kernel-ark/drivers/net/xen-netfront.c
David S. Miller 4ec2411980 [NET]: Do not check netif_running() and carrier state in ->poll()
Drivers do this to try to break out of the ->poll()'ing loop
when the device is being brought administratively down.

Now that we have a napi_disable() "pending" state we are going
to solve that problem generically.

Signed-off-by: David S. Miller <davem@davemloft.net>
2008-01-08 23:30:09 -08:00

1812 lines
44 KiB
C

/*
* Virtual network driver for conversing with remote driver backends.
*
* Copyright (c) 2002-2005, K A Fraser
* Copyright (c) 2005, XenSource Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation; or, when distributed
* separately from the Linux kernel or incorporated into other
* software packages, subject to the following license:
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this source file (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy, modify,
* merge, publish, distribute, sublicense, and/or sell copies of the Software,
* and to permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/moduleparam.h>
#include <linux/mm.h>
#include <net/ip.h>
#include <xen/xenbus.h>
#include <xen/events.h>
#include <xen/page.h>
#include <xen/grant_table.h>
#include <xen/interface/io/netif.h>
#include <xen/interface/memory.h>
#include <xen/interface/grant_table.h>
static struct ethtool_ops xennet_ethtool_ops;
struct netfront_cb {
struct page *page;
unsigned offset;
};
#define NETFRONT_SKB_CB(skb) ((struct netfront_cb *)((skb)->cb))
#define RX_COPY_THRESHOLD 256
#define GRANT_INVALID_REF 0
#define NET_TX_RING_SIZE __RING_SIZE((struct xen_netif_tx_sring *)0, PAGE_SIZE)
#define NET_RX_RING_SIZE __RING_SIZE((struct xen_netif_rx_sring *)0, PAGE_SIZE)
#define TX_MAX_TARGET min_t(int, NET_RX_RING_SIZE, 256)
struct netfront_info {
struct list_head list;
struct net_device *netdev;
struct napi_struct napi;
unsigned int evtchn;
struct xenbus_device *xbdev;
spinlock_t tx_lock;
struct xen_netif_tx_front_ring tx;
int tx_ring_ref;
/*
* {tx,rx}_skbs store outstanding skbuffs. Free tx_skb entries
* are linked from tx_skb_freelist through skb_entry.link.
*
* NB. Freelist index entries are always going to be less than
* PAGE_OFFSET, whereas pointers to skbs will always be equal or
* greater than PAGE_OFFSET: we use this property to distinguish
* them.
*/
union skb_entry {
struct sk_buff *skb;
unsigned link;
} tx_skbs[NET_TX_RING_SIZE];
grant_ref_t gref_tx_head;
grant_ref_t grant_tx_ref[NET_TX_RING_SIZE];
unsigned tx_skb_freelist;
spinlock_t rx_lock ____cacheline_aligned_in_smp;
struct xen_netif_rx_front_ring rx;
int rx_ring_ref;
/* Receive-ring batched refills. */
#define RX_MIN_TARGET 8
#define RX_DFL_MIN_TARGET 64
#define RX_MAX_TARGET min_t(int, NET_RX_RING_SIZE, 256)
unsigned rx_min_target, rx_max_target, rx_target;
struct sk_buff_head rx_batch;
struct timer_list rx_refill_timer;
struct sk_buff *rx_skbs[NET_RX_RING_SIZE];
grant_ref_t gref_rx_head;
grant_ref_t grant_rx_ref[NET_RX_RING_SIZE];
unsigned long rx_pfn_array[NET_RX_RING_SIZE];
struct multicall_entry rx_mcl[NET_RX_RING_SIZE+1];
struct mmu_update rx_mmu[NET_RX_RING_SIZE];
};
struct netfront_rx_info {
struct xen_netif_rx_response rx;
struct xen_netif_extra_info extras[XEN_NETIF_EXTRA_TYPE_MAX - 1];
};
/*
* Access macros for acquiring freeing slots in tx_skbs[].
*/
static void add_id_to_freelist(unsigned *head, union skb_entry *list,
unsigned short id)
{
list[id].link = *head;
*head = id;
}
static unsigned short get_id_from_freelist(unsigned *head,
union skb_entry *list)
{
unsigned int id = *head;
*head = list[id].link;
return id;
}
static int xennet_rxidx(RING_IDX idx)
{
return idx & (NET_RX_RING_SIZE - 1);
}
static struct sk_buff *xennet_get_rx_skb(struct netfront_info *np,
RING_IDX ri)
{
int i = xennet_rxidx(ri);
struct sk_buff *skb = np->rx_skbs[i];
np->rx_skbs[i] = NULL;
return skb;
}
static grant_ref_t xennet_get_rx_ref(struct netfront_info *np,
RING_IDX ri)
{
int i = xennet_rxidx(ri);
grant_ref_t ref = np->grant_rx_ref[i];
np->grant_rx_ref[i] = GRANT_INVALID_REF;
return ref;
}
#ifdef CONFIG_SYSFS
static int xennet_sysfs_addif(struct net_device *netdev);
static void xennet_sysfs_delif(struct net_device *netdev);
#else /* !CONFIG_SYSFS */
#define xennet_sysfs_addif(dev) (0)
#define xennet_sysfs_delif(dev) do { } while (0)
#endif
static int xennet_can_sg(struct net_device *dev)
{
return dev->features & NETIF_F_SG;
}
static void rx_refill_timeout(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct netfront_info *np = netdev_priv(dev);
netif_rx_schedule(dev, &np->napi);
}
static int netfront_tx_slot_available(struct netfront_info *np)
{
return ((np->tx.req_prod_pvt - np->tx.rsp_cons) <
(TX_MAX_TARGET - MAX_SKB_FRAGS - 2));
}
static void xennet_maybe_wake_tx(struct net_device *dev)
{
struct netfront_info *np = netdev_priv(dev);
if (unlikely(netif_queue_stopped(dev)) &&
netfront_tx_slot_available(np) &&
likely(netif_running(dev)))
netif_wake_queue(dev);
}
static void xennet_alloc_rx_buffers(struct net_device *dev)
{
unsigned short id;
struct netfront_info *np = netdev_priv(dev);
struct sk_buff *skb;
struct page *page;
int i, batch_target, notify;
RING_IDX req_prod = np->rx.req_prod_pvt;
grant_ref_t ref;
unsigned long pfn;
void *vaddr;
struct xen_netif_rx_request *req;
if (unlikely(!netif_carrier_ok(dev)))
return;
/*
* Allocate skbuffs greedily, even though we batch updates to the
* receive ring. This creates a less bursty demand on the memory
* allocator, so should reduce the chance of failed allocation requests
* both for ourself and for other kernel subsystems.
*/
batch_target = np->rx_target - (req_prod - np->rx.rsp_cons);
for (i = skb_queue_len(&np->rx_batch); i < batch_target; i++) {
skb = __netdev_alloc_skb(dev, RX_COPY_THRESHOLD,
GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!skb))
goto no_skb;
page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
if (!page) {
kfree_skb(skb);
no_skb:
/* Any skbuffs queued for refill? Force them out. */
if (i != 0)
goto refill;
/* Could not allocate any skbuffs. Try again later. */
mod_timer(&np->rx_refill_timer,
jiffies + (HZ/10));
break;
}
skb_shinfo(skb)->frags[0].page = page;
skb_shinfo(skb)->nr_frags = 1;
__skb_queue_tail(&np->rx_batch, skb);
}
/* Is the batch large enough to be worthwhile? */
if (i < (np->rx_target/2)) {
if (req_prod > np->rx.sring->req_prod)
goto push;
return;
}
/* Adjust our fill target if we risked running out of buffers. */
if (((req_prod - np->rx.sring->rsp_prod) < (np->rx_target / 4)) &&
((np->rx_target *= 2) > np->rx_max_target))
np->rx_target = np->rx_max_target;
refill:
for (i = 0; ; i++) {
skb = __skb_dequeue(&np->rx_batch);
if (skb == NULL)
break;
skb->dev = dev;
id = xennet_rxidx(req_prod + i);
BUG_ON(np->rx_skbs[id]);
np->rx_skbs[id] = skb;
ref = gnttab_claim_grant_reference(&np->gref_rx_head);
BUG_ON((signed short)ref < 0);
np->grant_rx_ref[id] = ref;
pfn = page_to_pfn(skb_shinfo(skb)->frags[0].page);
vaddr = page_address(skb_shinfo(skb)->frags[0].page);
req = RING_GET_REQUEST(&np->rx, req_prod + i);
gnttab_grant_foreign_access_ref(ref,
np->xbdev->otherend_id,
pfn_to_mfn(pfn),
0);
req->id = id;
req->gref = ref;
}
wmb(); /* barrier so backend seens requests */
/* Above is a suitable barrier to ensure backend will see requests. */
np->rx.req_prod_pvt = req_prod + i;
push:
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&np->rx, notify);
if (notify)
notify_remote_via_irq(np->netdev->irq);
}
static int xennet_open(struct net_device *dev)
{
struct netfront_info *np = netdev_priv(dev);
napi_enable(&np->napi);
spin_lock_bh(&np->rx_lock);
if (netif_carrier_ok(dev)) {
xennet_alloc_rx_buffers(dev);
np->rx.sring->rsp_event = np->rx.rsp_cons + 1;
if (RING_HAS_UNCONSUMED_RESPONSES(&np->rx))
netif_rx_schedule(dev, &np->napi);
}
spin_unlock_bh(&np->rx_lock);
xennet_maybe_wake_tx(dev);
return 0;
}
static void xennet_tx_buf_gc(struct net_device *dev)
{
RING_IDX cons, prod;
unsigned short id;
struct netfront_info *np = netdev_priv(dev);
struct sk_buff *skb;
BUG_ON(!netif_carrier_ok(dev));
do {
prod = np->tx.sring->rsp_prod;
rmb(); /* Ensure we see responses up to 'rp'. */
for (cons = np->tx.rsp_cons; cons != prod; cons++) {
struct xen_netif_tx_response *txrsp;
txrsp = RING_GET_RESPONSE(&np->tx, cons);
if (txrsp->status == NETIF_RSP_NULL)
continue;
id = txrsp->id;
skb = np->tx_skbs[id].skb;
if (unlikely(gnttab_query_foreign_access(
np->grant_tx_ref[id]) != 0)) {
printk(KERN_ALERT "xennet_tx_buf_gc: warning "
"-- grant still in use by backend "
"domain.\n");
BUG();
}
gnttab_end_foreign_access_ref(
np->grant_tx_ref[id], GNTMAP_readonly);
gnttab_release_grant_reference(
&np->gref_tx_head, np->grant_tx_ref[id]);
np->grant_tx_ref[id] = GRANT_INVALID_REF;
add_id_to_freelist(&np->tx_skb_freelist, np->tx_skbs, id);
dev_kfree_skb_irq(skb);
}
np->tx.rsp_cons = prod;
/*
* Set a new event, then check for race with update of tx_cons.
* Note that it is essential to schedule a callback, no matter
* how few buffers are pending. Even if there is space in the
* transmit ring, higher layers may be blocked because too much
* data is outstanding: in such cases notification from Xen is
* likely to be the only kick that we'll get.
*/
np->tx.sring->rsp_event =
prod + ((np->tx.sring->req_prod - prod) >> 1) + 1;
mb(); /* update shared area */
} while ((cons == prod) && (prod != np->tx.sring->rsp_prod));
xennet_maybe_wake_tx(dev);
}
static void xennet_make_frags(struct sk_buff *skb, struct net_device *dev,
struct xen_netif_tx_request *tx)
{
struct netfront_info *np = netdev_priv(dev);
char *data = skb->data;
unsigned long mfn;
RING_IDX prod = np->tx.req_prod_pvt;
int frags = skb_shinfo(skb)->nr_frags;
unsigned int offset = offset_in_page(data);
unsigned int len = skb_headlen(skb);
unsigned int id;
grant_ref_t ref;
int i;
/* While the header overlaps a page boundary (including being
larger than a page), split it it into page-sized chunks. */
while (len > PAGE_SIZE - offset) {
tx->size = PAGE_SIZE - offset;
tx->flags |= NETTXF_more_data;
len -= tx->size;
data += tx->size;
offset = 0;
id = get_id_from_freelist(&np->tx_skb_freelist, np->tx_skbs);
np->tx_skbs[id].skb = skb_get(skb);
tx = RING_GET_REQUEST(&np->tx, prod++);
tx->id = id;
ref = gnttab_claim_grant_reference(&np->gref_tx_head);
BUG_ON((signed short)ref < 0);
mfn = virt_to_mfn(data);
gnttab_grant_foreign_access_ref(ref, np->xbdev->otherend_id,
mfn, GNTMAP_readonly);
tx->gref = np->grant_tx_ref[id] = ref;
tx->offset = offset;
tx->size = len;
tx->flags = 0;
}
/* Grant backend access to each skb fragment page. */
for (i = 0; i < frags; i++) {
skb_frag_t *frag = skb_shinfo(skb)->frags + i;
tx->flags |= NETTXF_more_data;
id = get_id_from_freelist(&np->tx_skb_freelist, np->tx_skbs);
np->tx_skbs[id].skb = skb_get(skb);
tx = RING_GET_REQUEST(&np->tx, prod++);
tx->id = id;
ref = gnttab_claim_grant_reference(&np->gref_tx_head);
BUG_ON((signed short)ref < 0);
mfn = pfn_to_mfn(page_to_pfn(frag->page));
gnttab_grant_foreign_access_ref(ref, np->xbdev->otherend_id,
mfn, GNTMAP_readonly);
tx->gref = np->grant_tx_ref[id] = ref;
tx->offset = frag->page_offset;
tx->size = frag->size;
tx->flags = 0;
}
np->tx.req_prod_pvt = prod;
}
static int xennet_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned short id;
struct netfront_info *np = netdev_priv(dev);
struct xen_netif_tx_request *tx;
struct xen_netif_extra_info *extra;
char *data = skb->data;
RING_IDX i;
grant_ref_t ref;
unsigned long mfn;
int notify;
int frags = skb_shinfo(skb)->nr_frags;
unsigned int offset = offset_in_page(data);
unsigned int len = skb_headlen(skb);
frags += (offset + len + PAGE_SIZE - 1) / PAGE_SIZE;
if (unlikely(frags > MAX_SKB_FRAGS + 1)) {
printk(KERN_ALERT "xennet: skb rides the rocket: %d frags\n",
frags);
dump_stack();
goto drop;
}
spin_lock_irq(&np->tx_lock);
if (unlikely(!netif_carrier_ok(dev) ||
(frags > 1 && !xennet_can_sg(dev)) ||
netif_needs_gso(dev, skb))) {
spin_unlock_irq(&np->tx_lock);
goto drop;
}
i = np->tx.req_prod_pvt;
id = get_id_from_freelist(&np->tx_skb_freelist, np->tx_skbs);
np->tx_skbs[id].skb = skb;
tx = RING_GET_REQUEST(&np->tx, i);
tx->id = id;
ref = gnttab_claim_grant_reference(&np->gref_tx_head);
BUG_ON((signed short)ref < 0);
mfn = virt_to_mfn(data);
gnttab_grant_foreign_access_ref(
ref, np->xbdev->otherend_id, mfn, GNTMAP_readonly);
tx->gref = np->grant_tx_ref[id] = ref;
tx->offset = offset;
tx->size = len;
extra = NULL;
tx->flags = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL)
/* local packet? */
tx->flags |= NETTXF_csum_blank | NETTXF_data_validated;
else if (skb->ip_summed == CHECKSUM_UNNECESSARY)
/* remote but checksummed. */
tx->flags |= NETTXF_data_validated;
if (skb_shinfo(skb)->gso_size) {
struct xen_netif_extra_info *gso;
gso = (struct xen_netif_extra_info *)
RING_GET_REQUEST(&np->tx, ++i);
if (extra)
extra->flags |= XEN_NETIF_EXTRA_FLAG_MORE;
else
tx->flags |= NETTXF_extra_info;
gso->u.gso.size = skb_shinfo(skb)->gso_size;
gso->u.gso.type = XEN_NETIF_GSO_TYPE_TCPV4;
gso->u.gso.pad = 0;
gso->u.gso.features = 0;
gso->type = XEN_NETIF_EXTRA_TYPE_GSO;
gso->flags = 0;
extra = gso;
}
np->tx.req_prod_pvt = i + 1;
xennet_make_frags(skb, dev, tx);
tx->size = skb->len;
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&np->tx, notify);
if (notify)
notify_remote_via_irq(np->netdev->irq);
dev->stats.tx_bytes += skb->len;
dev->stats.tx_packets++;
/* Note: It is not safe to access skb after xennet_tx_buf_gc()! */
xennet_tx_buf_gc(dev);
if (!netfront_tx_slot_available(np))
netif_stop_queue(dev);
spin_unlock_irq(&np->tx_lock);
return 0;
drop:
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
return 0;
}
static int xennet_close(struct net_device *dev)
{
struct netfront_info *np = netdev_priv(dev);
netif_stop_queue(np->netdev);
napi_disable(&np->napi);
return 0;
}
static void xennet_move_rx_slot(struct netfront_info *np, struct sk_buff *skb,
grant_ref_t ref)
{
int new = xennet_rxidx(np->rx.req_prod_pvt);
BUG_ON(np->rx_skbs[new]);
np->rx_skbs[new] = skb;
np->grant_rx_ref[new] = ref;
RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->id = new;
RING_GET_REQUEST(&np->rx, np->rx.req_prod_pvt)->gref = ref;
np->rx.req_prod_pvt++;
}
static int xennet_get_extras(struct netfront_info *np,
struct xen_netif_extra_info *extras,
RING_IDX rp)
{
struct xen_netif_extra_info *extra;
struct device *dev = &np->netdev->dev;
RING_IDX cons = np->rx.rsp_cons;
int err = 0;
do {
struct sk_buff *skb;
grant_ref_t ref;
if (unlikely(cons + 1 == rp)) {
if (net_ratelimit())
dev_warn(dev, "Missing extra info\n");
err = -EBADR;
break;
}
extra = (struct xen_netif_extra_info *)
RING_GET_RESPONSE(&np->rx, ++cons);
if (unlikely(!extra->type ||
extra->type >= XEN_NETIF_EXTRA_TYPE_MAX)) {
if (net_ratelimit())
dev_warn(dev, "Invalid extra type: %d\n",
extra->type);
err = -EINVAL;
} else {
memcpy(&extras[extra->type - 1], extra,
sizeof(*extra));
}
skb = xennet_get_rx_skb(np, cons);
ref = xennet_get_rx_ref(np, cons);
xennet_move_rx_slot(np, skb, ref);
} while (extra->flags & XEN_NETIF_EXTRA_FLAG_MORE);
np->rx.rsp_cons = cons;
return err;
}
static int xennet_get_responses(struct netfront_info *np,
struct netfront_rx_info *rinfo, RING_IDX rp,
struct sk_buff_head *list)
{
struct xen_netif_rx_response *rx = &rinfo->rx;
struct xen_netif_extra_info *extras = rinfo->extras;
struct device *dev = &np->netdev->dev;
RING_IDX cons = np->rx.rsp_cons;
struct sk_buff *skb = xennet_get_rx_skb(np, cons);
grant_ref_t ref = xennet_get_rx_ref(np, cons);
int max = MAX_SKB_FRAGS + (rx->status <= RX_COPY_THRESHOLD);
int frags = 1;
int err = 0;
unsigned long ret;
if (rx->flags & NETRXF_extra_info) {
err = xennet_get_extras(np, extras, rp);
cons = np->rx.rsp_cons;
}
for (;;) {
if (unlikely(rx->status < 0 ||
rx->offset + rx->status > PAGE_SIZE)) {
if (net_ratelimit())
dev_warn(dev, "rx->offset: %x, size: %u\n",
rx->offset, rx->status);
xennet_move_rx_slot(np, skb, ref);
err = -EINVAL;
goto next;
}
/*
* This definitely indicates a bug, either in this driver or in
* the backend driver. In future this should flag the bad
* situation to the system controller to reboot the backed.
*/
if (ref == GRANT_INVALID_REF) {
if (net_ratelimit())
dev_warn(dev, "Bad rx response id %d.\n",
rx->id);
err = -EINVAL;
goto next;
}
ret = gnttab_end_foreign_access_ref(ref, 0);
BUG_ON(!ret);
gnttab_release_grant_reference(&np->gref_rx_head, ref);
__skb_queue_tail(list, skb);
next:
if (!(rx->flags & NETRXF_more_data))
break;
if (cons + frags == rp) {
if (net_ratelimit())
dev_warn(dev, "Need more frags\n");
err = -ENOENT;
break;
}
rx = RING_GET_RESPONSE(&np->rx, cons + frags);
skb = xennet_get_rx_skb(np, cons + frags);
ref = xennet_get_rx_ref(np, cons + frags);
frags++;
}
if (unlikely(frags > max)) {
if (net_ratelimit())
dev_warn(dev, "Too many frags\n");
err = -E2BIG;
}
if (unlikely(err))
np->rx.rsp_cons = cons + frags;
return err;
}
static int xennet_set_skb_gso(struct sk_buff *skb,
struct xen_netif_extra_info *gso)
{
if (!gso->u.gso.size) {
if (net_ratelimit())
printk(KERN_WARNING "GSO size must not be zero.\n");
return -EINVAL;
}
/* Currently only TCPv4 S.O. is supported. */
if (gso->u.gso.type != XEN_NETIF_GSO_TYPE_TCPV4) {
if (net_ratelimit())
printk(KERN_WARNING "Bad GSO type %d.\n", gso->u.gso.type);
return -EINVAL;
}
skb_shinfo(skb)->gso_size = gso->u.gso.size;
skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
/* Header must be checked, and gso_segs computed. */
skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
skb_shinfo(skb)->gso_segs = 0;
return 0;
}
static RING_IDX xennet_fill_frags(struct netfront_info *np,
struct sk_buff *skb,
struct sk_buff_head *list)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
int nr_frags = shinfo->nr_frags;
RING_IDX cons = np->rx.rsp_cons;
skb_frag_t *frag = shinfo->frags + nr_frags;
struct sk_buff *nskb;
while ((nskb = __skb_dequeue(list))) {
struct xen_netif_rx_response *rx =
RING_GET_RESPONSE(&np->rx, ++cons);
frag->page = skb_shinfo(nskb)->frags[0].page;
frag->page_offset = rx->offset;
frag->size = rx->status;
skb->data_len += rx->status;
skb_shinfo(nskb)->nr_frags = 0;
kfree_skb(nskb);
frag++;
nr_frags++;
}
shinfo->nr_frags = nr_frags;
return cons;
}
static int skb_checksum_setup(struct sk_buff *skb)
{
struct iphdr *iph;
unsigned char *th;
int err = -EPROTO;
if (skb->protocol != htons(ETH_P_IP))
goto out;
iph = (void *)skb->data;
th = skb->data + 4 * iph->ihl;
if (th >= skb_tail_pointer(skb))
goto out;
skb->csum_start = th - skb->head;
switch (iph->protocol) {
case IPPROTO_TCP:
skb->csum_offset = offsetof(struct tcphdr, check);
break;
case IPPROTO_UDP:
skb->csum_offset = offsetof(struct udphdr, check);
break;
default:
if (net_ratelimit())
printk(KERN_ERR "Attempting to checksum a non-"
"TCP/UDP packet, dropping a protocol"
" %d packet", iph->protocol);
goto out;
}
if ((th + skb->csum_offset + 2) > skb_tail_pointer(skb))
goto out;
err = 0;
out:
return err;
}
static int handle_incoming_queue(struct net_device *dev,
struct sk_buff_head *rxq)
{
int packets_dropped = 0;
struct sk_buff *skb;
while ((skb = __skb_dequeue(rxq)) != NULL) {
struct page *page = NETFRONT_SKB_CB(skb)->page;
void *vaddr = page_address(page);
unsigned offset = NETFRONT_SKB_CB(skb)->offset;
memcpy(skb->data, vaddr + offset,
skb_headlen(skb));
if (page != skb_shinfo(skb)->frags[0].page)
__free_page(page);
/* Ethernet work: Delayed to here as it peeks the header. */
skb->protocol = eth_type_trans(skb, dev);
if (skb->ip_summed == CHECKSUM_PARTIAL) {
if (skb_checksum_setup(skb)) {
kfree_skb(skb);
packets_dropped++;
dev->stats.rx_errors++;
continue;
}
}
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
/* Pass it up. */
netif_receive_skb(skb);
dev->last_rx = jiffies;
}
return packets_dropped;
}
static int xennet_poll(struct napi_struct *napi, int budget)
{
struct netfront_info *np = container_of(napi, struct netfront_info, napi);
struct net_device *dev = np->netdev;
struct sk_buff *skb;
struct netfront_rx_info rinfo;
struct xen_netif_rx_response *rx = &rinfo.rx;
struct xen_netif_extra_info *extras = rinfo.extras;
RING_IDX i, rp;
int work_done;
struct sk_buff_head rxq;
struct sk_buff_head errq;
struct sk_buff_head tmpq;
unsigned long flags;
unsigned int len;
int err;
spin_lock(&np->rx_lock);
skb_queue_head_init(&rxq);
skb_queue_head_init(&errq);
skb_queue_head_init(&tmpq);
rp = np->rx.sring->rsp_prod;
rmb(); /* Ensure we see queued responses up to 'rp'. */
i = np->rx.rsp_cons;
work_done = 0;
while ((i != rp) && (work_done < budget)) {
memcpy(rx, RING_GET_RESPONSE(&np->rx, i), sizeof(*rx));
memset(extras, 0, sizeof(rinfo.extras));
err = xennet_get_responses(np, &rinfo, rp, &tmpq);
if (unlikely(err)) {
err:
while ((skb = __skb_dequeue(&tmpq)))
__skb_queue_tail(&errq, skb);
dev->stats.rx_errors++;
i = np->rx.rsp_cons;
continue;
}
skb = __skb_dequeue(&tmpq);
if (extras[XEN_NETIF_EXTRA_TYPE_GSO - 1].type) {
struct xen_netif_extra_info *gso;
gso = &extras[XEN_NETIF_EXTRA_TYPE_GSO - 1];
if (unlikely(xennet_set_skb_gso(skb, gso))) {
__skb_queue_head(&tmpq, skb);
np->rx.rsp_cons += skb_queue_len(&tmpq);
goto err;
}
}
NETFRONT_SKB_CB(skb)->page = skb_shinfo(skb)->frags[0].page;
NETFRONT_SKB_CB(skb)->offset = rx->offset;
len = rx->status;
if (len > RX_COPY_THRESHOLD)
len = RX_COPY_THRESHOLD;
skb_put(skb, len);
if (rx->status > len) {
skb_shinfo(skb)->frags[0].page_offset =
rx->offset + len;
skb_shinfo(skb)->frags[0].size = rx->status - len;
skb->data_len = rx->status - len;
} else {
skb_shinfo(skb)->frags[0].page = NULL;
skb_shinfo(skb)->nr_frags = 0;
}
i = xennet_fill_frags(np, skb, &tmpq);
/*
* Truesize approximates the size of true data plus
* any supervisor overheads. Adding hypervisor
* overheads has been shown to significantly reduce
* achievable bandwidth with the default receive
* buffer size. It is therefore not wise to account
* for it here.
*
* After alloc_skb(RX_COPY_THRESHOLD), truesize is set
* to RX_COPY_THRESHOLD + the supervisor
* overheads. Here, we add the size of the data pulled
* in xennet_fill_frags().
*
* We also adjust for any unused space in the main
* data area by subtracting (RX_COPY_THRESHOLD -
* len). This is especially important with drivers
* which split incoming packets into header and data,
* using only 66 bytes of the main data area (see the
* e1000 driver for example.) On such systems,
* without this last adjustement, our achievable
* receive throughout using the standard receive
* buffer size was cut by 25%(!!!).
*/
skb->truesize += skb->data_len - (RX_COPY_THRESHOLD - len);
skb->len += skb->data_len;
if (rx->flags & NETRXF_csum_blank)
skb->ip_summed = CHECKSUM_PARTIAL;
else if (rx->flags & NETRXF_data_validated)
skb->ip_summed = CHECKSUM_UNNECESSARY;
__skb_queue_tail(&rxq, skb);
np->rx.rsp_cons = ++i;
work_done++;
}
while ((skb = __skb_dequeue(&errq)))
kfree_skb(skb);
work_done -= handle_incoming_queue(dev, &rxq);
/* If we get a callback with very few responses, reduce fill target. */
/* NB. Note exponential increase, linear decrease. */
if (((np->rx.req_prod_pvt - np->rx.sring->rsp_prod) >
((3*np->rx_target) / 4)) &&
(--np->rx_target < np->rx_min_target))
np->rx_target = np->rx_min_target;
xennet_alloc_rx_buffers(dev);
if (work_done < budget) {
int more_to_do = 0;
local_irq_save(flags);
RING_FINAL_CHECK_FOR_RESPONSES(&np->rx, more_to_do);
if (!more_to_do)
__netif_rx_complete(dev, napi);
local_irq_restore(flags);
}
spin_unlock(&np->rx_lock);
return work_done;
}
static int xennet_change_mtu(struct net_device *dev, int mtu)
{
int max = xennet_can_sg(dev) ? 65535 - ETH_HLEN : ETH_DATA_LEN;
if (mtu > max)
return -EINVAL;
dev->mtu = mtu;
return 0;
}
static void xennet_release_tx_bufs(struct netfront_info *np)
{
struct sk_buff *skb;
int i;
for (i = 0; i < NET_TX_RING_SIZE; i++) {
/* Skip over entries which are actually freelist references */
if ((unsigned long)np->tx_skbs[i].skb < PAGE_OFFSET)
continue;
skb = np->tx_skbs[i].skb;
gnttab_end_foreign_access_ref(np->grant_tx_ref[i],
GNTMAP_readonly);
gnttab_release_grant_reference(&np->gref_tx_head,
np->grant_tx_ref[i]);
np->grant_tx_ref[i] = GRANT_INVALID_REF;
add_id_to_freelist(&np->tx_skb_freelist, np->tx_skbs, i);
dev_kfree_skb_irq(skb);
}
}
static void xennet_release_rx_bufs(struct netfront_info *np)
{
struct mmu_update *mmu = np->rx_mmu;
struct multicall_entry *mcl = np->rx_mcl;
struct sk_buff_head free_list;
struct sk_buff *skb;
unsigned long mfn;
int xfer = 0, noxfer = 0, unused = 0;
int id, ref;
dev_warn(&np->netdev->dev, "%s: fix me for copying receiver.\n",
__func__);
return;
skb_queue_head_init(&free_list);
spin_lock_bh(&np->rx_lock);
for (id = 0; id < NET_RX_RING_SIZE; id++) {
ref = np->grant_rx_ref[id];
if (ref == GRANT_INVALID_REF) {
unused++;
continue;
}
skb = np->rx_skbs[id];
mfn = gnttab_end_foreign_transfer_ref(ref);
gnttab_release_grant_reference(&np->gref_rx_head, ref);
np->grant_rx_ref[id] = GRANT_INVALID_REF;
if (0 == mfn) {
skb_shinfo(skb)->nr_frags = 0;
dev_kfree_skb(skb);
noxfer++;
continue;
}
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
/* Remap the page. */
struct page *page = skb_shinfo(skb)->frags[0].page;
unsigned long pfn = page_to_pfn(page);
void *vaddr = page_address(page);
MULTI_update_va_mapping(mcl, (unsigned long)vaddr,
mfn_pte(mfn, PAGE_KERNEL),
0);
mcl++;
mmu->ptr = ((u64)mfn << PAGE_SHIFT)
| MMU_MACHPHYS_UPDATE;
mmu->val = pfn;
mmu++;
set_phys_to_machine(pfn, mfn);
}
__skb_queue_tail(&free_list, skb);
xfer++;
}
dev_info(&np->netdev->dev, "%s: %d xfer, %d noxfer, %d unused\n",
__func__, xfer, noxfer, unused);
if (xfer) {
if (!xen_feature(XENFEAT_auto_translated_physmap)) {
/* Do all the remapping work and M2P updates. */
MULTI_mmu_update(mcl, np->rx_mmu, mmu - np->rx_mmu,
0, DOMID_SELF);
mcl++;
HYPERVISOR_multicall(np->rx_mcl, mcl - np->rx_mcl);
}
}
while ((skb = __skb_dequeue(&free_list)) != NULL)
dev_kfree_skb(skb);
spin_unlock_bh(&np->rx_lock);
}
static void xennet_uninit(struct net_device *dev)
{
struct netfront_info *np = netdev_priv(dev);
xennet_release_tx_bufs(np);
xennet_release_rx_bufs(np);
gnttab_free_grant_references(np->gref_tx_head);
gnttab_free_grant_references(np->gref_rx_head);
}
static struct net_device * __devinit xennet_create_dev(struct xenbus_device *dev)
{
int i, err;
struct net_device *netdev;
struct netfront_info *np;
netdev = alloc_etherdev(sizeof(struct netfront_info));
if (!netdev) {
printk(KERN_WARNING "%s> alloc_etherdev failed.\n",
__func__);
return ERR_PTR(-ENOMEM);
}
np = netdev_priv(netdev);
np->xbdev = dev;
spin_lock_init(&np->tx_lock);
spin_lock_init(&np->rx_lock);
skb_queue_head_init(&np->rx_batch);
np->rx_target = RX_DFL_MIN_TARGET;
np->rx_min_target = RX_DFL_MIN_TARGET;
np->rx_max_target = RX_MAX_TARGET;
init_timer(&np->rx_refill_timer);
np->rx_refill_timer.data = (unsigned long)netdev;
np->rx_refill_timer.function = rx_refill_timeout;
/* Initialise tx_skbs as a free chain containing every entry. */
np->tx_skb_freelist = 0;
for (i = 0; i < NET_TX_RING_SIZE; i++) {
np->tx_skbs[i].link = i+1;
np->grant_tx_ref[i] = GRANT_INVALID_REF;
}
/* Clear out rx_skbs */
for (i = 0; i < NET_RX_RING_SIZE; i++) {
np->rx_skbs[i] = NULL;
np->grant_rx_ref[i] = GRANT_INVALID_REF;
}
/* A grant for every tx ring slot */
if (gnttab_alloc_grant_references(TX_MAX_TARGET,
&np->gref_tx_head) < 0) {
printk(KERN_ALERT "#### netfront can't alloc tx grant refs\n");
err = -ENOMEM;
goto exit;
}
/* A grant for every rx ring slot */
if (gnttab_alloc_grant_references(RX_MAX_TARGET,
&np->gref_rx_head) < 0) {
printk(KERN_ALERT "#### netfront can't alloc rx grant refs\n");
err = -ENOMEM;
goto exit_free_tx;
}
netdev->open = xennet_open;
netdev->hard_start_xmit = xennet_start_xmit;
netdev->stop = xennet_close;
netif_napi_add(netdev, &np->napi, xennet_poll, 64);
netdev->uninit = xennet_uninit;
netdev->change_mtu = xennet_change_mtu;
netdev->features = NETIF_F_IP_CSUM;
SET_ETHTOOL_OPS(netdev, &xennet_ethtool_ops);
SET_NETDEV_DEV(netdev, &dev->dev);
np->netdev = netdev;
netif_carrier_off(netdev);
return netdev;
exit_free_tx:
gnttab_free_grant_references(np->gref_tx_head);
exit:
free_netdev(netdev);
return ERR_PTR(err);
}
/**
* Entry point to this code when a new device is created. Allocate the basic
* structures and the ring buffers for communication with the backend, and
* inform the backend of the appropriate details for those.
*/
static int __devinit netfront_probe(struct xenbus_device *dev,
const struct xenbus_device_id *id)
{
int err;
struct net_device *netdev;
struct netfront_info *info;
netdev = xennet_create_dev(dev);
if (IS_ERR(netdev)) {
err = PTR_ERR(netdev);
xenbus_dev_fatal(dev, err, "creating netdev");
return err;
}
info = netdev_priv(netdev);
dev->dev.driver_data = info;
err = register_netdev(info->netdev);
if (err) {
printk(KERN_WARNING "%s: register_netdev err=%d\n",
__func__, err);
goto fail;
}
err = xennet_sysfs_addif(info->netdev);
if (err) {
unregister_netdev(info->netdev);
printk(KERN_WARNING "%s: add sysfs failed err=%d\n",
__func__, err);
goto fail;
}
return 0;
fail:
free_netdev(netdev);
dev->dev.driver_data = NULL;
return err;
}
static void xennet_end_access(int ref, void *page)
{
/* This frees the page as a side-effect */
if (ref != GRANT_INVALID_REF)
gnttab_end_foreign_access(ref, 0, (unsigned long)page);
}
static void xennet_disconnect_backend(struct netfront_info *info)
{
/* Stop old i/f to prevent errors whilst we rebuild the state. */
spin_lock_bh(&info->rx_lock);
spin_lock_irq(&info->tx_lock);
netif_carrier_off(info->netdev);
spin_unlock_irq(&info->tx_lock);
spin_unlock_bh(&info->rx_lock);
if (info->netdev->irq)
unbind_from_irqhandler(info->netdev->irq, info->netdev);
info->evtchn = info->netdev->irq = 0;
/* End access and free the pages */
xennet_end_access(info->tx_ring_ref, info->tx.sring);
xennet_end_access(info->rx_ring_ref, info->rx.sring);
info->tx_ring_ref = GRANT_INVALID_REF;
info->rx_ring_ref = GRANT_INVALID_REF;
info->tx.sring = NULL;
info->rx.sring = NULL;
}
/**
* We are reconnecting to the backend, due to a suspend/resume, or a backend
* driver restart. We tear down our netif structure and recreate it, but
* leave the device-layer structures intact so that this is transparent to the
* rest of the kernel.
*/
static int netfront_resume(struct xenbus_device *dev)
{
struct netfront_info *info = dev->dev.driver_data;
dev_dbg(&dev->dev, "%s\n", dev->nodename);
xennet_disconnect_backend(info);
return 0;
}
static int xen_net_read_mac(struct xenbus_device *dev, u8 mac[])
{
char *s, *e, *macstr;
int i;
macstr = s = xenbus_read(XBT_NIL, dev->nodename, "mac", NULL);
if (IS_ERR(macstr))
return PTR_ERR(macstr);
for (i = 0; i < ETH_ALEN; i++) {
mac[i] = simple_strtoul(s, &e, 16);
if ((s == e) || (*e != ((i == ETH_ALEN-1) ? '\0' : ':'))) {
kfree(macstr);
return -ENOENT;
}
s = e+1;
}
kfree(macstr);
return 0;
}
static irqreturn_t xennet_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct netfront_info *np = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&np->tx_lock, flags);
if (likely(netif_carrier_ok(dev))) {
xennet_tx_buf_gc(dev);
/* Under tx_lock: protects access to rx shared-ring indexes. */
if (RING_HAS_UNCONSUMED_RESPONSES(&np->rx))
netif_rx_schedule(dev, &np->napi);
}
spin_unlock_irqrestore(&np->tx_lock, flags);
return IRQ_HANDLED;
}
static int setup_netfront(struct xenbus_device *dev, struct netfront_info *info)
{
struct xen_netif_tx_sring *txs;
struct xen_netif_rx_sring *rxs;
int err;
struct net_device *netdev = info->netdev;
info->tx_ring_ref = GRANT_INVALID_REF;
info->rx_ring_ref = GRANT_INVALID_REF;
info->rx.sring = NULL;
info->tx.sring = NULL;
netdev->irq = 0;
err = xen_net_read_mac(dev, netdev->dev_addr);
if (err) {
xenbus_dev_fatal(dev, err, "parsing %s/mac", dev->nodename);
goto fail;
}
txs = (struct xen_netif_tx_sring *)get_zeroed_page(GFP_KERNEL);
if (!txs) {
err = -ENOMEM;
xenbus_dev_fatal(dev, err, "allocating tx ring page");
goto fail;
}
SHARED_RING_INIT(txs);
FRONT_RING_INIT(&info->tx, txs, PAGE_SIZE);
err = xenbus_grant_ring(dev, virt_to_mfn(txs));
if (err < 0) {
free_page((unsigned long)txs);
goto fail;
}
info->tx_ring_ref = err;
rxs = (struct xen_netif_rx_sring *)get_zeroed_page(GFP_KERNEL);
if (!rxs) {
err = -ENOMEM;
xenbus_dev_fatal(dev, err, "allocating rx ring page");
goto fail;
}
SHARED_RING_INIT(rxs);
FRONT_RING_INIT(&info->rx, rxs, PAGE_SIZE);
err = xenbus_grant_ring(dev, virt_to_mfn(rxs));
if (err < 0) {
free_page((unsigned long)rxs);
goto fail;
}
info->rx_ring_ref = err;
err = xenbus_alloc_evtchn(dev, &info->evtchn);
if (err)
goto fail;
err = bind_evtchn_to_irqhandler(info->evtchn, xennet_interrupt,
IRQF_SAMPLE_RANDOM, netdev->name,
netdev);
if (err < 0)
goto fail;
netdev->irq = err;
return 0;
fail:
return err;
}
/* Common code used when first setting up, and when resuming. */
static int talk_to_backend(struct xenbus_device *dev,
struct netfront_info *info)
{
const char *message;
struct xenbus_transaction xbt;
int err;
/* Create shared ring, alloc event channel. */
err = setup_netfront(dev, info);
if (err)
goto out;
again:
err = xenbus_transaction_start(&xbt);
if (err) {
xenbus_dev_fatal(dev, err, "starting transaction");
goto destroy_ring;
}
err = xenbus_printf(xbt, dev->nodename, "tx-ring-ref", "%u",
info->tx_ring_ref);
if (err) {
message = "writing tx ring-ref";
goto abort_transaction;
}
err = xenbus_printf(xbt, dev->nodename, "rx-ring-ref", "%u",
info->rx_ring_ref);
if (err) {
message = "writing rx ring-ref";
goto abort_transaction;
}
err = xenbus_printf(xbt, dev->nodename,
"event-channel", "%u", info->evtchn);
if (err) {
message = "writing event-channel";
goto abort_transaction;
}
err = xenbus_printf(xbt, dev->nodename, "request-rx-copy", "%u",
1);
if (err) {
message = "writing request-rx-copy";
goto abort_transaction;
}
err = xenbus_printf(xbt, dev->nodename, "feature-rx-notify", "%d", 1);
if (err) {
message = "writing feature-rx-notify";
goto abort_transaction;
}
err = xenbus_printf(xbt, dev->nodename, "feature-sg", "%d", 1);
if (err) {
message = "writing feature-sg";
goto abort_transaction;
}
err = xenbus_printf(xbt, dev->nodename, "feature-gso-tcpv4", "%d", 1);
if (err) {
message = "writing feature-gso-tcpv4";
goto abort_transaction;
}
err = xenbus_transaction_end(xbt, 0);
if (err) {
if (err == -EAGAIN)
goto again;
xenbus_dev_fatal(dev, err, "completing transaction");
goto destroy_ring;
}
return 0;
abort_transaction:
xenbus_transaction_end(xbt, 1);
xenbus_dev_fatal(dev, err, "%s", message);
destroy_ring:
xennet_disconnect_backend(info);
out:
return err;
}
static int xennet_set_sg(struct net_device *dev, u32 data)
{
if (data) {
struct netfront_info *np = netdev_priv(dev);
int val;
if (xenbus_scanf(XBT_NIL, np->xbdev->otherend, "feature-sg",
"%d", &val) < 0)
val = 0;
if (!val)
return -ENOSYS;
} else if (dev->mtu > ETH_DATA_LEN)
dev->mtu = ETH_DATA_LEN;
return ethtool_op_set_sg(dev, data);
}
static int xennet_set_tso(struct net_device *dev, u32 data)
{
if (data) {
struct netfront_info *np = netdev_priv(dev);
int val;
if (xenbus_scanf(XBT_NIL, np->xbdev->otherend,
"feature-gso-tcpv4", "%d", &val) < 0)
val = 0;
if (!val)
return -ENOSYS;
}
return ethtool_op_set_tso(dev, data);
}
static void xennet_set_features(struct net_device *dev)
{
/* Turn off all GSO bits except ROBUST. */
dev->features &= (1 << NETIF_F_GSO_SHIFT) - 1;
dev->features |= NETIF_F_GSO_ROBUST;
xennet_set_sg(dev, 0);
/* We need checksum offload to enable scatter/gather and TSO. */
if (!(dev->features & NETIF_F_IP_CSUM))
return;
if (!xennet_set_sg(dev, 1))
xennet_set_tso(dev, 1);
}
static int xennet_connect(struct net_device *dev)
{
struct netfront_info *np = netdev_priv(dev);
int i, requeue_idx, err;
struct sk_buff *skb;
grant_ref_t ref;
struct xen_netif_rx_request *req;
unsigned int feature_rx_copy;
err = xenbus_scanf(XBT_NIL, np->xbdev->otherend,
"feature-rx-copy", "%u", &feature_rx_copy);
if (err != 1)
feature_rx_copy = 0;
if (!feature_rx_copy) {
dev_info(&dev->dev,
"backend does not support copying receive path\n");
return -ENODEV;
}
err = talk_to_backend(np->xbdev, np);
if (err)
return err;
xennet_set_features(dev);
spin_lock_bh(&np->rx_lock);
spin_lock_irq(&np->tx_lock);
/* Step 1: Discard all pending TX packet fragments. */
xennet_release_tx_bufs(np);
/* Step 2: Rebuild the RX buffer freelist and the RX ring itself. */
for (requeue_idx = 0, i = 0; i < NET_RX_RING_SIZE; i++) {
if (!np->rx_skbs[i])
continue;
skb = np->rx_skbs[requeue_idx] = xennet_get_rx_skb(np, i);
ref = np->grant_rx_ref[requeue_idx] = xennet_get_rx_ref(np, i);
req = RING_GET_REQUEST(&np->rx, requeue_idx);
gnttab_grant_foreign_access_ref(
ref, np->xbdev->otherend_id,
pfn_to_mfn(page_to_pfn(skb_shinfo(skb)->
frags->page)),
0);
req->gref = ref;
req->id = requeue_idx;
requeue_idx++;
}
np->rx.req_prod_pvt = requeue_idx;
/*
* Step 3: All public and private state should now be sane. Get
* ready to start sending and receiving packets and give the driver
* domain a kick because we've probably just requeued some
* packets.
*/
netif_carrier_on(np->netdev);
notify_remote_via_irq(np->netdev->irq);
xennet_tx_buf_gc(dev);
xennet_alloc_rx_buffers(dev);
spin_unlock_irq(&np->tx_lock);
spin_unlock_bh(&np->rx_lock);
return 0;
}
/**
* Callback received when the backend's state changes.
*/
static void backend_changed(struct xenbus_device *dev,
enum xenbus_state backend_state)
{
struct netfront_info *np = dev->dev.driver_data;
struct net_device *netdev = np->netdev;
dev_dbg(&dev->dev, "%s\n", xenbus_strstate(backend_state));
switch (backend_state) {
case XenbusStateInitialising:
case XenbusStateInitialised:
case XenbusStateConnected:
case XenbusStateUnknown:
case XenbusStateClosed:
break;
case XenbusStateInitWait:
if (dev->state != XenbusStateInitialising)
break;
if (xennet_connect(netdev) != 0)
break;
xenbus_switch_state(dev, XenbusStateConnected);
break;
case XenbusStateClosing:
xenbus_frontend_closed(dev);
break;
}
}
static struct ethtool_ops xennet_ethtool_ops =
{
.set_tx_csum = ethtool_op_set_tx_csum,
.set_sg = xennet_set_sg,
.set_tso = xennet_set_tso,
.get_link = ethtool_op_get_link,
};
#ifdef CONFIG_SYSFS
static ssize_t show_rxbuf_min(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
struct netfront_info *info = netdev_priv(netdev);
return sprintf(buf, "%u\n", info->rx_min_target);
}
static ssize_t store_rxbuf_min(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct net_device *netdev = to_net_dev(dev);
struct netfront_info *np = netdev_priv(netdev);
char *endp;
unsigned long target;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
target = simple_strtoul(buf, &endp, 0);
if (endp == buf)
return -EBADMSG;
if (target < RX_MIN_TARGET)
target = RX_MIN_TARGET;
if (target > RX_MAX_TARGET)
target = RX_MAX_TARGET;
spin_lock_bh(&np->rx_lock);
if (target > np->rx_max_target)
np->rx_max_target = target;
np->rx_min_target = target;
if (target > np->rx_target)
np->rx_target = target;
xennet_alloc_rx_buffers(netdev);
spin_unlock_bh(&np->rx_lock);
return len;
}
static ssize_t show_rxbuf_max(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
struct netfront_info *info = netdev_priv(netdev);
return sprintf(buf, "%u\n", info->rx_max_target);
}
static ssize_t store_rxbuf_max(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct net_device *netdev = to_net_dev(dev);
struct netfront_info *np = netdev_priv(netdev);
char *endp;
unsigned long target;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
target = simple_strtoul(buf, &endp, 0);
if (endp == buf)
return -EBADMSG;
if (target < RX_MIN_TARGET)
target = RX_MIN_TARGET;
if (target > RX_MAX_TARGET)
target = RX_MAX_TARGET;
spin_lock_bh(&np->rx_lock);
if (target < np->rx_min_target)
np->rx_min_target = target;
np->rx_max_target = target;
if (target < np->rx_target)
np->rx_target = target;
xennet_alloc_rx_buffers(netdev);
spin_unlock_bh(&np->rx_lock);
return len;
}
static ssize_t show_rxbuf_cur(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct net_device *netdev = to_net_dev(dev);
struct netfront_info *info = netdev_priv(netdev);
return sprintf(buf, "%u\n", info->rx_target);
}
static struct device_attribute xennet_attrs[] = {
__ATTR(rxbuf_min, S_IRUGO|S_IWUSR, show_rxbuf_min, store_rxbuf_min),
__ATTR(rxbuf_max, S_IRUGO|S_IWUSR, show_rxbuf_max, store_rxbuf_max),
__ATTR(rxbuf_cur, S_IRUGO, show_rxbuf_cur, NULL),
};
static int xennet_sysfs_addif(struct net_device *netdev)
{
int i;
int err;
for (i = 0; i < ARRAY_SIZE(xennet_attrs); i++) {
err = device_create_file(&netdev->dev,
&xennet_attrs[i]);
if (err)
goto fail;
}
return 0;
fail:
while (--i >= 0)
device_remove_file(&netdev->dev, &xennet_attrs[i]);
return err;
}
static void xennet_sysfs_delif(struct net_device *netdev)
{
int i;
for (i = 0; i < ARRAY_SIZE(xennet_attrs); i++)
device_remove_file(&netdev->dev, &xennet_attrs[i]);
}
#endif /* CONFIG_SYSFS */
static struct xenbus_device_id netfront_ids[] = {
{ "vif" },
{ "" }
};
static int __devexit xennet_remove(struct xenbus_device *dev)
{
struct netfront_info *info = dev->dev.driver_data;
dev_dbg(&dev->dev, "%s\n", dev->nodename);
unregister_netdev(info->netdev);
xennet_disconnect_backend(info);
del_timer_sync(&info->rx_refill_timer);
xennet_sysfs_delif(info->netdev);
free_netdev(info->netdev);
return 0;
}
static struct xenbus_driver netfront = {
.name = "vif",
.owner = THIS_MODULE,
.ids = netfront_ids,
.probe = netfront_probe,
.remove = __devexit_p(xennet_remove),
.resume = netfront_resume,
.otherend_changed = backend_changed,
};
static int __init netif_init(void)
{
if (!is_running_on_xen())
return -ENODEV;
if (is_initial_xendomain())
return 0;
printk(KERN_INFO "Initialising Xen virtual ethernet driver.\n");
return xenbus_register_frontend(&netfront);
}
module_init(netif_init);
static void __exit netif_exit(void)
{
if (is_initial_xendomain())
return;
return xenbus_unregister_driver(&netfront);
}
module_exit(netif_exit);
MODULE_DESCRIPTION("Xen virtual network device frontend");
MODULE_LICENSE("GPL");