests; i++) {
|
|
if (buf->rb_recv_bufs && buf->rb_recv_bufs[i]) {
|
|
rpcrdma_deregister_internal(ia,
|
|
buf->rb_recv_bufs[i]->rr_handle,
|
|
&buf->rb_recv_bufs[i]->rr_iov);
|
|
kfree(buf->rb_recv_bufs[i]);
|
|
}
|
|
if (buf->rb_send_bufs && buf->rb_send_bufs[i]) {
|
|
while (!list_empty(&buf->rb_mws)) {
|
|
struct rpcrdma_mw *r;
|
|
r = list_entry(buf->rb_mws.next,
|
|
struct rpcrdma_mw, mw_list);
|
|
list_del(&r->mw_list);
|
|
switch (ia->ri_memreg_strategy) {
|
|
case RPCRDMA_MTHCAFMR:
|
|
rc = ib_dealloc_fmr(r->r.fmr);
|
|
if (rc)
|
|
dprintk("RPC: %s:"
|
|
" ib_dealloc_fmr"
|
|
" failed %i\n",
|
|
__func__, rc);
|
|
break;
|
|
case RPCRDMA_MEMWINDOWS_ASYNC:
|
|
case RPCRDMA_MEMWINDOWS:
|
|
rc = ib_dealloc_mw(r->r.mw);
|
|
if (rc)
|
|
dprintk("RPC: %s:"
|
|
" ib_dealloc_mw"
|
|
" failed %i\n",
|
|
__func__, rc);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
rpcrdma_deregister_internal(ia,
|
|
buf->rb_send_bufs[i]->rl_handle,
|
|
&buf->rb_send_bufs[i]->rl_iov);
|
|
kfree(buf->rb_send_bufs[i]);
|
|
}
|
|
}
|
|
|
|
kfree(buf->rb_pool);
|
|
}
|
|
|
|
/*
|
|
* Get a set of request/reply buffers.
|
|
*
|
|
* Reply buffer (if needed) is attached to send buffer upon return.
|
|
* Rule:
|
|
* rb_send_index and rb_recv_index MUST always be pointing to the
|
|
* *next* available buffer (non-NULL). They are incremented after
|
|
* removing buffers, and decremented *before* returning them.
|
|
*/
|
|
struct rpcrdma_req *
|
|
rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
|
|
{
|
|
struct rpcrdma_req *req;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&buffers->rb_lock, flags);
|
|
if (buffers->rb_send_index == buffers->rb_max_requests) {
|
|
spin_unlock_irqrestore(&buffers->rb_lock, flags);
|
|
dprintk("RPC: %s: out of request buffers\n", __func__);
|
|
return ((struct rpcrdma_req *)NULL);
|
|
}
|
|
|
|
req = buffers->rb_send_bufs[buffers->rb_send_index];
|
|
if (buffers->rb_send_index < buffers->rb_recv_index) {
|
|
dprintk("RPC: %s: %d extra receives outstanding (ok)\n",
|
|
__func__,
|
|
buffers->rb_recv_index - buffers->rb_send_index);
|
|
req->rl_reply = NULL;
|
|
} else {
|
|
req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index];
|
|
buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL;
|
|
}
|
|
buffers->rb_send_bufs[buffers->rb_send_index++] = NULL;
|
|
if (!list_empty(&buffers->rb_mws)) {
|
|
int i = RPCRDMA_MAX_SEGS - 1;
|
|
do {
|
|
struct rpcrdma_mw *r;
|
|
r = list_entry(buffers->rb_mws.next,
|
|
struct rpcrdma_mw, mw_list);
|
|
list_del(&r->mw_list);
|
|
req->rl_segments[i].mr_chunk.rl_mw = r;
|
|
} while (--i >= 0);
|
|
}
|
|
spin_unlock_irqrestore(&buffers->rb_lock, flags);
|
|
return req;
|
|
}
|
|
|
|
/*
|
|
* Put request/reply buffers back into pool.
|
|
* Pre-decrement counter/array index.
|
|
*/
|
|
void
|
|
rpcrdma_buffer_put(struct rpcrdma_req *req)
|
|
{
|
|
struct rpcrdma_buffer *buffers = req->rl_buffer;
|
|
struct rpcrdma_ia *ia = rdmab_to_ia(buffers);
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
BUG_ON(req->rl_nchunks != 0);
|
|
spin_lock_irqsave(&buffers->rb_lock, flags);
|
|
buffers->rb_send_bufs[--buffers->rb_send_index] = req;
|
|
req->rl_niovs = 0;
|
|
if (req->rl_reply) {
|
|
buffers->rb_recv_bufs[--buffers->rb_recv_index] = req->rl_reply;
|
|
init_waitqueue_head(&req->rl_reply->rr_unbind);
|
|
req->rl_reply->rr_func = NULL;
|
|
req->rl_reply = NULL;
|
|
}
|
|
switch (ia->ri_memreg_strategy) {
|
|
case RPCRDMA_MTHCAFMR:
|
|
case RPCRDMA_MEMWINDOWS_ASYNC:
|
|
case RPCRDMA_MEMWINDOWS:
|
|
/*
|
|
* Cycle mw's back in reverse order, and "spin" them.
|
|
* This delays and scrambles reuse as much as possible.
|
|
*/
|
|
i = 1;
|
|
do {
|
|
struct rpcrdma_mw **mw;
|
|
mw = &req->rl_segments[i].mr_chunk.rl_mw;
|
|
list_add_tail(&(*mw)->mw_list, &buffers->rb_mws);
|
|
*mw = NULL;
|
|
} while (++i < RPCRDMA_MAX_SEGS);
|
|
list_add_tail(&req->rl_segments[0].mr_chunk.rl_mw->mw_list,
|
|
&buffers->rb_mws);
|
|
req->rl_segments[0].mr_chunk.rl_mw = NULL;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&buffers->rb_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Recover reply buffers from pool.
|
|
* This happens when recovering from error conditions.
|
|
* Post-increment counter/array index.
|
|
*/
|
|
void
|
|
rpcrdma_recv_buffer_get(struct rpcrdma_req *req)
|
|
{
|
|
struct rpcrdma_buffer *buffers = req->rl_buffer;
|
|
unsigned long flags;
|
|
|
|
if (req->rl_iov.length == 0) /* special case xprt_rdma_allocate() */
|
|
buffers = ((struct rpcrdma_req *) buffers)->rl_buffer;
|
|
spin_lock_irqsave(&buffers->rb_lock, flags);
|
|
if (buffers->rb_recv_index < buffers->rb_max_requests) {
|
|
req->rl_reply = buffers->rb_recv_bufs[buffers->rb_recv_index];
|
|
buffers->rb_recv_bufs[buffers->rb_recv_index++] = NULL;
|
|
}
|
|
spin_unlock_irqrestore(&buffers->rb_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Put reply buffers back into pool when not attached to
|
|
* request. This happens in error conditions, and when
|
|
* aborting unbinds. Pre-decrement counter/array index.
|
|
*/
|
|
void
|
|
rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
|
|
{
|
|
struct rpcrdma_buffer *buffers = rep->rr_buffer;
|
|
unsigned long flags;
|
|
|
|
rep->rr_func = NULL;
|
|
spin_lock_irqsave(&buffers->rb_lock, flags);
|
|
buffers->rb_recv_bufs[--buffers->rb_recv_index] = rep;
|
|
spin_unlock_irqrestore(&buffers->rb_lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Wrappers for internal-use kmalloc memory registration, used by buffer code.
|
|
*/
|
|
|
|
int
|
|
rpcrdma_register_internal(struct rpcrdma_ia *ia, void *va, int len,
|
|
struct ib_mr **mrp, struct ib_sge *iov)
|
|
{
|
|
struct ib_phys_buf ipb;
|
|
struct ib_mr *mr;
|
|
int rc;
|
|
|
|
/*
|
|
* All memory passed here was kmalloc'ed, therefore phys-contiguous.
|
|
*/
|
|
iov->addr = ib_dma_map_single(ia->ri_id->device,
|
|
va, len, DMA_BIDIRECTIONAL);
|
|
iov->length = len;
|
|
|
|
if (ia->ri_bind_mem != NULL) {
|
|
*mrp = NULL;
|
|
iov->lkey = ia->ri_bind_mem->lkey;
|
|
return 0;
|
|
}
|
|
|
|
ipb.addr = iov->addr;
|
|
ipb.size = iov->length;
|
|
mr = ib_reg_phys_mr(ia->ri_pd, &ipb, 1,
|
|
IB_ACCESS_LOCAL_WRITE, &iov->addr);
|
|
|
|
dprintk("RPC: %s: phys convert: 0x%llx "
|
|
"registered 0x%llx length %d\n",
|
|
__func__, (unsigned long long)ipb.addr,
|
|
(unsigned long long)iov->addr, len);
|
|
|
|
if (IS_ERR(mr)) {
|
|
*mrp = NULL;
|
|
rc = PTR_ERR(mr);
|
|
dprintk("RPC: %s: failed with %i\n", __func__, rc);
|
|
} else {
|
|
*mrp = mr;
|
|
iov->lkey = mr->lkey;
|
|
rc = 0;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
rpcrdma_deregister_internal(struct rpcrdma_ia *ia,
|
|
struct ib_mr *mr, struct ib_sge *iov)
|
|
{
|
|
int rc;
|
|
|
|
ib_dma_unmap_single(ia->ri_id->device,
|
|
iov->addr, iov->length, DMA_BIDIRECTIONAL);
|
|
|
|
if (NULL == mr)
|
|
return 0;
|
|
|
|
rc = ib_dereg_mr(mr);
|
|
if (rc)
|
|
dprintk("RPC: %s: ib_dereg_mr failed %i\n", __func__, rc);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Wrappers for chunk registration, shared by read/write chunk code.
|
|
*/
|
|
|
|
static void
|
|
rpcrdma_map_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg, int writing)
|
|
{
|
|
seg->mr_dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
|
|
seg->mr_dmalen = seg->mr_len;
|
|
if (seg->mr_page)
|
|
seg->mr_dma = ib_dma_map_page(ia->ri_id->device,
|
|
seg->mr_page, offset_in_page(seg->mr_offset),
|
|
seg->mr_dmalen, seg->mr_dir);
|
|
else
|
|
seg->mr_dma = ib_dma_map_single(ia->ri_id->device,
|
|
seg->mr_offset,
|
|
seg->mr_dmalen, seg->mr_dir);
|
|
}
|
|
|
|
static void
|
|
rpcrdma_unmap_one(struct rpcrdma_ia *ia, struct rpcrdma_mr_seg *seg)
|
|
{
|
|
if (seg->mr_page)
|
|
ib_dma_unmap_page(ia->ri_id->device,
|
|
seg->mr_dma, seg->mr_dmalen, seg->mr_dir);
|
|
else
|
|
ib_dma_unmap_single(ia->ri_id->device,
|
|
seg->mr_dma, seg->mr_dmalen, seg->mr_dir);
|
|
}
|
|
|
|
int
|
|
rpcrdma_register_external(struct rpcrdma_mr_seg *seg,
|
|
int nsegs, int writing, struct rpcrdma_xprt *r_xprt)
|
|
{
|
|
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
|
|
int mem_priv = (writing ? IB_ACCESS_REMOTE_WRITE :
|
|
IB_ACCESS_REMOTE_READ);
|
|
struct rpcrdma_mr_seg *seg1 = seg;
|
|
int i;
|
|
int rc = 0;
|
|
|
|
switch (ia->ri_memreg_strategy) {
|
|
|
|
#if RPCRDMA_PERSISTENT_REGISTRATION
|
|
case RPCRDMA_ALLPHYSICAL:
|
|
rpcrdma_map_one(ia, seg, writing);
|
|
seg->mr_rkey = ia->ri_bind_mem->rkey;
|
|
seg->mr_base = seg->mr_dma;
|
|
seg->mr_nsegs = 1;
|
|
nsegs = 1;
|
|
break;
|
|
#endif
|
|
|
|
/* Registration using fast memory registration */
|
|
case RPCRDMA_MTHCAFMR:
|
|
{
|
|
u64 physaddrs[RPCRDMA_MAX_DATA_SEGS];
|
|
int len, pageoff = offset_in_page(seg->mr_offset);
|
|
seg1->mr_offset -= pageoff; /* start of page */
|
|
seg1->mr_len += pageoff;
|
|
len = -pageoff;
|
|
if (nsegs > RPCRDMA_MAX_DATA_SEGS)
|
|
nsegs = RPCRDMA_MAX_DATA_SEGS;
|
|
for (i = 0; i < nsegs;) {
|
|
rpcrdma_map_one(ia, seg, writing);
|
|
physaddrs[i] = seg->mr_dma;
|
|
len += seg->mr_len;
|
|
++seg;
|
|
++i;
|
|
/* Check for holes */
|
|
if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
|
|
offset_in_page((seg-1)->mr_offset+(seg-1)->mr_len))
|
|
break;
|
|
}
|
|
nsegs = i;
|
|
rc = ib_map_phys_fmr(seg1->mr_chunk.rl_mw->r.fmr,
|
|
physaddrs, nsegs, seg1->mr_dma);
|
|
if (rc) {
|
|
dprintk("RPC: %s: failed ib_map_phys_fmr "
|
|
"%u@0x%llx+%i (%d)... status %i\n", __func__,
|
|
len, (unsigned long long)seg1->mr_dma,
|
|
pageoff, nsegs, rc);
|
|
while (nsegs--)
|
|
rpcrdma_unmap_one(ia, --seg);
|
|
} else {
|
|
seg1->mr_rkey = seg1->mr_chunk.rl_mw->r.fmr->rkey;
|
|
seg1->mr_base = seg1->mr_dma + pageoff;
|
|
seg1->mr_nsegs = nsegs;
|
|
seg1->mr_len = len;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Registration using memory windows */
|
|
case RPCRDMA_MEMWINDOWS_ASYNC:
|
|
case RPCRDMA_MEMWINDOWS:
|
|
{
|
|
struct ib_mw_bind param;
|
|
rpcrdma_map_one(ia, seg, writing);
|
|
param.mr = ia->ri_bind_mem;
|
|
param.wr_id = 0ULL; /* no send cookie */
|
|
param.addr = seg->mr_dma;
|
|
param.length = seg->mr_len;
|
|
param.send_flags = 0;
|
|
param.mw_access_flags = mem_priv;
|
|
|
|
DECR_CQCOUNT(&r_xprt->rx_ep);
|
|
rc = ib_bind_mw(ia->ri_id->qp,
|
|
seg->mr_chunk.rl_mw->r.mw, ¶m);
|
|
if (rc) {
|
|
dprintk("RPC: %s: failed ib_bind_mw "
|
|
"%u@0x%llx status %i\n",
|
|
__func__, seg->mr_len,
|
|
(unsigned long long)seg->mr_dma, rc);
|
|
rpcrdma_unmap_one(ia, seg);
|
|
} else {
|
|
seg->mr_rkey = seg->mr_chunk.rl_mw->r.mw->rkey;
|
|
seg->mr_base = param.addr;
|
|
seg->mr_nsegs = 1;
|
|
nsegs = 1;
|
|
}
|
|
}
|
|
break;
|
|
|
|
/* Default registration each time */
|
|
default:
|
|
{
|
|
struct ib_phys_buf ipb[RPCRDMA_MAX_DATA_SEGS];
|
|
int len = 0;
|
|
if (nsegs > RPCRDMA_MAX_DATA_SEGS)
|
|
nsegs = RPCRDMA_MAX_DATA_SEGS;
|
|
for (i = 0; i < nsegs;) {
|
|
rpcrdma_map_one(ia, seg, writing);
|
|
ipb[i].addr = seg->mr_dma;
|
|
ipb[i].size = seg->mr_len;
|
|
len += seg->mr_len;
|
|
++seg;
|
|
++i;
|
|
/* Check for holes */
|
|
if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
|
|
offset_in_page((seg-1)->mr_offset+(seg-1)->mr_len))
|
|
break;
|
|
}
|
|
nsegs = i;
|
|
seg1->mr_base = seg1->mr_dma;
|
|
seg1->mr_chunk.rl_mr = ib_reg_phys_mr(ia->ri_pd,
|
|
ipb, nsegs, mem_priv, &seg1->mr_base);
|
|
if (IS_ERR(seg1->mr_chunk.rl_mr)) {
|
|
rc = PTR_ERR(seg1->mr_chunk.rl_mr);
|
|
dprintk("RPC: %s: failed ib_reg_phys_mr "
|
|
"%u@0x%llx (%d)... status %i\n",
|
|
__func__, len,
|
|
(unsigned long long)seg1->mr_dma, nsegs, rc);
|
|
while (nsegs--)
|
|
rpcrdma_unmap_one(ia, --seg);
|
|
} else {
|
|
seg1->mr_rkey = seg1->mr_chunk.rl_mr->rkey;
|
|
seg1->mr_nsegs = nsegs;
|
|
seg1->mr_len = len;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
if (rc)
|
|
return -1;
|
|
|
|
return nsegs;
|
|
}
|
|
|
|
int
|
|
rpcrdma_deregister_external(struct rpcrdma_mr_seg *seg,
|
|
struct rpcrdma_xprt *r_xprt, void *r)
|
|
{
|
|
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
|
|
struct rpcrdma_mr_seg *seg1 = seg;
|
|
int nsegs = seg->mr_nsegs, rc;
|
|
|
|
switch (ia->ri_memreg_strategy) {
|
|
|
|
#if RPCRDMA_PERSISTENT_REGISTRATION
|
|
case RPCRDMA_ALLPHYSICAL:
|
|
BUG_ON(nsegs != 1);
|
|
rpcrdma_unmap_one(ia, seg);
|
|
rc = 0;
|
|
break;
|
|
#endif
|
|
|
|
case RPCRDMA_MTHCAFMR:
|
|
{
|
|
LIST_HEAD(l);
|
|
list_add(&seg->mr_chunk.rl_mw->r.fmr->list, &l);
|
|
rc = ib_unmap_fmr(&l);
|
|
while (seg1->mr_nsegs--)
|
|
rpcrdma_unmap_one(ia, seg++);
|
|
}
|
|
if (rc)
|
|
dprintk("RPC: %s: failed ib_unmap_fmr,"
|
|
" status %i\n", __func__, rc);
|
|
break;
|
|
|
|
case RPCRDMA_MEMWINDOWS_ASYNC:
|
|
case RPCRDMA_MEMWINDOWS:
|
|
{
|
|
struct ib_mw_bind param;
|
|
BUG_ON(nsegs != 1);
|
|
param.mr = ia->ri_bind_mem;
|
|
param.addr = 0ULL; /* unbind */
|
|
param.length = 0;
|
|
param.mw_access_flags = 0;
|
|
if (r) {
|
|
param.wr_id = (u64) (unsigned long) r;
|
|
param.send_flags = IB_SEND_SIGNALED;
|
|
INIT_CQCOUNT(&r_xprt->rx_ep);
|
|
} else {
|
|
param.wr_id = 0ULL;
|
|
param.send_flags = 0;
|
|
DECR_CQCOUNT(&r_xprt->rx_ep);
|
|
}
|
|
rc = ib_bind_mw(ia->ri_id->qp,
|
|
seg->mr_chunk.rl_mw->r.mw, ¶m);
|
|
rpcrdma_unmap_one(ia, seg);
|
|
}
|
|
if (rc)
|
|
dprintk("RPC: %s: failed ib_(un)bind_mw,"
|
|
" status %i\n", __func__, rc);
|
|
else
|
|
r = NULL; /* will upcall on completion */
|
|
break;
|
|
|
|
default:
|
|
rc = ib_dereg_mr(seg1->mr_chunk.rl_mr);
|
|
seg1->mr_chunk.rl_mr = NULL;
|
|
while (seg1->mr_nsegs--)
|
|
rpcrdma_unmap_one(ia, seg++);
|
|
if (rc)
|
|
dprintk("RPC: %s: failed ib_dereg_mr,"
|
|
" status %i\n", __func__, rc);
|
|
break;
|
|
}
|
|
if (r) {
|
|
struct rpcrdma_rep *rep = r;
|
|
void (*func)(struct rpcrdma_rep *) = rep->rr_func;
|
|
rep->rr_func = NULL;
|
|
func(rep); /* dereg done, callback now */
|
|
}
|
|
return nsegs;
|
|
}
|
|
|
|
/*
|
|
* Prepost any receive buffer, then post send.
|
|
*
|
|
* Receive buffer is donated to hardware, reclaimed upon recv completion.
|
|
*/
|
|
int
|
|
rpcrdma_ep_post(struct rpcrdma_ia *ia,
|
|
struct rpcrdma_ep *ep,
|
|
struct rpcrdma_req *req)
|
|
{
|
|
struct ib_send_wr send_wr, *send_wr_fail;
|
|
struct rpcrdma_rep *rep = req->rl_reply;
|
|
int rc;
|
|
|
|
if (rep) {
|
|
rc = rpcrdma_ep_post_recv(ia, ep, rep);
|
|
if (rc)
|
|
goto out;
|
|
req->rl_reply = NULL;
|
|
}
|
|
|
|
send_wr.next = NULL;
|
|
send_wr.wr_id = 0ULL; /* no send cookie */
|
|
send_wr.sg_list = req->rl_send_iov;
|
|
send_wr.num_sge = req->rl_niovs;
|
|
send_wr.opcode = IB_WR_SEND;
|
|
send_wr.imm_data = 0;
|
|
if (send_wr.num_sge == 4) /* no need to sync any pad (constant) */
|
|
ib_dma_sync_single_for_device(ia->ri_id->device,
|
|
req->rl_send_iov[3].addr, req->rl_send_iov[3].length,
|
|
DMA_TO_DEVICE);
|
|
ib_dma_sync_single_for_device(ia->ri_id->device,
|
|
req->rl_send_iov[1].addr, req->rl_send_iov[1].length,
|
|
DMA_TO_DEVICE);
|
|
ib_dma_sync_single_for_device(ia->ri_id->device,
|
|
req->rl_send_iov[0].addr, req->rl_send_iov[0].length,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (DECR_CQCOUNT(ep) > 0)
|
|
send_wr.send_flags = 0;
|
|
else { /* Provider must take a send completion every now and then */
|
|
INIT_CQCOUNT(ep);
|
|
send_wr.send_flags = IB_SEND_SIGNALED;
|
|
}
|
|
|
|
rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail);
|
|
if (rc)
|
|
dprintk("RPC: %s: ib_post_send returned %i\n", __func__,
|
|
rc);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* (Re)post a receive buffer.
|
|
*/
|
|
int
|
|
rpcrdma_ep_post_recv(struct rpcrdma_ia *ia,
|
|
struct rpcrdma_ep *ep,
|
|
struct rpcrdma_rep *rep)
|
|
{
|
|
struct ib_recv_wr recv_wr, *recv_wr_fail;
|
|
int rc;
|
|
|
|
recv_wr.next = NULL;
|
|
recv_wr.wr_id = (u64) (unsigned long) rep;
|
|
recv_wr.sg_list = &rep->rr_iov;
|
|
recv_wr.num_sge = 1;
|
|
|
|
ib_dma_sync_single_for_cpu(ia->ri_id->device,
|
|
rep->rr_iov.addr, rep->rr_iov.length, DMA_BIDIRECTIONAL);
|
|
|
|
DECR_CQCOUNT(ep);
|
|
rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail);
|
|
|
|
if (rc)
|
|
dprintk("RPC: %s: ib_post_recv returned %i\n", __func__,
|
|
rc);
|
|
return rc;
|
|
}
|