kernel-ark/drivers/net/bnx2x_init.h
Eliezer Tamir e8717a4726 [BNX2X]: Prevent PCI queue overflow
Limit traffic through an internal queue to prevent overflow.

Signed-off-by: Eliezer Tamir <eliezert@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-02-28 11:57:29 -08:00

569 lines
17 KiB
C

/* bnx2x_init.h: Broadcom Everest network driver.
*
* Copyright (c) 2007-2008 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Written by: Eliezer Tamir <eliezert@broadcom.com>
*/
#ifndef BNX2X_INIT_H
#define BNX2X_INIT_H
#define COMMON 0x1
#define PORT0 0x2
#define PORT1 0x4
#define INIT_EMULATION 0x1
#define INIT_FPGA 0x2
#define INIT_ASIC 0x4
#define INIT_HARDWARE 0x7
#define STORM_INTMEM_SIZE (0x5800 / 4)
#define TSTORM_INTMEM_ADDR 0x1a0000
#define CSTORM_INTMEM_ADDR 0x220000
#define XSTORM_INTMEM_ADDR 0x2a0000
#define USTORM_INTMEM_ADDR 0x320000
/* Init operation types and structures */
#define OP_RD 0x1 /* read single register */
#define OP_WR 0x2 /* write single register */
#define OP_IW 0x3 /* write single register using mailbox */
#define OP_SW 0x4 /* copy a string to the device */
#define OP_SI 0x5 /* copy a string using mailbox */
#define OP_ZR 0x6 /* clear memory */
#define OP_ZP 0x7 /* unzip then copy with DMAE */
#define OP_WB 0x8 /* copy a string using DMAE */
struct raw_op {
u32 op :8;
u32 offset :24;
u32 raw_data;
};
struct op_read {
u32 op :8;
u32 offset :24;
u32 pad;
};
struct op_write {
u32 op :8;
u32 offset :24;
u32 val;
};
struct op_string_write {
u32 op :8;
u32 offset :24;
#ifdef __LITTLE_ENDIAN
u16 data_off;
u16 data_len;
#else /* __BIG_ENDIAN */
u16 data_len;
u16 data_off;
#endif
};
struct op_zero {
u32 op :8;
u32 offset :24;
u32 len;
};
union init_op {
struct op_read read;
struct op_write write;
struct op_string_write str_wr;
struct op_zero zero;
struct raw_op raw;
};
#include "bnx2x_init_values.h"
static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
static void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr,
u32 dst_addr, u32 len32);
static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len)
{
int i;
for (i = 0; i < len; i++) {
REG_WR(bp, addr + i*4, data[i]);
if (!(i % 10000)) {
touch_softlockup_watchdog();
cpu_relax();
}
}
}
#define INIT_MEM_WR(reg, data, reg_off, len) \
bnx2x_init_str_wr(bp, reg + reg_off*4, data, len)
static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
u16 len)
{
int i;
for (i = 0; i < len; i++) {
REG_WR_IND(bp, addr + i*4, data[i]);
if (!(i % 10000)) {
touch_softlockup_watchdog();
cpu_relax();
}
}
}
static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
u32 len, int gunzip)
{
int offset = 0;
if (gunzip) {
int rc;
#ifdef __BIG_ENDIAN
int i, size;
u32 *temp;
temp = kmalloc(len, GFP_KERNEL);
size = (len / 4) + ((len % 4) ? 1 : 0);
for (i = 0; i < size; i++)
temp[i] = swab32(data[i]);
data = temp;
#endif
rc = bnx2x_gunzip(bp, (u8 *)data, len);
if (rc) {
DP(NETIF_MSG_HW, "gunzip failed ! rc %d\n", rc);
return;
}
len = bp->gunzip_outlen;
#ifdef __BIG_ENDIAN
kfree(temp);
for (i = 0; i < len; i++)
((u32 *)bp->gunzip_buf)[i] =
swab32(((u32 *)bp->gunzip_buf)[i]);
#endif
} else {
if ((len * 4) > FW_BUF_SIZE) {
BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len*4);
return;
}
memcpy(bp->gunzip_buf, data, len * 4);
}
while (len > DMAE_LEN32_MAX) {
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, DMAE_LEN32_MAX);
offset += DMAE_LEN32_MAX * 4;
len -= DMAE_LEN32_MAX;
}
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len);
}
#define INIT_MEM_WB(reg, data, reg_off, len) \
bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 0)
#define INIT_GUNZIP_DMAE(reg, data, reg_off, len) \
bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 1)
static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
{
int offset = 0;
if ((len * 4) > FW_BUF_SIZE) {
BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len * 4);
return;
}
memset(bp->gunzip_buf, fill, len * 4);
while (len > DMAE_LEN32_MAX) {
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
addr + offset, DMAE_LEN32_MAX);
offset += DMAE_LEN32_MAX * 4;
len -= DMAE_LEN32_MAX;
}
bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len);
}
static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
{
int i;
union init_op *op;
u32 op_type, addr, len;
const u32 *data;
for (i = op_start; i < op_end; i++) {
op = (union init_op *)&(init_ops[i]);
op_type = op->str_wr.op;
addr = op->str_wr.offset;
len = op->str_wr.data_len;
data = init_data + op->str_wr.data_off;
switch (op_type) {
case OP_RD:
REG_RD(bp, addr);
break;
case OP_WR:
REG_WR(bp, addr, op->write.val);
break;
case OP_SW:
bnx2x_init_str_wr(bp, addr, data, len);
break;
case OP_WB:
bnx2x_init_wr_wb(bp, addr, data, len, 0);
break;
case OP_SI:
bnx2x_init_ind_wr(bp, addr, data, len);
break;
case OP_ZR:
bnx2x_init_fill(bp, addr, 0, op->zero.len);
break;
case OP_ZP:
bnx2x_init_wr_wb(bp, addr, data, len, 1);
break;
default:
BNX2X_ERR("BAD init operation!\n");
}
}
}
/****************************************************************************
* PXP
****************************************************************************/
/*
* This code configures the PCI read/write arbiter
* which implements a wighted round robin
* between the virtual queues in the chip.
*
* The values were derived for each PCI max payload and max request size.
* since max payload and max request size are only known at run time,
* this is done as a separate init stage.
*/
#define NUM_WR_Q 13
#define NUM_RD_Q 29
#define MAX_RD_ORD 3
#define MAX_WR_ORD 2
/* configuration for one arbiter queue */
struct arb_line {
int l;
int add;
int ubound;
};
/* derived configuration for each read queue for each max request size */
static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
{{4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4} },
{{4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3} },
{{8 , 3 , 6}, {16 , 3 , 11}, {16 , 3 , 11}, {16 , 3 , 11} },
{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
{{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} }
};
/* derived configuration for each write queue for each max request size */
static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
{{4 , 6 , 3}, {4 , 6 , 3}, {4 , 6 , 3} },
{{4 , 2 , 3}, {4 , 2 , 3}, {4 , 2 , 3} },
{{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
{{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
{{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
{{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
{{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} },
{{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
{{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
{{8 , 9 , 6}, {16 , 9 , 11}, {32 , 9 , 21} },
{{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} },
{{8 , 9 , 6}, {16 , 9 , 11}, {16 , 9 , 11} },
{{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} }
};
/* register adresses for read queues */
static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
PXP2_REG_RQ_BW_RD_UBOUND0},
{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
PXP2_REG_RQ_BW_RD_UBOUND4},
{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
PXP2_REG_RQ_BW_RD_UBOUND5},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
PXP2_REG_RQ_BW_RD_UBOUND12},
{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
PXP2_REG_RQ_BW_RD_UBOUND13},
{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
PXP2_REG_RQ_BW_RD_UBOUND14},
{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
PXP2_REG_RQ_BW_RD_UBOUND15},
{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
PXP2_REG_RQ_BW_RD_UBOUND16},
{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
PXP2_REG_RQ_BW_RD_UBOUND17},
{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
PXP2_REG_RQ_BW_RD_UBOUND18},
{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
PXP2_REG_RQ_BW_RD_UBOUND19},
{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
PXP2_REG_RQ_BW_RD_UBOUND20},
{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
PXP2_REG_RQ_BW_RD_UBOUND22},
{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
PXP2_REG_RQ_BW_RD_UBOUND23},
{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
PXP2_REG_RQ_BW_RD_UBOUND24},
{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
PXP2_REG_RQ_BW_RD_UBOUND25},
{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
PXP2_REG_RQ_BW_RD_UBOUND26},
{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
PXP2_REG_RQ_BW_RD_UBOUND27},
{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28}
};
/* register adresses for wrtie queues */
static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
PXP2_REG_PSWRQ_BW_UB1},
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
PXP2_REG_PSWRQ_BW_UB2},
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
PXP2_REG_PSWRQ_BW_UB3},
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
PXP2_REG_PSWRQ_BW_UB6},
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
PXP2_REG_PSWRQ_BW_UB7},
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
PXP2_REG_PSWRQ_BW_UB8},
{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
PXP2_REG_PSWRQ_BW_UB9},
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
PXP2_REG_PSWRQ_BW_UB10},
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
PXP2_REG_PSWRQ_BW_UB11},
{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
PXP2_REG_PSWRQ_BW_UB28},
{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
PXP2_REG_RQ_BW_WR_UBOUND29},
{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
PXP2_REG_RQ_BW_WR_UBOUND30}
};
static void bnx2x_init_pxp(struct bnx2x *bp)
{
int r_order, w_order;
u32 val, i;
pci_read_config_word(bp->pdev,
bp->pcie_cap + PCI_EXP_DEVCTL, (u16 *)&val);
DP(NETIF_MSG_HW, "read 0x%x from devctl\n", (u16)val);
w_order = ((val & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
r_order = ((val & PCI_EXP_DEVCTL_READRQ) >> 12);
if (r_order > MAX_RD_ORD) {
DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
r_order, MAX_RD_ORD);
r_order = MAX_RD_ORD;
}
if (w_order > MAX_WR_ORD) {
DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
w_order, MAX_WR_ORD);
w_order = MAX_WR_ORD;
}
DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
for (i = 0; i < NUM_RD_Q-1; i++) {
REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
REG_WR(bp, read_arb_addr[i].add,
read_arb_data[i][r_order].add);
REG_WR(bp, read_arb_addr[i].ubound,
read_arb_data[i][r_order].ubound);
}
for (i = 0; i < NUM_WR_Q-1; i++) {
if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
(write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
REG_WR(bp, write_arb_addr[i].l,
write_arb_data[i][w_order].l);
REG_WR(bp, write_arb_addr[i].add,
write_arb_data[i][w_order].add);
REG_WR(bp, write_arb_addr[i].ubound,
write_arb_data[i][w_order].ubound);
} else {
val = REG_RD(bp, write_arb_addr[i].l);
REG_WR(bp, write_arb_addr[i].l,
val | (write_arb_data[i][w_order].l << 10));
val = REG_RD(bp, write_arb_addr[i].add);
REG_WR(bp, write_arb_addr[i].add,
val | (write_arb_data[i][w_order].add << 10));
val = REG_RD(bp, write_arb_addr[i].ubound);
REG_WR(bp, write_arb_addr[i].ubound,
val | (write_arb_data[i][w_order].ubound << 7));
}
}
val = write_arb_data[NUM_WR_Q-1][w_order].add;
val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
val = read_arb_data[NUM_RD_Q-1][r_order].add;
val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
if (r_order == MAX_RD_ORD)
REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
REG_WR(bp, PXP2_REG_WR_DMAE_TH, (128 << w_order)/16);
}
/****************************************************************************
* CDU
****************************************************************************/
#define CDU_REGION_NUMBER_XCM_AG 2
#define CDU_REGION_NUMBER_UCM_AG 4
/**
* String-to-compress [31:8] = CID (all 24 bits)
* String-to-compress [7:4] = Region
* String-to-compress [3:0] = Type
*/
#define CDU_VALID_DATA(_cid, _region, _type) \
(((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
#define CDU_CRC8(_cid, _region, _type) \
calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
#define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
(0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
#define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
(0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
#define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
/*****************************************************************************
* Description:
* Calculates crc 8 on a word value: polynomial 0-1-2-8
* Code was translated from Verilog.
****************************************************************************/
static u8 calc_crc8(u32 data, u8 crc)
{
u8 D[32];
u8 NewCRC[8];
u8 C[8];
u8 crc_res;
u8 i;
/* split the data into 31 bits */
for (i = 0; i < 32; i++) {
D[i] = data & 1;
data = data >> 1;
}
/* split the crc into 8 bits */
for (i = 0; i < 8; i++) {
C[i] = crc & 1;
crc = crc >> 1;
}
NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
C[6] ^ C[7];
NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
C[0] ^ C[1] ^ C[4] ^ C[5];
NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
C[1] ^ C[2] ^ C[5] ^ C[6];
NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
C[3] ^ C[4] ^ C[7];
NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
C[5];
NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
C[6];
crc_res = 0;
for (i = 0; i < 8; i++)
crc_res |= (NewCRC[i] << i);
return crc_res;
}
#endif /* BNX2X_INIT_H */