kernel-ark/drivers/pwm/pwm-atmel-tcb.c
Boris BREZILLON ceb12f9398 pwm: atmel-tcb: fix max time computation for slow clk source
Use the the tcb counter width to compute the maximum time that can be
represented using the slow clock source instead of the static 16 bit width.

Signed-off-by: Boris BREZILLON <b.brezillon@overkiz.com>
Acked-by: Nicolas Ferre <nicolas.ferre@atmel.com>
Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2013-09-19 14:04:32 +02:00

450 lines
12 KiB
C

/*
* Copyright (C) Overkiz SAS 2012
*
* Author: Boris BREZILLON <b.brezillon@overkiz.com>
* License terms: GNU General Public License (GPL) version 2
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/ioport.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/atmel_tc.h>
#include <linux/pwm.h>
#include <linux/of_device.h>
#include <linux/slab.h>
#define NPWM 6
#define ATMEL_TC_ACMR_MASK (ATMEL_TC_ACPA | ATMEL_TC_ACPC | \
ATMEL_TC_AEEVT | ATMEL_TC_ASWTRG)
#define ATMEL_TC_BCMR_MASK (ATMEL_TC_BCPB | ATMEL_TC_BCPC | \
ATMEL_TC_BEEVT | ATMEL_TC_BSWTRG)
struct atmel_tcb_pwm_device {
enum pwm_polarity polarity; /* PWM polarity */
unsigned div; /* PWM clock divider */
unsigned duty; /* PWM duty expressed in clk cycles */
unsigned period; /* PWM period expressed in clk cycles */
};
struct atmel_tcb_pwm_chip {
struct pwm_chip chip;
spinlock_t lock;
struct atmel_tc *tc;
struct atmel_tcb_pwm_device *pwms[NPWM];
};
static inline struct atmel_tcb_pwm_chip *to_tcb_chip(struct pwm_chip *chip)
{
return container_of(chip, struct atmel_tcb_pwm_chip, chip);
}
static int atmel_tcb_pwm_set_polarity(struct pwm_chip *chip,
struct pwm_device *pwm,
enum pwm_polarity polarity)
{
struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
tcbpwm->polarity = polarity;
return 0;
}
static int atmel_tcb_pwm_request(struct pwm_chip *chip,
struct pwm_device *pwm)
{
struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
struct atmel_tcb_pwm_device *tcbpwm;
struct atmel_tc *tc = tcbpwmc->tc;
void __iomem *regs = tc->regs;
unsigned group = pwm->hwpwm / 2;
unsigned index = pwm->hwpwm % 2;
unsigned cmr;
int ret;
tcbpwm = devm_kzalloc(chip->dev, sizeof(*tcbpwm), GFP_KERNEL);
if (!tcbpwm)
return -ENOMEM;
ret = clk_prepare_enable(tc->clk[group]);
if (ret) {
devm_kfree(chip->dev, tcbpwm);
return ret;
}
pwm_set_chip_data(pwm, tcbpwm);
tcbpwm->polarity = PWM_POLARITY_NORMAL;
tcbpwm->duty = 0;
tcbpwm->period = 0;
tcbpwm->div = 0;
spin_lock(&tcbpwmc->lock);
cmr = __raw_readl(regs + ATMEL_TC_REG(group, CMR));
/*
* Get init config from Timer Counter registers if
* Timer Counter is already configured as a PWM generator.
*/
if (cmr & ATMEL_TC_WAVE) {
if (index == 0)
tcbpwm->duty =
__raw_readl(regs + ATMEL_TC_REG(group, RA));
else
tcbpwm->duty =
__raw_readl(regs + ATMEL_TC_REG(group, RB));
tcbpwm->div = cmr & ATMEL_TC_TCCLKS;
tcbpwm->period = __raw_readl(regs + ATMEL_TC_REG(group, RC));
cmr &= (ATMEL_TC_TCCLKS | ATMEL_TC_ACMR_MASK |
ATMEL_TC_BCMR_MASK);
} else
cmr = 0;
cmr |= ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO | ATMEL_TC_EEVT_XC0;
__raw_writel(cmr, regs + ATMEL_TC_REG(group, CMR));
spin_unlock(&tcbpwmc->lock);
tcbpwmc->pwms[pwm->hwpwm] = tcbpwm;
return 0;
}
static void atmel_tcb_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
struct atmel_tc *tc = tcbpwmc->tc;
clk_disable_unprepare(tc->clk[pwm->hwpwm / 2]);
tcbpwmc->pwms[pwm->hwpwm] = NULL;
devm_kfree(chip->dev, tcbpwm);
}
static void atmel_tcb_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
struct atmel_tc *tc = tcbpwmc->tc;
void __iomem *regs = tc->regs;
unsigned group = pwm->hwpwm / 2;
unsigned index = pwm->hwpwm % 2;
unsigned cmr;
enum pwm_polarity polarity = tcbpwm->polarity;
/*
* If duty is 0 the timer will be stopped and we have to
* configure the output correctly on software trigger:
* - set output to high if PWM_POLARITY_INVERSED
* - set output to low if PWM_POLARITY_NORMAL
*
* This is why we're reverting polarity in this case.
*/
if (tcbpwm->duty == 0)
polarity = !polarity;
spin_lock(&tcbpwmc->lock);
cmr = __raw_readl(regs + ATMEL_TC_REG(group, CMR));
/* flush old setting and set the new one */
if (index == 0) {
cmr &= ~ATMEL_TC_ACMR_MASK;
if (polarity == PWM_POLARITY_INVERSED)
cmr |= ATMEL_TC_ASWTRG_CLEAR;
else
cmr |= ATMEL_TC_ASWTRG_SET;
} else {
cmr &= ~ATMEL_TC_BCMR_MASK;
if (polarity == PWM_POLARITY_INVERSED)
cmr |= ATMEL_TC_BSWTRG_CLEAR;
else
cmr |= ATMEL_TC_BSWTRG_SET;
}
__raw_writel(cmr, regs + ATMEL_TC_REG(group, CMR));
/*
* Use software trigger to apply the new setting.
* If both PWM devices in this group are disabled we stop the clock.
*/
if (!(cmr & (ATMEL_TC_ACPC | ATMEL_TC_BCPC)))
__raw_writel(ATMEL_TC_SWTRG | ATMEL_TC_CLKDIS,
regs + ATMEL_TC_REG(group, CCR));
else
__raw_writel(ATMEL_TC_SWTRG, regs +
ATMEL_TC_REG(group, CCR));
spin_unlock(&tcbpwmc->lock);
}
static int atmel_tcb_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
{
struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
struct atmel_tc *tc = tcbpwmc->tc;
void __iomem *regs = tc->regs;
unsigned group = pwm->hwpwm / 2;
unsigned index = pwm->hwpwm % 2;
u32 cmr;
enum pwm_polarity polarity = tcbpwm->polarity;
/*
* If duty is 0 the timer will be stopped and we have to
* configure the output correctly on software trigger:
* - set output to high if PWM_POLARITY_INVERSED
* - set output to low if PWM_POLARITY_NORMAL
*
* This is why we're reverting polarity in this case.
*/
if (tcbpwm->duty == 0)
polarity = !polarity;
spin_lock(&tcbpwmc->lock);
cmr = __raw_readl(regs + ATMEL_TC_REG(group, CMR));
/* flush old setting and set the new one */
cmr &= ~ATMEL_TC_TCCLKS;
if (index == 0) {
cmr &= ~ATMEL_TC_ACMR_MASK;
/* Set CMR flags according to given polarity */
if (polarity == PWM_POLARITY_INVERSED)
cmr |= ATMEL_TC_ASWTRG_CLEAR;
else
cmr |= ATMEL_TC_ASWTRG_SET;
} else {
cmr &= ~ATMEL_TC_BCMR_MASK;
if (polarity == PWM_POLARITY_INVERSED)
cmr |= ATMEL_TC_BSWTRG_CLEAR;
else
cmr |= ATMEL_TC_BSWTRG_SET;
}
/*
* If duty is 0 or equal to period there's no need to register
* a specific action on RA/RB and RC compare.
* The output will be configured on software trigger and keep
* this config till next config call.
*/
if (tcbpwm->duty != tcbpwm->period && tcbpwm->duty > 0) {
if (index == 0) {
if (polarity == PWM_POLARITY_INVERSED)
cmr |= ATMEL_TC_ACPA_SET | ATMEL_TC_ACPC_CLEAR;
else
cmr |= ATMEL_TC_ACPA_CLEAR | ATMEL_TC_ACPC_SET;
} else {
if (polarity == PWM_POLARITY_INVERSED)
cmr |= ATMEL_TC_BCPB_SET | ATMEL_TC_BCPC_CLEAR;
else
cmr |= ATMEL_TC_BCPB_CLEAR | ATMEL_TC_BCPC_SET;
}
}
cmr |= (tcbpwm->div & ATMEL_TC_TCCLKS);
__raw_writel(cmr, regs + ATMEL_TC_REG(group, CMR));
if (index == 0)
__raw_writel(tcbpwm->duty, regs + ATMEL_TC_REG(group, RA));
else
__raw_writel(tcbpwm->duty, regs + ATMEL_TC_REG(group, RB));
__raw_writel(tcbpwm->period, regs + ATMEL_TC_REG(group, RC));
/* Use software trigger to apply the new setting */
__raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
regs + ATMEL_TC_REG(group, CCR));
spin_unlock(&tcbpwmc->lock);
return 0;
}
static int atmel_tcb_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
struct atmel_tcb_pwm_chip *tcbpwmc = to_tcb_chip(chip);
struct atmel_tcb_pwm_device *tcbpwm = pwm_get_chip_data(pwm);
unsigned group = pwm->hwpwm / 2;
unsigned index = pwm->hwpwm % 2;
struct atmel_tcb_pwm_device *atcbpwm = NULL;
struct atmel_tc *tc = tcbpwmc->tc;
int i;
int slowclk = 0;
unsigned period;
unsigned duty;
unsigned rate = clk_get_rate(tc->clk[group]);
unsigned long long min;
unsigned long long max;
/*
* Find best clk divisor:
* the smallest divisor which can fulfill the period_ns requirements.
*/
for (i = 0; i < 5; ++i) {
if (atmel_tc_divisors[i] == 0) {
slowclk = i;
continue;
}
min = div_u64((u64)NSEC_PER_SEC * atmel_tc_divisors[i], rate);
max = min << tc->tcb_config->counter_width;
if (max >= period_ns)
break;
}
/*
* If none of the divisor are small enough to represent period_ns
* take slow clock (32KHz).
*/
if (i == 5) {
i = slowclk;
rate = 32768;
min = div_u64(NSEC_PER_SEC, rate);
max = min << tc->tcb_config->counter_width;
/* If period is too big return ERANGE error */
if (max < period_ns)
return -ERANGE;
}
duty = div_u64(duty_ns, min);
period = div_u64(period_ns, min);
if (index == 0)
atcbpwm = tcbpwmc->pwms[pwm->hwpwm + 1];
else
atcbpwm = tcbpwmc->pwms[pwm->hwpwm - 1];
/*
* PWM devices provided by TCB driver are grouped by 2:
* - group 0: PWM 0 & 1
* - group 1: PWM 2 & 3
* - group 2: PWM 4 & 5
*
* PWM devices in a given group must be configured with the
* same period_ns.
*
* We're checking the period value of the second PWM device
* in this group before applying the new config.
*/
if ((atcbpwm && atcbpwm->duty > 0 &&
atcbpwm->duty != atcbpwm->period) &&
(atcbpwm->div != i || atcbpwm->period != period)) {
dev_err(chip->dev,
"failed to configure period_ns: PWM group already configured with a different value\n");
return -EINVAL;
}
tcbpwm->period = period;
tcbpwm->div = i;
tcbpwm->duty = duty;
/* If the PWM is enabled, call enable to apply the new conf */
if (test_bit(PWMF_ENABLED, &pwm->flags))
atmel_tcb_pwm_enable(chip, pwm);
return 0;
}
static const struct pwm_ops atmel_tcb_pwm_ops = {
.request = atmel_tcb_pwm_request,
.free = atmel_tcb_pwm_free,
.config = atmel_tcb_pwm_config,
.set_polarity = atmel_tcb_pwm_set_polarity,
.enable = atmel_tcb_pwm_enable,
.disable = atmel_tcb_pwm_disable,
.owner = THIS_MODULE,
};
static int atmel_tcb_pwm_probe(struct platform_device *pdev)
{
struct atmel_tcb_pwm_chip *tcbpwm;
struct device_node *np = pdev->dev.of_node;
struct atmel_tc *tc;
int err;
int tcblock;
err = of_property_read_u32(np, "tc-block", &tcblock);
if (err < 0) {
dev_err(&pdev->dev,
"failed to get Timer Counter Block number from device tree (error: %d)\n",
err);
return err;
}
tc = atmel_tc_alloc(tcblock, "tcb-pwm");
if (tc == NULL) {
dev_err(&pdev->dev, "failed to allocate Timer Counter Block\n");
return -ENOMEM;
}
tcbpwm = devm_kzalloc(&pdev->dev, sizeof(*tcbpwm), GFP_KERNEL);
if (tcbpwm == NULL) {
atmel_tc_free(tc);
dev_err(&pdev->dev, "failed to allocate memory\n");
return -ENOMEM;
}
tcbpwm->chip.dev = &pdev->dev;
tcbpwm->chip.ops = &atmel_tcb_pwm_ops;
tcbpwm->chip.of_xlate = of_pwm_xlate_with_flags;
tcbpwm->chip.of_pwm_n_cells = 3;
tcbpwm->chip.base = -1;
tcbpwm->chip.npwm = NPWM;
tcbpwm->tc = tc;
spin_lock_init(&tcbpwm->lock);
err = pwmchip_add(&tcbpwm->chip);
if (err < 0) {
atmel_tc_free(tc);
return err;
}
platform_set_drvdata(pdev, tcbpwm);
return 0;
}
static int atmel_tcb_pwm_remove(struct platform_device *pdev)
{
struct atmel_tcb_pwm_chip *tcbpwm = platform_get_drvdata(pdev);
int err;
err = pwmchip_remove(&tcbpwm->chip);
if (err < 0)
return err;
atmel_tc_free(tcbpwm->tc);
return 0;
}
static const struct of_device_id atmel_tcb_pwm_dt_ids[] = {
{ .compatible = "atmel,tcb-pwm", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_tcb_pwm_dt_ids);
static struct platform_driver atmel_tcb_pwm_driver = {
.driver = {
.name = "atmel-tcb-pwm",
.owner = THIS_MODULE,
.of_match_table = atmel_tcb_pwm_dt_ids,
},
.probe = atmel_tcb_pwm_probe,
.remove = atmel_tcb_pwm_remove,
};
module_platform_driver(atmel_tcb_pwm_driver);
MODULE_AUTHOR("Boris BREZILLON <b.brezillon@overkiz.com>");
MODULE_DESCRIPTION("Atmel Timer Counter Pulse Width Modulation Driver");
MODULE_LICENSE("GPL v2");