kernel-ark/virt/kvm/kvm_main.c
Mark McLoughlin 682edb4c01 KVM: Fix assigned devices circular locking dependency
kvm->slots_lock is outer to kvm->lock, so take slots_lock
in kvm_vm_ioctl_assign_device() before taking kvm->lock,
rather than taking it in kvm_iommu_map_memslots().

Cc: stable@kernel.org
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2009-02-15 02:47:39 +02:00

2410 lines
54 KiB
C

/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "iodev.h"
#include <linux/kvm_host.h>
#include <linux/kvm.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/percpu.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/miscdevice.h>
#include <linux/vmalloc.h>
#include <linux/reboot.h>
#include <linux/debugfs.h>
#include <linux/highmem.h>
#include <linux/file.h>
#include <linux/sysdev.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/cpumask.h>
#include <linux/smp.h>
#include <linux/anon_inodes.h>
#include <linux/profile.h>
#include <linux/kvm_para.h>
#include <linux/pagemap.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <asm/processor.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#ifdef CONFIG_X86
#include <asm/msidef.h>
#endif
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
#include "coalesced_mmio.h"
#endif
#ifdef KVM_CAP_DEVICE_ASSIGNMENT
#include <linux/pci.h>
#include <linux/interrupt.h>
#include "irq.h"
#endif
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
static int msi2intx = 1;
module_param(msi2intx, bool, 0);
DEFINE_SPINLOCK(kvm_lock);
LIST_HEAD(vm_list);
static cpumask_var_t cpus_hardware_enabled;
struct kmem_cache *kvm_vcpu_cache;
EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
static __read_mostly struct preempt_ops kvm_preempt_ops;
struct dentry *kvm_debugfs_dir;
static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
unsigned long arg);
static bool kvm_rebooting;
#ifdef KVM_CAP_DEVICE_ASSIGNMENT
#ifdef CONFIG_X86
static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
{
int vcpu_id;
struct kvm_vcpu *vcpu;
struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
>> MSI_ADDR_DEST_ID_SHIFT;
int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
>> MSI_DATA_VECTOR_SHIFT;
int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
(unsigned long *)&dev->guest_msi.address_lo);
int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
(unsigned long *)&dev->guest_msi.data);
int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
(unsigned long *)&dev->guest_msi.data);
u32 deliver_bitmask;
BUG_ON(!ioapic);
deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
dest_id, dest_mode);
/* IOAPIC delivery mode value is the same as MSI here */
switch (delivery_mode) {
case IOAPIC_LOWEST_PRIORITY:
vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
deliver_bitmask);
if (vcpu != NULL)
kvm_apic_set_irq(vcpu, vector, trig_mode);
else
printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
break;
case IOAPIC_FIXED:
for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
if (!(deliver_bitmask & (1 << vcpu_id)))
continue;
deliver_bitmask &= ~(1 << vcpu_id);
vcpu = ioapic->kvm->vcpus[vcpu_id];
if (vcpu)
kvm_apic_set_irq(vcpu, vector, trig_mode);
}
break;
default:
printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
}
}
#else
static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
#endif
static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
int assigned_dev_id)
{
struct list_head *ptr;
struct kvm_assigned_dev_kernel *match;
list_for_each(ptr, head) {
match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
if (match->assigned_dev_id == assigned_dev_id)
return match;
}
return NULL;
}
static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
{
struct kvm_assigned_dev_kernel *assigned_dev;
assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
interrupt_work);
/* This is taken to safely inject irq inside the guest. When
* the interrupt injection (or the ioapic code) uses a
* finer-grained lock, update this
*/
mutex_lock(&assigned_dev->kvm->lock);
if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
kvm_set_irq(assigned_dev->kvm,
assigned_dev->irq_source_id,
assigned_dev->guest_irq, 1);
else if (assigned_dev->irq_requested_type &
KVM_ASSIGNED_DEV_GUEST_MSI) {
assigned_device_msi_dispatch(assigned_dev);
enable_irq(assigned_dev->host_irq);
assigned_dev->host_irq_disabled = false;
}
mutex_unlock(&assigned_dev->kvm->lock);
}
static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
{
struct kvm_assigned_dev_kernel *assigned_dev =
(struct kvm_assigned_dev_kernel *) dev_id;
schedule_work(&assigned_dev->interrupt_work);
disable_irq_nosync(irq);
assigned_dev->host_irq_disabled = true;
return IRQ_HANDLED;
}
/* Ack the irq line for an assigned device */
static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
{
struct kvm_assigned_dev_kernel *dev;
if (kian->gsi == -1)
return;
dev = container_of(kian, struct kvm_assigned_dev_kernel,
ack_notifier);
kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
/* The guest irq may be shared so this ack may be
* from another device.
*/
if (dev->host_irq_disabled) {
enable_irq(dev->host_irq);
dev->host_irq_disabled = false;
}
}
/* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
static void kvm_free_assigned_irq(struct kvm *kvm,
struct kvm_assigned_dev_kernel *assigned_dev)
{
if (!irqchip_in_kernel(kvm))
return;
kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
if (assigned_dev->irq_source_id != -1)
kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
assigned_dev->irq_source_id = -1;
if (!assigned_dev->irq_requested_type)
return;
/*
* In kvm_free_device_irq, cancel_work_sync return true if:
* 1. work is scheduled, and then cancelled.
* 2. work callback is executed.
*
* The first one ensured that the irq is disabled and no more events
* would happen. But for the second one, the irq may be enabled (e.g.
* for MSI). So we disable irq here to prevent further events.
*
* Notice this maybe result in nested disable if the interrupt type is
* INTx, but it's OK for we are going to free it.
*
* If this function is a part of VM destroy, please ensure that till
* now, the kvm state is still legal for probably we also have to wait
* interrupt_work done.
*/
disable_irq_nosync(assigned_dev->host_irq);
cancel_work_sync(&assigned_dev->interrupt_work);
free_irq(assigned_dev->host_irq, (void *)assigned_dev);
if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
pci_disable_msi(assigned_dev->dev);
assigned_dev->irq_requested_type = 0;
}
static void kvm_free_assigned_device(struct kvm *kvm,
struct kvm_assigned_dev_kernel
*assigned_dev)
{
kvm_free_assigned_irq(kvm, assigned_dev);
pci_reset_function(assigned_dev->dev);
pci_release_regions(assigned_dev->dev);
pci_disable_device(assigned_dev->dev);
pci_dev_put(assigned_dev->dev);
list_del(&assigned_dev->list);
kfree(assigned_dev);
}
void kvm_free_all_assigned_devices(struct kvm *kvm)
{
struct list_head *ptr, *ptr2;
struct kvm_assigned_dev_kernel *assigned_dev;
list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
assigned_dev = list_entry(ptr,
struct kvm_assigned_dev_kernel,
list);
kvm_free_assigned_device(kvm, assigned_dev);
}
}
static int assigned_device_update_intx(struct kvm *kvm,
struct kvm_assigned_dev_kernel *adev,
struct kvm_assigned_irq *airq)
{
adev->guest_irq = airq->guest_irq;
adev->ack_notifier.gsi = airq->guest_irq;
if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
return 0;
if (irqchip_in_kernel(kvm)) {
if (!msi2intx &&
(adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)) {
free_irq(adev->host_irq, (void *)adev);
pci_disable_msi(adev->dev);
}
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (airq->host_irq)
adev->host_irq = airq->host_irq;
else
adev->host_irq = adev->dev->irq;
/* Even though this is PCI, we don't want to use shared
* interrupts. Sharing host devices with guest-assigned devices
* on the same interrupt line is not a happy situation: there
* are going to be long delays in accepting, acking, etc.
*/
if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
0, "kvm_assigned_intx_device", (void *)adev))
return -EIO;
}
adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
KVM_ASSIGNED_DEV_HOST_INTX;
return 0;
}
#ifdef CONFIG_X86
static int assigned_device_update_msi(struct kvm *kvm,
struct kvm_assigned_dev_kernel *adev,
struct kvm_assigned_irq *airq)
{
int r;
if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
/* x86 don't care upper address of guest msi message addr */
adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
adev->guest_msi.data = airq->guest_msi.data;
adev->ack_notifier.gsi = -1;
} else if (msi2intx) {
adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
adev->guest_irq = airq->guest_irq;
adev->ack_notifier.gsi = airq->guest_irq;
}
if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
return 0;
if (irqchip_in_kernel(kvm)) {
if (!msi2intx) {
if (adev->irq_requested_type &
KVM_ASSIGNED_DEV_HOST_INTX)
free_irq(adev->host_irq, (void *)adev);
r = pci_enable_msi(adev->dev);
if (r)
return r;
}
adev->host_irq = adev->dev->irq;
if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
"kvm_assigned_msi_device", (void *)adev))
return -EIO;
}
if (!msi2intx)
adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
return 0;
}
#endif
static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
struct kvm_assigned_irq
*assigned_irq)
{
int r = 0;
struct kvm_assigned_dev_kernel *match;
mutex_lock(&kvm->lock);
match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
assigned_irq->assigned_dev_id);
if (!match) {
mutex_unlock(&kvm->lock);
return -EINVAL;
}
if (!match->irq_requested_type) {
INIT_WORK(&match->interrupt_work,
kvm_assigned_dev_interrupt_work_handler);
if (irqchip_in_kernel(kvm)) {
/* Register ack nofitier */
match->ack_notifier.gsi = -1;
match->ack_notifier.irq_acked =
kvm_assigned_dev_ack_irq;
kvm_register_irq_ack_notifier(kvm,
&match->ack_notifier);
/* Request IRQ source ID */
r = kvm_request_irq_source_id(kvm);
if (r < 0)
goto out_release;
else
match->irq_source_id = r;
#ifdef CONFIG_X86
/* Determine host device irq type, we can know the
* result from dev->msi_enabled */
if (msi2intx)
pci_enable_msi(match->dev);
#endif
}
}
if ((!msi2intx &&
(assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI)) ||
(msi2intx && match->dev->msi_enabled)) {
#ifdef CONFIG_X86
r = assigned_device_update_msi(kvm, match, assigned_irq);
if (r) {
printk(KERN_WARNING "kvm: failed to enable "
"MSI device!\n");
goto out_release;
}
#else
r = -ENOTTY;
#endif
} else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
/* Host device IRQ 0 means don't support INTx */
if (!msi2intx) {
printk(KERN_WARNING
"kvm: wait device to enable MSI!\n");
r = 0;
} else {
printk(KERN_WARNING
"kvm: failed to enable MSI device!\n");
r = -ENOTTY;
goto out_release;
}
} else {
/* Non-sharing INTx mode */
r = assigned_device_update_intx(kvm, match, assigned_irq);
if (r) {
printk(KERN_WARNING "kvm: failed to enable "
"INTx device!\n");
goto out_release;
}
}
mutex_unlock(&kvm->lock);
return r;
out_release:
mutex_unlock(&kvm->lock);
kvm_free_assigned_device(kvm, match);
return r;
}
static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
struct kvm_assigned_pci_dev *assigned_dev)
{
int r = 0;
struct kvm_assigned_dev_kernel *match;
struct pci_dev *dev;
down_read(&kvm->slots_lock);
mutex_lock(&kvm->lock);
match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
assigned_dev->assigned_dev_id);
if (match) {
/* device already assigned */
r = -EINVAL;
goto out;
}
match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
if (match == NULL) {
printk(KERN_INFO "%s: Couldn't allocate memory\n",
__func__);
r = -ENOMEM;
goto out;
}
dev = pci_get_bus_and_slot(assigned_dev->busnr,
assigned_dev->devfn);
if (!dev) {
printk(KERN_INFO "%s: host device not found\n", __func__);
r = -EINVAL;
goto out_free;
}
if (pci_enable_device(dev)) {
printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
r = -EBUSY;
goto out_put;
}
r = pci_request_regions(dev, "kvm_assigned_device");
if (r) {
printk(KERN_INFO "%s: Could not get access to device regions\n",
__func__);
goto out_disable;
}
pci_reset_function(dev);
match->assigned_dev_id = assigned_dev->assigned_dev_id;
match->host_busnr = assigned_dev->busnr;
match->host_devfn = assigned_dev->devfn;
match->flags = assigned_dev->flags;
match->dev = dev;
match->irq_source_id = -1;
match->kvm = kvm;
list_add(&match->list, &kvm->arch.assigned_dev_head);
if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
if (!kvm->arch.iommu_domain) {
r = kvm_iommu_map_guest(kvm);
if (r)
goto out_list_del;
}
r = kvm_assign_device(kvm, match);
if (r)
goto out_list_del;
}
out:
mutex_unlock(&kvm->lock);
up_read(&kvm->slots_lock);
return r;
out_list_del:
list_del(&match->list);
pci_release_regions(dev);
out_disable:
pci_disable_device(dev);
out_put:
pci_dev_put(dev);
out_free:
kfree(match);
mutex_unlock(&kvm->lock);
up_read(&kvm->slots_lock);
return r;
}
#endif
#ifdef KVM_CAP_DEVICE_DEASSIGNMENT
static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
struct kvm_assigned_pci_dev *assigned_dev)
{
int r = 0;
struct kvm_assigned_dev_kernel *match;
mutex_lock(&kvm->lock);
match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
assigned_dev->assigned_dev_id);
if (!match) {
printk(KERN_INFO "%s: device hasn't been assigned before, "
"so cannot be deassigned\n", __func__);
r = -EINVAL;
goto out;
}
if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
kvm_deassign_device(kvm, match);
kvm_free_assigned_device(kvm, match);
out:
mutex_unlock(&kvm->lock);
return r;
}
#endif
static inline int valid_vcpu(int n)
{
return likely(n >= 0 && n < KVM_MAX_VCPUS);
}
inline int kvm_is_mmio_pfn(pfn_t pfn)
{
if (pfn_valid(pfn))
return PageReserved(pfn_to_page(pfn));
return true;
}
/*
* Switches to specified vcpu, until a matching vcpu_put()
*/
void vcpu_load(struct kvm_vcpu *vcpu)
{
int cpu;
mutex_lock(&vcpu->mutex);
cpu = get_cpu();
preempt_notifier_register(&vcpu->preempt_notifier);
kvm_arch_vcpu_load(vcpu, cpu);
put_cpu();
}
void vcpu_put(struct kvm_vcpu *vcpu)
{
preempt_disable();
kvm_arch_vcpu_put(vcpu);
preempt_notifier_unregister(&vcpu->preempt_notifier);
preempt_enable();
mutex_unlock(&vcpu->mutex);
}
static void ack_flush(void *_completed)
{
}
static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
{
int i, cpu, me;
cpumask_var_t cpus;
bool called = true;
struct kvm_vcpu *vcpu;
if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
cpumask_clear(cpus);
me = get_cpu();
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
vcpu = kvm->vcpus[i];
if (!vcpu)
continue;
if (test_and_set_bit(req, &vcpu->requests))
continue;
cpu = vcpu->cpu;
if (cpus != NULL && cpu != -1 && cpu != me)
cpumask_set_cpu(cpu, cpus);
}
if (unlikely(cpus == NULL))
smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
else if (!cpumask_empty(cpus))
smp_call_function_many(cpus, ack_flush, NULL, 1);
else
called = false;
put_cpu();
free_cpumask_var(cpus);
return called;
}
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
++kvm->stat.remote_tlb_flush;
}
void kvm_reload_remote_mmus(struct kvm *kvm)
{
make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
}
int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
{
struct page *page;
int r;
mutex_init(&vcpu->mutex);
vcpu->cpu = -1;
vcpu->kvm = kvm;
vcpu->vcpu_id = id;
init_waitqueue_head(&vcpu->wq);
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
r = -ENOMEM;
goto fail;
}
vcpu->run = page_address(page);
r = kvm_arch_vcpu_init(vcpu);
if (r < 0)
goto fail_free_run;
return 0;
fail_free_run:
free_page((unsigned long)vcpu->run);
fail:
return r;
}
EXPORT_SYMBOL_GPL(kvm_vcpu_init);
void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
{
kvm_arch_vcpu_uninit(vcpu);
free_page((unsigned long)vcpu->run);
}
EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
{
return container_of(mn, struct kvm, mmu_notifier);
}
static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int need_tlb_flush;
/*
* When ->invalidate_page runs, the linux pte has been zapped
* already but the page is still allocated until
* ->invalidate_page returns. So if we increase the sequence
* here the kvm page fault will notice if the spte can't be
* established because the page is going to be freed. If
* instead the kvm page fault establishes the spte before
* ->invalidate_page runs, kvm_unmap_hva will release it
* before returning.
*
* The sequence increase only need to be seen at spin_unlock
* time, and not at spin_lock time.
*
* Increasing the sequence after the spin_unlock would be
* unsafe because the kvm page fault could then establish the
* pte after kvm_unmap_hva returned, without noticing the page
* is going to be freed.
*/
spin_lock(&kvm->mmu_lock);
kvm->mmu_notifier_seq++;
need_tlb_flush = kvm_unmap_hva(kvm, address);
spin_unlock(&kvm->mmu_lock);
/* we've to flush the tlb before the pages can be freed */
if (need_tlb_flush)
kvm_flush_remote_tlbs(kvm);
}
static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int need_tlb_flush = 0;
spin_lock(&kvm->mmu_lock);
/*
* The count increase must become visible at unlock time as no
* spte can be established without taking the mmu_lock and
* count is also read inside the mmu_lock critical section.
*/
kvm->mmu_notifier_count++;
for (; start < end; start += PAGE_SIZE)
need_tlb_flush |= kvm_unmap_hva(kvm, start);
spin_unlock(&kvm->mmu_lock);
/* we've to flush the tlb before the pages can be freed */
if (need_tlb_flush)
kvm_flush_remote_tlbs(kvm);
}
static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
spin_lock(&kvm->mmu_lock);
/*
* This sequence increase will notify the kvm page fault that
* the page that is going to be mapped in the spte could have
* been freed.
*/
kvm->mmu_notifier_seq++;
/*
* The above sequence increase must be visible before the
* below count decrease but both values are read by the kvm
* page fault under mmu_lock spinlock so we don't need to add
* a smb_wmb() here in between the two.
*/
kvm->mmu_notifier_count--;
spin_unlock(&kvm->mmu_lock);
BUG_ON(kvm->mmu_notifier_count < 0);
}
static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
struct mm_struct *mm,
unsigned long address)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
int young;
spin_lock(&kvm->mmu_lock);
young = kvm_age_hva(kvm, address);
spin_unlock(&kvm->mmu_lock);
if (young)
kvm_flush_remote_tlbs(kvm);
return young;
}
static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
struct mm_struct *mm)
{
struct kvm *kvm = mmu_notifier_to_kvm(mn);
kvm_arch_flush_shadow(kvm);
}
static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
.invalidate_page = kvm_mmu_notifier_invalidate_page,
.invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
.invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
.clear_flush_young = kvm_mmu_notifier_clear_flush_young,
.release = kvm_mmu_notifier_release,
};
#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
static struct kvm *kvm_create_vm(void)
{
struct kvm *kvm = kvm_arch_create_vm();
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
struct page *page;
#endif
if (IS_ERR(kvm))
goto out;
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
kfree(kvm);
return ERR_PTR(-ENOMEM);
}
kvm->coalesced_mmio_ring =
(struct kvm_coalesced_mmio_ring *)page_address(page);
#endif
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
{
int err;
kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
if (err) {
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
put_page(page);
#endif
kfree(kvm);
return ERR_PTR(err);
}
}
#endif
kvm->mm = current->mm;
atomic_inc(&kvm->mm->mm_count);
spin_lock_init(&kvm->mmu_lock);
kvm_io_bus_init(&kvm->pio_bus);
mutex_init(&kvm->lock);
kvm_io_bus_init(&kvm->mmio_bus);
init_rwsem(&kvm->slots_lock);
atomic_set(&kvm->users_count, 1);
spin_lock(&kvm_lock);
list_add(&kvm->vm_list, &vm_list);
spin_unlock(&kvm_lock);
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
kvm_coalesced_mmio_init(kvm);
#endif
out:
return kvm;
}
/*
* Free any memory in @free but not in @dont.
*/
static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
if (!dont || free->rmap != dont->rmap)
vfree(free->rmap);
if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
vfree(free->dirty_bitmap);
if (!dont || free->lpage_info != dont->lpage_info)
vfree(free->lpage_info);
free->npages = 0;
free->dirty_bitmap = NULL;
free->rmap = NULL;
free->lpage_info = NULL;
}
void kvm_free_physmem(struct kvm *kvm)
{
int i;
for (i = 0; i < kvm->nmemslots; ++i)
kvm_free_physmem_slot(&kvm->memslots[i], NULL);
}
static void kvm_destroy_vm(struct kvm *kvm)
{
struct mm_struct *mm = kvm->mm;
kvm_arch_sync_events(kvm);
spin_lock(&kvm_lock);
list_del(&kvm->vm_list);
spin_unlock(&kvm_lock);
kvm_io_bus_destroy(&kvm->pio_bus);
kvm_io_bus_destroy(&kvm->mmio_bus);
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
if (kvm->coalesced_mmio_ring != NULL)
free_page((unsigned long)kvm->coalesced_mmio_ring);
#endif
#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
#endif
kvm_arch_destroy_vm(kvm);
mmdrop(mm);
}
void kvm_get_kvm(struct kvm *kvm)
{
atomic_inc(&kvm->users_count);
}
EXPORT_SYMBOL_GPL(kvm_get_kvm);
void kvm_put_kvm(struct kvm *kvm)
{
if (atomic_dec_and_test(&kvm->users_count))
kvm_destroy_vm(kvm);
}
EXPORT_SYMBOL_GPL(kvm_put_kvm);
static int kvm_vm_release(struct inode *inode, struct file *filp)
{
struct kvm *kvm = filp->private_data;
kvm_put_kvm(kvm);
return 0;
}
/*
* Allocate some memory and give it an address in the guest physical address
* space.
*
* Discontiguous memory is allowed, mostly for framebuffers.
*
* Must be called holding mmap_sem for write.
*/
int __kvm_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
int user_alloc)
{
int r;
gfn_t base_gfn;
unsigned long npages;
unsigned long i;
struct kvm_memory_slot *memslot;
struct kvm_memory_slot old, new;
r = -EINVAL;
/* General sanity checks */
if (mem->memory_size & (PAGE_SIZE - 1))
goto out;
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
goto out;
if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
goto out;
if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
goto out;
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
goto out;
memslot = &kvm->memslots[mem->slot];
base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
npages = mem->memory_size >> PAGE_SHIFT;
if (!npages)
mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
new = old = *memslot;
new.base_gfn = base_gfn;
new.npages = npages;
new.flags = mem->flags;
/* Disallow changing a memory slot's size. */
r = -EINVAL;
if (npages && old.npages && npages != old.npages)
goto out_free;
/* Check for overlaps */
r = -EEXIST;
for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
struct kvm_memory_slot *s = &kvm->memslots[i];
if (s == memslot)
continue;
if (!((base_gfn + npages <= s->base_gfn) ||
(base_gfn >= s->base_gfn + s->npages)))
goto out_free;
}
/* Free page dirty bitmap if unneeded */
if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
new.dirty_bitmap = NULL;
r = -ENOMEM;
/* Allocate if a slot is being created */
#ifndef CONFIG_S390
if (npages && !new.rmap) {
new.rmap = vmalloc(npages * sizeof(struct page *));
if (!new.rmap)
goto out_free;
memset(new.rmap, 0, npages * sizeof(*new.rmap));
new.user_alloc = user_alloc;
/*
* hva_to_rmmap() serialzies with the mmu_lock and to be
* safe it has to ignore memslots with !user_alloc &&
* !userspace_addr.
*/
if (user_alloc)
new.userspace_addr = mem->userspace_addr;
else
new.userspace_addr = 0;
}
if (npages && !new.lpage_info) {
int largepages = npages / KVM_PAGES_PER_HPAGE;
if (npages % KVM_PAGES_PER_HPAGE)
largepages++;
if (base_gfn % KVM_PAGES_PER_HPAGE)
largepages++;
new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
if (!new.lpage_info)
goto out_free;
memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
if (base_gfn % KVM_PAGES_PER_HPAGE)
new.lpage_info[0].write_count = 1;
if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
new.lpage_info[largepages-1].write_count = 1;
}
/* Allocate page dirty bitmap if needed */
if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
new.dirty_bitmap = vmalloc(dirty_bytes);
if (!new.dirty_bitmap)
goto out_free;
memset(new.dirty_bitmap, 0, dirty_bytes);
}
#endif /* not defined CONFIG_S390 */
if (!npages)
kvm_arch_flush_shadow(kvm);
spin_lock(&kvm->mmu_lock);
if (mem->slot >= kvm->nmemslots)
kvm->nmemslots = mem->slot + 1;
*memslot = new;
spin_unlock(&kvm->mmu_lock);
r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
if (r) {
spin_lock(&kvm->mmu_lock);
*memslot = old;
spin_unlock(&kvm->mmu_lock);
goto out_free;
}
kvm_free_physmem_slot(&old, npages ? &new : NULL);
/* Slot deletion case: we have to update the current slot */
if (!npages)
*memslot = old;
#ifdef CONFIG_DMAR
/* map the pages in iommu page table */
r = kvm_iommu_map_pages(kvm, base_gfn, npages);
if (r)
goto out;
#endif
return 0;
out_free:
kvm_free_physmem_slot(&new, &old);
out:
return r;
}
EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
int kvm_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
int user_alloc)
{
int r;
down_write(&kvm->slots_lock);
r = __kvm_set_memory_region(kvm, mem, user_alloc);
up_write(&kvm->slots_lock);
return r;
}
EXPORT_SYMBOL_GPL(kvm_set_memory_region);
int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
struct
kvm_userspace_memory_region *mem,
int user_alloc)
{
if (mem->slot >= KVM_MEMORY_SLOTS)
return -EINVAL;
return kvm_set_memory_region(kvm, mem, user_alloc);
}
int kvm_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log, int *is_dirty)
{
struct kvm_memory_slot *memslot;
int r, i;
int n;
unsigned long any = 0;
r = -EINVAL;
if (log->slot >= KVM_MEMORY_SLOTS)
goto out;
memslot = &kvm->memslots[log->slot];
r = -ENOENT;
if (!memslot->dirty_bitmap)
goto out;
n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
for (i = 0; !any && i < n/sizeof(long); ++i)
any = memslot->dirty_bitmap[i];
r = -EFAULT;
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
goto out;
if (any)
*is_dirty = 1;
r = 0;
out:
return r;
}
int is_error_page(struct page *page)
{
return page == bad_page;
}
EXPORT_SYMBOL_GPL(is_error_page);
int is_error_pfn(pfn_t pfn)
{
return pfn == bad_pfn;
}
EXPORT_SYMBOL_GPL(is_error_pfn);
static inline unsigned long bad_hva(void)
{
return PAGE_OFFSET;
}
int kvm_is_error_hva(unsigned long addr)
{
return addr == bad_hva();
}
EXPORT_SYMBOL_GPL(kvm_is_error_hva);
struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
{
int i;
for (i = 0; i < kvm->nmemslots; ++i) {
struct kvm_memory_slot *memslot = &kvm->memslots[i];
if (gfn >= memslot->base_gfn
&& gfn < memslot->base_gfn + memslot->npages)
return memslot;
}
return NULL;
}
EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
{
gfn = unalias_gfn(kvm, gfn);
return gfn_to_memslot_unaliased(kvm, gfn);
}
int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
{
int i;
gfn = unalias_gfn(kvm, gfn);
for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
struct kvm_memory_slot *memslot = &kvm->memslots[i];
if (gfn >= memslot->base_gfn
&& gfn < memslot->base_gfn + memslot->npages)
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
{
struct kvm_memory_slot *slot;
gfn = unalias_gfn(kvm, gfn);
slot = gfn_to_memslot_unaliased(kvm, gfn);
if (!slot)
return bad_hva();
return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
}
EXPORT_SYMBOL_GPL(gfn_to_hva);
pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
{
struct page *page[1];
unsigned long addr;
int npages;
pfn_t pfn;
might_sleep();
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr)) {
get_page(bad_page);
return page_to_pfn(bad_page);
}
npages = get_user_pages_fast(addr, 1, 1, page);
if (unlikely(npages != 1)) {
struct vm_area_struct *vma;
down_read(&current->mm->mmap_sem);
vma = find_vma(current->mm, addr);
if (vma == NULL || addr < vma->vm_start ||
!(vma->vm_flags & VM_PFNMAP)) {
up_read(&current->mm->mmap_sem);
get_page(bad_page);
return page_to_pfn(bad_page);
}
pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
up_read(&current->mm->mmap_sem);
BUG_ON(!kvm_is_mmio_pfn(pfn));
} else
pfn = page_to_pfn(page[0]);
return pfn;
}
EXPORT_SYMBOL_GPL(gfn_to_pfn);
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
{
pfn_t pfn;
pfn = gfn_to_pfn(kvm, gfn);
if (!kvm_is_mmio_pfn(pfn))
return pfn_to_page(pfn);
WARN_ON(kvm_is_mmio_pfn(pfn));
get_page(bad_page);
return bad_page;
}
EXPORT_SYMBOL_GPL(gfn_to_page);
void kvm_release_page_clean(struct page *page)
{
kvm_release_pfn_clean(page_to_pfn(page));
}
EXPORT_SYMBOL_GPL(kvm_release_page_clean);
void kvm_release_pfn_clean(pfn_t pfn)
{
if (!kvm_is_mmio_pfn(pfn))
put_page(pfn_to_page(pfn));
}
EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
void kvm_release_page_dirty(struct page *page)
{
kvm_release_pfn_dirty(page_to_pfn(page));
}
EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
void kvm_release_pfn_dirty(pfn_t pfn)
{
kvm_set_pfn_dirty(pfn);
kvm_release_pfn_clean(pfn);
}
EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
void kvm_set_page_dirty(struct page *page)
{
kvm_set_pfn_dirty(page_to_pfn(page));
}
EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
void kvm_set_pfn_dirty(pfn_t pfn)
{
if (!kvm_is_mmio_pfn(pfn)) {
struct page *page = pfn_to_page(pfn);
if (!PageReserved(page))
SetPageDirty(page);
}
}
EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
void kvm_set_pfn_accessed(pfn_t pfn)
{
if (!kvm_is_mmio_pfn(pfn))
mark_page_accessed(pfn_to_page(pfn));
}
EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
void kvm_get_pfn(pfn_t pfn)
{
if (!kvm_is_mmio_pfn(pfn))
get_page(pfn_to_page(pfn));
}
EXPORT_SYMBOL_GPL(kvm_get_pfn);
static int next_segment(unsigned long len, int offset)
{
if (len > PAGE_SIZE - offset)
return PAGE_SIZE - offset;
else
return len;
}
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
int len)
{
int r;
unsigned long addr;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return -EFAULT;
r = copy_from_user(data, (void __user *)addr + offset, len);
if (r)
return -EFAULT;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_read_guest_page);
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
if (ret < 0)
return ret;
offset = 0;
len -= seg;
data += seg;
++gfn;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_read_guest);
int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
unsigned long len)
{
int r;
unsigned long addr;
gfn_t gfn = gpa >> PAGE_SHIFT;
int offset = offset_in_page(gpa);
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return -EFAULT;
pagefault_disable();
r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
pagefault_enable();
if (r)
return -EFAULT;
return 0;
}
EXPORT_SYMBOL(kvm_read_guest_atomic);
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
int offset, int len)
{
int r;
unsigned long addr;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return -EFAULT;
r = copy_to_user((void __user *)addr + offset, data, len);
if (r)
return -EFAULT;
mark_page_dirty(kvm, gfn);
return 0;
}
EXPORT_SYMBOL_GPL(kvm_write_guest_page);
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
unsigned long len)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
if (ret < 0)
return ret;
offset = 0;
len -= seg;
data += seg;
++gfn;
}
return 0;
}
int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
{
return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
}
EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
{
gfn_t gfn = gpa >> PAGE_SHIFT;
int seg;
int offset = offset_in_page(gpa);
int ret;
while ((seg = next_segment(len, offset)) != 0) {
ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
if (ret < 0)
return ret;
offset = 0;
len -= seg;
++gfn;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_clear_guest);
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
{
struct kvm_memory_slot *memslot;
gfn = unalias_gfn(kvm, gfn);
memslot = gfn_to_memslot_unaliased(kvm, gfn);
if (memslot && memslot->dirty_bitmap) {
unsigned long rel_gfn = gfn - memslot->base_gfn;
/* avoid RMW */
if (!test_bit(rel_gfn, memslot->dirty_bitmap))
set_bit(rel_gfn, memslot->dirty_bitmap);
}
}
/*
* The vCPU has executed a HLT instruction with in-kernel mode enabled.
*/
void kvm_vcpu_block(struct kvm_vcpu *vcpu)
{
DEFINE_WAIT(wait);
for (;;) {
prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
if (kvm_cpu_has_interrupt(vcpu) ||
kvm_cpu_has_pending_timer(vcpu) ||
kvm_arch_vcpu_runnable(vcpu)) {
set_bit(KVM_REQ_UNHALT, &vcpu->requests);
break;
}
if (signal_pending(current))
break;
vcpu_put(vcpu);
schedule();
vcpu_load(vcpu);
}
finish_wait(&vcpu->wq, &wait);
}
void kvm_resched(struct kvm_vcpu *vcpu)
{
if (!need_resched())
return;
cond_resched();
}
EXPORT_SYMBOL_GPL(kvm_resched);
static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct kvm_vcpu *vcpu = vma->vm_file->private_data;
struct page *page;
if (vmf->pgoff == 0)
page = virt_to_page(vcpu->run);
#ifdef CONFIG_X86
else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
page = virt_to_page(vcpu->arch.pio_data);
#endif
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
#endif
else
return VM_FAULT_SIGBUS;
get_page(page);
vmf->page = page;
return 0;
}
static struct vm_operations_struct kvm_vcpu_vm_ops = {
.fault = kvm_vcpu_fault,
};
static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_ops = &kvm_vcpu_vm_ops;
return 0;
}
static int kvm_vcpu_release(struct inode *inode, struct file *filp)
{
struct kvm_vcpu *vcpu = filp->private_data;
kvm_put_kvm(vcpu->kvm);
return 0;
}
static struct file_operations kvm_vcpu_fops = {
.release = kvm_vcpu_release,
.unlocked_ioctl = kvm_vcpu_ioctl,
.compat_ioctl = kvm_vcpu_ioctl,
.mmap = kvm_vcpu_mmap,
};
/*
* Allocates an inode for the vcpu.
*/
static int create_vcpu_fd(struct kvm_vcpu *vcpu)
{
int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
if (fd < 0)
kvm_put_kvm(vcpu->kvm);
return fd;
}
/*
* Creates some virtual cpus. Good luck creating more than one.
*/
static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
{
int r;
struct kvm_vcpu *vcpu;
if (!valid_vcpu(n))
return -EINVAL;
vcpu = kvm_arch_vcpu_create(kvm, n);
if (IS_ERR(vcpu))
return PTR_ERR(vcpu);
preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
r = kvm_arch_vcpu_setup(vcpu);
if (r)
return r;
mutex_lock(&kvm->lock);
if (kvm->vcpus[n]) {
r = -EEXIST;
goto vcpu_destroy;
}
kvm->vcpus[n] = vcpu;
mutex_unlock(&kvm->lock);
/* Now it's all set up, let userspace reach it */
kvm_get_kvm(kvm);
r = create_vcpu_fd(vcpu);
if (r < 0)
goto unlink;
return r;
unlink:
mutex_lock(&kvm->lock);
kvm->vcpus[n] = NULL;
vcpu_destroy:
mutex_unlock(&kvm->lock);
kvm_arch_vcpu_destroy(vcpu);
return r;
}
static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
{
if (sigset) {
sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
vcpu->sigset_active = 1;
vcpu->sigset = *sigset;
} else
vcpu->sigset_active = 0;
return 0;
}
static long kvm_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
struct kvm_fpu *fpu = NULL;
struct kvm_sregs *kvm_sregs = NULL;
if (vcpu->kvm->mm != current->mm)
return -EIO;
switch (ioctl) {
case KVM_RUN:
r = -EINVAL;
if (arg)
goto out;
r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
break;
case KVM_GET_REGS: {
struct kvm_regs *kvm_regs;
r = -ENOMEM;
kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
if (!kvm_regs)
goto out;
r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
if (r)
goto out_free1;
r = -EFAULT;
if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
goto out_free1;
r = 0;
out_free1:
kfree(kvm_regs);
break;
}
case KVM_SET_REGS: {
struct kvm_regs *kvm_regs;
r = -ENOMEM;
kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
if (!kvm_regs)
goto out;
r = -EFAULT;
if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
goto out_free2;
r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
if (r)
goto out_free2;
r = 0;
out_free2:
kfree(kvm_regs);
break;
}
case KVM_GET_SREGS: {
kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
r = -ENOMEM;
if (!kvm_sregs)
goto out;
r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
goto out;
r = 0;
break;
}
case KVM_SET_SREGS: {
kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
r = -ENOMEM;
if (!kvm_sregs)
goto out;
r = -EFAULT;
if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
goto out;
r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
if (r)
goto out;
r = 0;
break;
}
case KVM_GET_MP_STATE: {
struct kvm_mp_state mp_state;
r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &mp_state, sizeof mp_state))
goto out;
r = 0;
break;
}
case KVM_SET_MP_STATE: {
struct kvm_mp_state mp_state;
r = -EFAULT;
if (copy_from_user(&mp_state, argp, sizeof mp_state))
goto out;
r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
if (r)
goto out;
r = 0;
break;
}
case KVM_TRANSLATE: {
struct kvm_translation tr;
r = -EFAULT;
if (copy_from_user(&tr, argp, sizeof tr))
goto out;
r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, &tr, sizeof tr))
goto out;
r = 0;
break;
}
case KVM_DEBUG_GUEST: {
struct kvm_debug_guest dbg;
r = -EFAULT;
if (copy_from_user(&dbg, argp, sizeof dbg))
goto out;
r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
if (r)
goto out;
r = 0;
break;
}
case KVM_SET_SIGNAL_MASK: {
struct kvm_signal_mask __user *sigmask_arg = argp;
struct kvm_signal_mask kvm_sigmask;
sigset_t sigset, *p;
p = NULL;
if (argp) {
r = -EFAULT;
if (copy_from_user(&kvm_sigmask, argp,
sizeof kvm_sigmask))
goto out;
r = -EINVAL;
if (kvm_sigmask.len != sizeof sigset)
goto out;
r = -EFAULT;
if (copy_from_user(&sigset, sigmask_arg->sigset,
sizeof sigset))
goto out;
p = &sigset;
}
r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
break;
}
case KVM_GET_FPU: {
fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
r = -ENOMEM;
if (!fpu)
goto out;
r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
goto out;
r = 0;
break;
}
case KVM_SET_FPU: {
fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
r = -ENOMEM;
if (!fpu)
goto out;
r = -EFAULT;
if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
goto out;
r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
if (r)
goto out;
r = 0;
break;
}
default:
r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
}
out:
kfree(fpu);
kfree(kvm_sregs);
return r;
}
static long kvm_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
void __user *argp = (void __user *)arg;
int r;
if (kvm->mm != current->mm)
return -EIO;
switch (ioctl) {
case KVM_CREATE_VCPU:
r = kvm_vm_ioctl_create_vcpu(kvm, arg);
if (r < 0)
goto out;
break;
case KVM_SET_USER_MEMORY_REGION: {
struct kvm_userspace_memory_region kvm_userspace_mem;
r = -EFAULT;
if (copy_from_user(&kvm_userspace_mem, argp,
sizeof kvm_userspace_mem))
goto out;
r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
if (r)
goto out;
break;
}
case KVM_GET_DIRTY_LOG: {
struct kvm_dirty_log log;
r = -EFAULT;
if (copy_from_user(&log, argp, sizeof log))
goto out;
r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
if (r)
goto out;
break;
}
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
case KVM_REGISTER_COALESCED_MMIO: {
struct kvm_coalesced_mmio_zone zone;
r = -EFAULT;
if (copy_from_user(&zone, argp, sizeof zone))
goto out;
r = -ENXIO;
r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
if (r)
goto out;
r = 0;
break;
}
case KVM_UNREGISTER_COALESCED_MMIO: {
struct kvm_coalesced_mmio_zone zone;
r = -EFAULT;
if (copy_from_user(&zone, argp, sizeof zone))
goto out;
r = -ENXIO;
r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
if (r)
goto out;
r = 0;
break;
}
#endif
#ifdef KVM_CAP_DEVICE_ASSIGNMENT
case KVM_ASSIGN_PCI_DEVICE: {
struct kvm_assigned_pci_dev assigned_dev;
r = -EFAULT;
if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
goto out;
r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
if (r)
goto out;
break;
}
case KVM_ASSIGN_IRQ: {
struct kvm_assigned_irq assigned_irq;
r = -EFAULT;
if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
goto out;
r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
if (r)
goto out;
break;
}
#endif
#ifdef KVM_CAP_DEVICE_DEASSIGNMENT
case KVM_DEASSIGN_PCI_DEVICE: {
struct kvm_assigned_pci_dev assigned_dev;
r = -EFAULT;
if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
goto out;
r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
if (r)
goto out;
break;
}
#endif
default:
r = kvm_arch_vm_ioctl(filp, ioctl, arg);
}
out:
return r;
}
static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct page *page[1];
unsigned long addr;
int npages;
gfn_t gfn = vmf->pgoff;
struct kvm *kvm = vma->vm_file->private_data;
addr = gfn_to_hva(kvm, gfn);
if (kvm_is_error_hva(addr))
return VM_FAULT_SIGBUS;
npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
NULL);
if (unlikely(npages != 1))
return VM_FAULT_SIGBUS;
vmf->page = page[0];
return 0;
}
static struct vm_operations_struct kvm_vm_vm_ops = {
.fault = kvm_vm_fault,
};
static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_ops = &kvm_vm_vm_ops;
return 0;
}
static struct file_operations kvm_vm_fops = {
.release = kvm_vm_release,
.unlocked_ioctl = kvm_vm_ioctl,
.compat_ioctl = kvm_vm_ioctl,
.mmap = kvm_vm_mmap,
};
static int kvm_dev_ioctl_create_vm(void)
{
int fd;
struct kvm *kvm;
kvm = kvm_create_vm();
if (IS_ERR(kvm))
return PTR_ERR(kvm);
fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
if (fd < 0)
kvm_put_kvm(kvm);
return fd;
}
static long kvm_dev_ioctl_check_extension_generic(long arg)
{
switch (arg) {
case KVM_CAP_USER_MEMORY:
case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
return 1;
default:
break;
}
return kvm_dev_ioctl_check_extension(arg);
}
static long kvm_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
long r = -EINVAL;
switch (ioctl) {
case KVM_GET_API_VERSION:
r = -EINVAL;
if (arg)
goto out;
r = KVM_API_VERSION;
break;
case KVM_CREATE_VM:
r = -EINVAL;
if (arg)
goto out;
r = kvm_dev_ioctl_create_vm();
break;
case KVM_CHECK_EXTENSION:
r = kvm_dev_ioctl_check_extension_generic(arg);
break;
case KVM_GET_VCPU_MMAP_SIZE:
r = -EINVAL;
if (arg)
goto out;
r = PAGE_SIZE; /* struct kvm_run */
#ifdef CONFIG_X86
r += PAGE_SIZE; /* pio data page */
#endif
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
r += PAGE_SIZE; /* coalesced mmio ring page */
#endif
break;
case KVM_TRACE_ENABLE:
case KVM_TRACE_PAUSE:
case KVM_TRACE_DISABLE:
r = kvm_trace_ioctl(ioctl, arg);
break;
default:
return kvm_arch_dev_ioctl(filp, ioctl, arg);
}
out:
return r;
}
static struct file_operations kvm_chardev_ops = {
.unlocked_ioctl = kvm_dev_ioctl,
.compat_ioctl = kvm_dev_ioctl,
};
static struct miscdevice kvm_dev = {
KVM_MINOR,
"kvm",
&kvm_chardev_ops,
};
static void hardware_enable(void *junk)
{
int cpu = raw_smp_processor_id();
if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
return;
cpumask_set_cpu(cpu, cpus_hardware_enabled);
kvm_arch_hardware_enable(NULL);
}
static void hardware_disable(void *junk)
{
int cpu = raw_smp_processor_id();
if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
return;
cpumask_clear_cpu(cpu, cpus_hardware_enabled);
kvm_arch_hardware_disable(NULL);
}
static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
void *v)
{
int cpu = (long)v;
val &= ~CPU_TASKS_FROZEN;
switch (val) {
case CPU_DYING:
printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
cpu);
hardware_disable(NULL);
break;
case CPU_UP_CANCELED:
printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
cpu);
smp_call_function_single(cpu, hardware_disable, NULL, 1);
break;
case CPU_ONLINE:
printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
cpu);
smp_call_function_single(cpu, hardware_enable, NULL, 1);
break;
}
return NOTIFY_OK;
}
asmlinkage void kvm_handle_fault_on_reboot(void)
{
if (kvm_rebooting)
/* spin while reset goes on */
while (true)
;
/* Fault while not rebooting. We want the trace. */
BUG();
}
EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
void *v)
{
if (val == SYS_RESTART) {
/*
* Some (well, at least mine) BIOSes hang on reboot if
* in vmx root mode.
*/
printk(KERN_INFO "kvm: exiting hardware virtualization\n");
kvm_rebooting = true;
on_each_cpu(hardware_disable, NULL, 1);
}
return NOTIFY_OK;
}
static struct notifier_block kvm_reboot_notifier = {
.notifier_call = kvm_reboot,
.priority = 0,
};
void kvm_io_bus_init(struct kvm_io_bus *bus)
{
memset(bus, 0, sizeof(*bus));
}
void kvm_io_bus_destroy(struct kvm_io_bus *bus)
{
int i;
for (i = 0; i < bus->dev_count; i++) {
struct kvm_io_device *pos = bus->devs[i];
kvm_iodevice_destructor(pos);
}
}
struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
gpa_t addr, int len, int is_write)
{
int i;
for (i = 0; i < bus->dev_count; i++) {
struct kvm_io_device *pos = bus->devs[i];
if (pos->in_range(pos, addr, len, is_write))
return pos;
}
return NULL;
}
void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
{
BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
bus->devs[bus->dev_count++] = dev;
}
static struct notifier_block kvm_cpu_notifier = {
.notifier_call = kvm_cpu_hotplug,
.priority = 20, /* must be > scheduler priority */
};
static int vm_stat_get(void *_offset, u64 *val)
{
unsigned offset = (long)_offset;
struct kvm *kvm;
*val = 0;
spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
*val += *(u32 *)((void *)kvm + offset);
spin_unlock(&kvm_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
static int vcpu_stat_get(void *_offset, u64 *val)
{
unsigned offset = (long)_offset;
struct kvm *kvm;
struct kvm_vcpu *vcpu;
int i;
*val = 0;
spin_lock(&kvm_lock);
list_for_each_entry(kvm, &vm_list, vm_list)
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
vcpu = kvm->vcpus[i];
if (vcpu)
*val += *(u32 *)((void *)vcpu + offset);
}
spin_unlock(&kvm_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
static struct file_operations *stat_fops[] = {
[KVM_STAT_VCPU] = &vcpu_stat_fops,
[KVM_STAT_VM] = &vm_stat_fops,
};
static void kvm_init_debug(void)
{
struct kvm_stats_debugfs_item *p;
kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
for (p = debugfs_entries; p->name; ++p)
p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
(void *)(long)p->offset,
stat_fops[p->kind]);
}
static void kvm_exit_debug(void)
{
struct kvm_stats_debugfs_item *p;
for (p = debugfs_entries; p->name; ++p)
debugfs_remove(p->dentry);
debugfs_remove(kvm_debugfs_dir);
}
static int kvm_suspend(struct sys_device *dev, pm_message_t state)
{
hardware_disable(NULL);
return 0;
}
static int kvm_resume(struct sys_device *dev)
{
hardware_enable(NULL);
return 0;
}
static struct sysdev_class kvm_sysdev_class = {
.name = "kvm",
.suspend = kvm_suspend,
.resume = kvm_resume,
};
static struct sys_device kvm_sysdev = {
.id = 0,
.cls = &kvm_sysdev_class,
};
struct page *bad_page;
pfn_t bad_pfn;
static inline
struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
{
return container_of(pn, struct kvm_vcpu, preempt_notifier);
}
static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
{
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
kvm_arch_vcpu_load(vcpu, cpu);
}
static void kvm_sched_out(struct preempt_notifier *pn,
struct task_struct *next)
{
struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
kvm_arch_vcpu_put(vcpu);
}
int kvm_init(void *opaque, unsigned int vcpu_size,
struct module *module)
{
int r;
int cpu;
kvm_init_debug();
r = kvm_arch_init(opaque);
if (r)
goto out_fail;
bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (bad_page == NULL) {
r = -ENOMEM;
goto out;
}
bad_pfn = page_to_pfn(bad_page);
if (!alloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
r = -ENOMEM;
goto out_free_0;
}
r = kvm_arch_hardware_setup();
if (r < 0)
goto out_free_0a;
for_each_online_cpu(cpu) {
smp_call_function_single(cpu,
kvm_arch_check_processor_compat,
&r, 1);
if (r < 0)
goto out_free_1;
}
on_each_cpu(hardware_enable, NULL, 1);
r = register_cpu_notifier(&kvm_cpu_notifier);
if (r)
goto out_free_2;
register_reboot_notifier(&kvm_reboot_notifier);
r = sysdev_class_register(&kvm_sysdev_class);
if (r)
goto out_free_3;
r = sysdev_register(&kvm_sysdev);
if (r)
goto out_free_4;
/* A kmem cache lets us meet the alignment requirements of fx_save. */
kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
__alignof__(struct kvm_vcpu),
0, NULL);
if (!kvm_vcpu_cache) {
r = -ENOMEM;
goto out_free_5;
}
kvm_chardev_ops.owner = module;
kvm_vm_fops.owner = module;
kvm_vcpu_fops.owner = module;
r = misc_register(&kvm_dev);
if (r) {
printk(KERN_ERR "kvm: misc device register failed\n");
goto out_free;
}
kvm_preempt_ops.sched_in = kvm_sched_in;
kvm_preempt_ops.sched_out = kvm_sched_out;
#ifndef CONFIG_X86
msi2intx = 0;
#endif
return 0;
out_free:
kmem_cache_destroy(kvm_vcpu_cache);
out_free_5:
sysdev_unregister(&kvm_sysdev);
out_free_4:
sysdev_class_unregister(&kvm_sysdev_class);
out_free_3:
unregister_reboot_notifier(&kvm_reboot_notifier);
unregister_cpu_notifier(&kvm_cpu_notifier);
out_free_2:
on_each_cpu(hardware_disable, NULL, 1);
out_free_1:
kvm_arch_hardware_unsetup();
out_free_0a:
free_cpumask_var(cpus_hardware_enabled);
out_free_0:
__free_page(bad_page);
out:
kvm_arch_exit();
kvm_exit_debug();
out_fail:
return r;
}
EXPORT_SYMBOL_GPL(kvm_init);
void kvm_exit(void)
{
kvm_trace_cleanup();
misc_deregister(&kvm_dev);
kmem_cache_destroy(kvm_vcpu_cache);
sysdev_unregister(&kvm_sysdev);
sysdev_class_unregister(&kvm_sysdev_class);
unregister_reboot_notifier(&kvm_reboot_notifier);
unregister_cpu_notifier(&kvm_cpu_notifier);
on_each_cpu(hardware_disable, NULL, 1);
kvm_arch_hardware_unsetup();
kvm_arch_exit();
kvm_exit_debug();
free_cpumask_var(cpus_hardware_enabled);
__free_page(bad_page);
}
EXPORT_SYMBOL_GPL(kvm_exit);