kernel-ark/mm/fremap.c
Nick Piggin b5810039a5 [PATCH] core remove PageReserved
Remove PageReserved() calls from core code by tightening VM_RESERVED
handling in mm/ to cover PageReserved functionality.

PageReserved special casing is removed from get_page and put_page.

All setting and clearing of PageReserved is retained, and it is now flagged
in the page_alloc checks to help ensure we don't introduce any refcount
based freeing of Reserved pages.

MAP_PRIVATE, PROT_WRITE of VM_RESERVED regions is tentatively being
deprecated.  We never completely handled it correctly anyway, and is be
reintroduced in future if required (Hugh has a proof of concept).

Once PageReserved() calls are removed from kernel/power/swsusp.c, and all
arch/ and driver code, the Set and Clear calls, and the PG_reserved bit can
be trivially removed.

Last real user of PageReserved is swsusp, which uses PageReserved to
determine whether a struct page points to valid memory or not.  This still
needs to be addressed (a generic page_is_ram() should work).

A last caveat: the ZERO_PAGE is now refcounted and managed with rmap (and
thus mapcounted and count towards shared rss).  These writes to the struct
page could cause excessive cacheline bouncing on big systems.  There are a
number of ways this could be addressed if it is an issue.

Signed-off-by: Nick Piggin <npiggin@suse.de>

Refcount bug fix for filemap_xip.c

Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-29 21:40:39 -07:00

265 lines
6.5 KiB
C

/*
* linux/mm/fremap.c
*
* Explicit pagetable population and nonlinear (random) mappings support.
*
* started by Ingo Molnar, Copyright (C) 2002, 2003
*/
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/file.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swapops.h>
#include <linux/rmap.h>
#include <linux/module.h>
#include <linux/syscalls.h>
#include <asm/mmu_context.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
static inline void zap_pte(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep)
{
pte_t pte = *ptep;
if (pte_none(pte))
return;
if (pte_present(pte)) {
unsigned long pfn = pte_pfn(pte);
struct page *page;
flush_cache_page(vma, addr, pfn);
pte = ptep_clear_flush(vma, addr, ptep);
if (unlikely(!pfn_valid(pfn))) {
print_bad_pte(vma, pte, addr);
return;
}
page = pfn_to_page(pfn);
if (pte_dirty(pte))
set_page_dirty(page);
page_remove_rmap(page);
page_cache_release(page);
dec_mm_counter(mm, file_rss);
} else {
if (!pte_file(pte))
free_swap_and_cache(pte_to_swp_entry(pte));
pte_clear(mm, addr, ptep);
}
}
/*
* Install a file page to a given virtual memory address, release any
* previously existing mapping.
*/
int install_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, struct page *page, pgprot_t prot)
{
struct inode *inode;
pgoff_t size;
int err = -ENOMEM;
pte_t *pte;
pmd_t *pmd;
pud_t *pud;
pgd_t *pgd;
pte_t pte_val;
BUG_ON(vma->vm_flags & VM_RESERVED);
pgd = pgd_offset(mm, addr);
spin_lock(&mm->page_table_lock);
pud = pud_alloc(mm, pgd, addr);
if (!pud)
goto err_unlock;
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
goto err_unlock;
pte = pte_alloc_map(mm, pmd, addr);
if (!pte)
goto err_unlock;
/*
* This page may have been truncated. Tell the
* caller about it.
*/
err = -EINVAL;
inode = vma->vm_file->f_mapping->host;
size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
if (!page->mapping || page->index >= size)
goto err_unlock;
err = -ENOMEM;
if (page_mapcount(page) > INT_MAX/2)
goto err_unlock;
zap_pte(mm, vma, addr, pte);
inc_mm_counter(mm, file_rss);
flush_icache_page(vma, page);
set_pte_at(mm, addr, pte, mk_pte(page, prot));
page_add_file_rmap(page);
pte_val = *pte;
pte_unmap(pte);
update_mmu_cache(vma, addr, pte_val);
err = 0;
err_unlock:
spin_unlock(&mm->page_table_lock);
return err;
}
EXPORT_SYMBOL(install_page);
/*
* Install a file pte to a given virtual memory address, release any
* previously existing mapping.
*/
int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, unsigned long pgoff, pgprot_t prot)
{
int err = -ENOMEM;
pte_t *pte;
pmd_t *pmd;
pud_t *pud;
pgd_t *pgd;
pte_t pte_val;
BUG_ON(vma->vm_flags & VM_RESERVED);
pgd = pgd_offset(mm, addr);
spin_lock(&mm->page_table_lock);
pud = pud_alloc(mm, pgd, addr);
if (!pud)
goto err_unlock;
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
goto err_unlock;
pte = pte_alloc_map(mm, pmd, addr);
if (!pte)
goto err_unlock;
zap_pte(mm, vma, addr, pte);
set_pte_at(mm, addr, pte, pgoff_to_pte(pgoff));
pte_val = *pte;
pte_unmap(pte);
update_mmu_cache(vma, addr, pte_val);
spin_unlock(&mm->page_table_lock);
return 0;
err_unlock:
spin_unlock(&mm->page_table_lock);
return err;
}
/***
* sys_remap_file_pages - remap arbitrary pages of a shared backing store
* file within an existing vma.
* @start: start of the remapped virtual memory range
* @size: size of the remapped virtual memory range
* @prot: new protection bits of the range
* @pgoff: to be mapped page of the backing store file
* @flags: 0 or MAP_NONBLOCKED - the later will cause no IO.
*
* this syscall works purely via pagetables, so it's the most efficient
* way to map the same (large) file into a given virtual window. Unlike
* mmap()/mremap() it does not create any new vmas. The new mappings are
* also safe across swapout.
*
* NOTE: the 'prot' parameter right now is ignored, and the vma's default
* protection is used. Arbitrary protections might be implemented in the
* future.
*/
asmlinkage long sys_remap_file_pages(unsigned long start, unsigned long size,
unsigned long __prot, unsigned long pgoff, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct address_space *mapping;
unsigned long end = start + size;
struct vm_area_struct *vma;
int err = -EINVAL;
int has_write_lock = 0;
if (__prot)
return err;
/*
* Sanitize the syscall parameters:
*/
start = start & PAGE_MASK;
size = size & PAGE_MASK;
/* Does the address range wrap, or is the span zero-sized? */
if (start + size <= start)
return err;
/* Can we represent this offset inside this architecture's pte's? */
#if PTE_FILE_MAX_BITS < BITS_PER_LONG
if (pgoff + (size >> PAGE_SHIFT) >= (1UL << PTE_FILE_MAX_BITS))
return err;
#endif
/* We need down_write() to change vma->vm_flags. */
down_read(&mm->mmap_sem);
retry:
vma = find_vma(mm, start);
/*
* Make sure the vma is shared, that it supports prefaulting,
* and that the remapped range is valid and fully within
* the single existing vma. vm_private_data is used as a
* swapout cursor in a VM_NONLINEAR vma (unless VM_RESERVED
* or VM_LOCKED, but VM_LOCKED could be revoked later on).
*/
if (vma && (vma->vm_flags & VM_SHARED) &&
(!vma->vm_private_data ||
(vma->vm_flags & (VM_NONLINEAR|VM_RESERVED))) &&
vma->vm_ops && vma->vm_ops->populate &&
end > start && start >= vma->vm_start &&
end <= vma->vm_end) {
/* Must set VM_NONLINEAR before any pages are populated. */
if (pgoff != linear_page_index(vma, start) &&
!(vma->vm_flags & VM_NONLINEAR)) {
if (!has_write_lock) {
up_read(&mm->mmap_sem);
down_write(&mm->mmap_sem);
has_write_lock = 1;
goto retry;
}
mapping = vma->vm_file->f_mapping;
spin_lock(&mapping->i_mmap_lock);
flush_dcache_mmap_lock(mapping);
vma->vm_flags |= VM_NONLINEAR;
vma_prio_tree_remove(vma, &mapping->i_mmap);
vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
flush_dcache_mmap_unlock(mapping);
spin_unlock(&mapping->i_mmap_lock);
}
err = vma->vm_ops->populate(vma, start, size,
vma->vm_page_prot,
pgoff, flags & MAP_NONBLOCK);
/*
* We can't clear VM_NONLINEAR because we'd have to do
* it after ->populate completes, and that would prevent
* downgrading the lock. (Locks can't be upgraded).
*/
}
if (likely(!has_write_lock))
up_read(&mm->mmap_sem);
else
up_write(&mm->mmap_sem);
return err;
}