kernel-ark/sound/ppc/pmac.c
Takashi Iwai 561b220a4d [ALSA] Replace with kzalloc() - others
Documentation,SA11xx UDA1341 driver,Generic drivers,MPU401 UART,OPL3
OPL4,Digigram VX core,I2C cs8427,I2C lib core,I2C tea6330t,L3 drivers
AK4114 receiver,AK4117 receiver,PDAudioCF driver,PPC PMAC driver
SPARC AMD7930 driver,SPARC cs4231 driver,Synth,Common EMU synth
USB generic driver,USB USX2Y
Replace kcalloc(1,..) with kzalloc().

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2005-09-12 10:48:22 +02:00

1421 lines
36 KiB
C

/*
* PMac DBDMA lowlevel functions
*
* Copyright (c) by Takashi Iwai <tiwai@suse.de>
* code based on dmasound.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <sound/core.h>
#include "pmac.h"
#include <sound/pcm_params.h>
#include <asm/pmac_feature.h>
#include <asm/pci-bridge.h>
#ifdef CONFIG_PM
static int snd_pmac_register_sleep_notifier(pmac_t *chip);
static int snd_pmac_unregister_sleep_notifier(pmac_t *chip);
static int snd_pmac_suspend(snd_card_t *card, pm_message_t state);
static int snd_pmac_resume(snd_card_t *card);
#endif
/* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
static int awacs_freqs[8] = {
44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
};
/* fixed frequency table for tumbler */
static int tumbler_freqs[1] = {
44100
};
/*
* allocate DBDMA command arrays
*/
static int snd_pmac_dbdma_alloc(pmac_t *chip, pmac_dbdma_t *rec, int size)
{
unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
&rec->dma_base, GFP_KERNEL);
if (rec->space == NULL)
return -ENOMEM;
rec->size = size;
memset(rec->space, 0, rsize);
rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
return 0;
}
static void snd_pmac_dbdma_free(pmac_t *chip, pmac_dbdma_t *rec)
{
if (rec) {
unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
}
}
/*
* pcm stuff
*/
/*
* look up frequency table
*/
unsigned int snd_pmac_rate_index(pmac_t *chip, pmac_stream_t *rec, unsigned int rate)
{
int i, ok, found;
ok = rec->cur_freqs;
if (rate > chip->freq_table[0])
return 0;
found = 0;
for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
if (! (ok & 1)) continue;
found = i;
if (rate >= chip->freq_table[i])
break;
}
return found;
}
/*
* check whether another stream is active
*/
static inline int another_stream(int stream)
{
return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
}
/*
* allocate buffers
*/
static int snd_pmac_pcm_hw_params(snd_pcm_substream_t *subs,
snd_pcm_hw_params_t *hw_params)
{
return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
}
/*
* release buffers
*/
static int snd_pmac_pcm_hw_free(snd_pcm_substream_t *subs)
{
snd_pcm_lib_free_pages(subs);
return 0;
}
/*
* get a stream of the opposite direction
*/
static pmac_stream_t *snd_pmac_get_stream(pmac_t *chip, int stream)
{
switch (stream) {
case SNDRV_PCM_STREAM_PLAYBACK:
return &chip->playback;
case SNDRV_PCM_STREAM_CAPTURE:
return &chip->capture;
default:
snd_BUG();
return NULL;
}
}
/*
* wait while run status is on
*/
static inline void
snd_pmac_wait_ack(pmac_stream_t *rec)
{
int timeout = 50000;
while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
udelay(1);
}
/*
* set the format and rate to the chip.
* call the lowlevel function if defined (e.g. for AWACS).
*/
static void snd_pmac_pcm_set_format(pmac_t *chip)
{
/* set up frequency and format */
out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
if (chip->set_format)
chip->set_format(chip);
}
/*
* stop the DMA transfer
*/
static inline void snd_pmac_dma_stop(pmac_stream_t *rec)
{
out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
snd_pmac_wait_ack(rec);
}
/*
* set the command pointer address
*/
static inline void snd_pmac_dma_set_command(pmac_stream_t *rec, pmac_dbdma_t *cmd)
{
out_le32(&rec->dma->cmdptr, cmd->addr);
}
/*
* start the DMA
*/
static inline void snd_pmac_dma_run(pmac_stream_t *rec, int status)
{
out_le32(&rec->dma->control, status | (status << 16));
}
/*
* prepare playback/capture stream
*/
static int snd_pmac_pcm_prepare(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
int i;
volatile struct dbdma_cmd __iomem *cp;
snd_pcm_runtime_t *runtime = subs->runtime;
int rate_index;
long offset;
pmac_stream_t *astr;
rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
rec->period_size = snd_pcm_lib_period_bytes(subs);
rec->nperiods = rec->dma_size / rec->period_size;
rec->cur_period = 0;
rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
/* set up constraints */
astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
snd_runtime_check(astr, return -EINVAL);
astr->cur_freqs = 1 << rate_index;
astr->cur_formats = 1 << runtime->format;
chip->rate_index = rate_index;
chip->format = runtime->format;
/* We really want to execute a DMA stop command, after the AWACS
* is initialized.
* For reasons I don't understand, it stops the hissing noise
* common to many PowerBook G3 systems and random noise otherwise
* captured on iBook2's about every third time. -ReneR
*/
spin_lock_irq(&chip->reg_lock);
snd_pmac_dma_stop(rec);
st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
snd_pmac_dma_set_command(rec, &chip->extra_dma);
snd_pmac_dma_run(rec, RUN);
spin_unlock_irq(&chip->reg_lock);
mdelay(5);
spin_lock_irq(&chip->reg_lock);
/* continuous DMA memory type doesn't provide the physical address,
* so we need to resolve the address here...
*/
offset = runtime->dma_addr;
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
st_le32(&cp->phy_addr, offset);
st_le16(&cp->req_count, rec->period_size);
/*st_le16(&cp->res_count, 0);*/
st_le16(&cp->xfer_status, 0);
offset += rec->period_size;
}
/* make loop */
st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
st_le32(&cp->cmd_dep, rec->cmd.addr);
snd_pmac_dma_stop(rec);
snd_pmac_dma_set_command(rec, &rec->cmd);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
/*
* PCM trigger/stop
*/
static int snd_pmac_pcm_trigger(pmac_t *chip, pmac_stream_t *rec,
snd_pcm_substream_t *subs, int cmd)
{
volatile struct dbdma_cmd __iomem *cp;
int i, command;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
if (rec->running)
return -EBUSY;
command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
spin_lock(&chip->reg_lock);
snd_pmac_beep_stop(chip);
snd_pmac_pcm_set_format(chip);
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
out_le16(&cp->command, command);
snd_pmac_dma_set_command(rec, &rec->cmd);
(void)in_le32(&rec->dma->status);
snd_pmac_dma_run(rec, RUN|WAKE);
rec->running = 1;
spin_unlock(&chip->reg_lock);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
spin_lock(&chip->reg_lock);
rec->running = 0;
/*printk("stopped!!\n");*/
snd_pmac_dma_stop(rec);
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
out_le16(&cp->command, DBDMA_STOP);
spin_unlock(&chip->reg_lock);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* return the current pointer
*/
inline
static snd_pcm_uframes_t snd_pmac_pcm_pointer(pmac_t *chip, pmac_stream_t *rec,
snd_pcm_substream_t *subs)
{
int count = 0;
#if 1 /* hmm.. how can we get the current dma pointer?? */
int stat;
volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
stat = ld_le16(&cp->xfer_status);
if (stat & (ACTIVE|DEAD)) {
count = in_le16(&cp->res_count);
if (count)
count = rec->period_size - count;
}
#endif
count += rec->cur_period * rec->period_size;
/*printk("pointer=%d\n", count);*/
return bytes_to_frames(subs->runtime, count);
}
/*
* playback
*/
static int snd_pmac_playback_prepare(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
}
static int snd_pmac_playback_trigger(snd_pcm_substream_t *subs,
int cmd)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
}
static snd_pcm_uframes_t snd_pmac_playback_pointer(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
}
/*
* capture
*/
static int snd_pmac_capture_prepare(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
}
static int snd_pmac_capture_trigger(snd_pcm_substream_t *subs,
int cmd)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
}
static snd_pcm_uframes_t snd_pmac_capture_pointer(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
}
/*
* update playback/capture pointer from interrupts
*/
static void snd_pmac_pcm_update(pmac_t *chip, pmac_stream_t *rec)
{
volatile struct dbdma_cmd __iomem *cp;
int c;
int stat;
spin_lock(&chip->reg_lock);
if (rec->running) {
cp = &rec->cmd.cmds[rec->cur_period];
for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
stat = ld_le16(&cp->xfer_status);
if (! (stat & ACTIVE))
break;
/*printk("update frag %d\n", rec->cur_period);*/
st_le16(&cp->xfer_status, 0);
st_le16(&cp->req_count, rec->period_size);
/*st_le16(&cp->res_count, 0);*/
rec->cur_period++;
if (rec->cur_period >= rec->nperiods) {
rec->cur_period = 0;
cp = rec->cmd.cmds;
} else
cp++;
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(rec->substream);
spin_lock(&chip->reg_lock);
}
}
spin_unlock(&chip->reg_lock);
}
/*
* hw info
*/
static snd_pcm_hardware_t snd_pmac_playback =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_RESUME),
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_8000_44100,
.rate_min = 7350,
.rate_max = 44100,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 131072,
.period_bytes_min = 256,
.period_bytes_max = 16384,
.periods_min = 3,
.periods_max = PMAC_MAX_FRAGS,
};
static snd_pcm_hardware_t snd_pmac_capture =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_RESUME),
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_8000_44100,
.rate_min = 7350,
.rate_max = 44100,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 131072,
.period_bytes_min = 256,
.period_bytes_max = 16384,
.periods_min = 3,
.periods_max = PMAC_MAX_FRAGS,
};
#if 0 // NYI
static int snd_pmac_hw_rule_rate(snd_pcm_hw_params_t *params,
snd_pcm_hw_rule_t *rule)
{
pmac_t *chip = rule->private;
pmac_stream_t *rec = snd_pmac_get_stream(chip, rule->deps[0]);
int i, freq_table[8], num_freqs;
snd_runtime_check(rec, return -EINVAL);
num_freqs = 0;
for (i = chip->num_freqs - 1; i >= 0; i--) {
if (rec->cur_freqs & (1 << i))
freq_table[num_freqs++] = chip->freq_table[i];
}
return snd_interval_list(hw_param_interval(params, rule->var),
num_freqs, freq_table, 0);
}
static int snd_pmac_hw_rule_format(snd_pcm_hw_params_t *params,
snd_pcm_hw_rule_t *rule)
{
pmac_t *chip = rule->private;
pmac_stream_t *rec = snd_pmac_get_stream(chip, rule->deps[0]);
snd_runtime_check(rec, return -EINVAL);
return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
rec->cur_formats);
}
#endif // NYI
static int snd_pmac_pcm_open(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
snd_pcm_runtime_t *runtime = subs->runtime;
int i, j, fflags;
static int typical_freqs[] = {
44100,
22050,
11025,
0,
};
static int typical_freq_flags[] = {
SNDRV_PCM_RATE_44100,
SNDRV_PCM_RATE_22050,
SNDRV_PCM_RATE_11025,
0,
};
/* look up frequency table and fill bit mask */
runtime->hw.rates = 0;
fflags = chip->freqs_ok;
for (i = 0; typical_freqs[i]; i++) {
for (j = 0; j < chip->num_freqs; j++) {
if ((chip->freqs_ok & (1 << j)) &&
chip->freq_table[j] == typical_freqs[i]) {
runtime->hw.rates |= typical_freq_flags[i];
fflags &= ~(1 << j);
break;
}
}
}
if (fflags) /* rest */
runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
/* check for minimum and maximum rates */
for (i = 0; i < chip->num_freqs; i++) {
if (chip->freqs_ok & (1 << i)) {
runtime->hw.rate_max = chip->freq_table[i];
break;
}
}
for (i = chip->num_freqs - 1; i >= 0; i--) {
if (chip->freqs_ok & (1 << i)) {
runtime->hw.rate_min = chip->freq_table[i];
break;
}
}
runtime->hw.formats = chip->formats_ok;
if (chip->can_capture) {
if (! chip->can_duplex)
runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
}
runtime->private_data = rec;
rec->substream = subs;
#if 0 /* FIXME: still under development.. */
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
snd_pmac_hw_rule_rate, chip, rec->stream, -1);
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
snd_pmac_hw_rule_format, chip, rec->stream, -1);
#endif
runtime->hw.periods_max = rec->cmd.size - 1;
if (chip->can_duplex)
snd_pcm_set_sync(subs);
/* constraints to fix choppy sound */
snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
return 0;
}
static int snd_pmac_pcm_close(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
pmac_stream_t *astr;
snd_pmac_dma_stop(rec);
astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
snd_runtime_check(astr, return -EINVAL);
/* reset constraints */
astr->cur_freqs = chip->freqs_ok;
astr->cur_formats = chip->formats_ok;
return 0;
}
static int snd_pmac_playback_open(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
subs->runtime->hw = snd_pmac_playback;
return snd_pmac_pcm_open(chip, &chip->playback, subs);
}
static int snd_pmac_capture_open(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
subs->runtime->hw = snd_pmac_capture;
return snd_pmac_pcm_open(chip, &chip->capture, subs);
}
static int snd_pmac_playback_close(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_close(chip, &chip->playback, subs);
}
static int snd_pmac_capture_close(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_close(chip, &chip->capture, subs);
}
/*
*/
static snd_pcm_ops_t snd_pmac_playback_ops = {
.open = snd_pmac_playback_open,
.close = snd_pmac_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_pmac_pcm_hw_params,
.hw_free = snd_pmac_pcm_hw_free,
.prepare = snd_pmac_playback_prepare,
.trigger = snd_pmac_playback_trigger,
.pointer = snd_pmac_playback_pointer,
};
static snd_pcm_ops_t snd_pmac_capture_ops = {
.open = snd_pmac_capture_open,
.close = snd_pmac_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_pmac_pcm_hw_params,
.hw_free = snd_pmac_pcm_hw_free,
.prepare = snd_pmac_capture_prepare,
.trigger = snd_pmac_capture_trigger,
.pointer = snd_pmac_capture_pointer,
};
static void pmac_pcm_free(snd_pcm_t *pcm)
{
snd_pcm_lib_preallocate_free_for_all(pcm);
}
int __init snd_pmac_pcm_new(pmac_t *chip)
{
snd_pcm_t *pcm;
int err;
int num_captures = 1;
if (! chip->can_capture)
num_captures = 0;
err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
if (err < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
if (chip->can_capture)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
pcm->private_data = chip;
pcm->private_free = pmac_pcm_free;
pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
strcpy(pcm->name, chip->card->shortname);
chip->pcm = pcm;
chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
if (chip->can_byte_swap)
chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
chip->playback.cur_formats = chip->formats_ok;
chip->capture.cur_formats = chip->formats_ok;
chip->playback.cur_freqs = chip->freqs_ok;
chip->capture.cur_freqs = chip->freqs_ok;
/* preallocate 64k buffer */
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
&chip->pdev->dev,
64 * 1024, 64 * 1024);
return 0;
}
static void snd_pmac_dbdma_reset(pmac_t *chip)
{
out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
snd_pmac_wait_ack(&chip->playback);
out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
snd_pmac_wait_ack(&chip->capture);
}
/*
* handling beep
*/
void snd_pmac_beep_dma_start(pmac_t *chip, int bytes, unsigned long addr, int speed)
{
pmac_stream_t *rec = &chip->playback;
snd_pmac_dma_stop(rec);
st_le16(&chip->extra_dma.cmds->req_count, bytes);
st_le16(&chip->extra_dma.cmds->xfer_status, 0);
st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
st_le32(&chip->extra_dma.cmds->phy_addr, addr);
st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
out_le32(&chip->awacs->control,
(in_le32(&chip->awacs->control) & ~0x1f00)
| (speed << 8));
out_le32(&chip->awacs->byteswap, 0);
snd_pmac_dma_set_command(rec, &chip->extra_dma);
snd_pmac_dma_run(rec, RUN);
}
void snd_pmac_beep_dma_stop(pmac_t *chip)
{
snd_pmac_dma_stop(&chip->playback);
st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
snd_pmac_pcm_set_format(chip); /* reset format */
}
/*
* interrupt handlers
*/
static irqreturn_t
snd_pmac_tx_intr(int irq, void *devid, struct pt_regs *regs)
{
pmac_t *chip = devid;
snd_pmac_pcm_update(chip, &chip->playback);
return IRQ_HANDLED;
}
static irqreturn_t
snd_pmac_rx_intr(int irq, void *devid, struct pt_regs *regs)
{
pmac_t *chip = devid;
snd_pmac_pcm_update(chip, &chip->capture);
return IRQ_HANDLED;
}
static irqreturn_t
snd_pmac_ctrl_intr(int irq, void *devid, struct pt_regs *regs)
{
pmac_t *chip = devid;
int ctrl = in_le32(&chip->awacs->control);
/*printk("pmac: control interrupt.. 0x%x\n", ctrl);*/
if (ctrl & MASK_PORTCHG) {
/* do something when headphone is plugged/unplugged? */
if (chip->update_automute)
chip->update_automute(chip, 1);
}
if (ctrl & MASK_CNTLERR) {
int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
if (err && chip->model <= PMAC_SCREAMER)
snd_printk(KERN_DEBUG "error %x\n", err);
}
/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
out_le32(&chip->awacs->control, ctrl);
return IRQ_HANDLED;
}
/*
* a wrapper to feature call for compatibility
*/
static void snd_pmac_sound_feature(pmac_t *chip, int enable)
{
if (ppc_md.feature_call)
ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
}
/*
* release resources
*/
static int snd_pmac_free(pmac_t *chip)
{
/* stop sounds */
if (chip->initialized) {
snd_pmac_dbdma_reset(chip);
/* disable interrupts from awacs interface */
out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
}
snd_pmac_sound_feature(chip, 0);
#ifdef CONFIG_PM
snd_pmac_unregister_sleep_notifier(chip);
#endif
/* clean up mixer if any */
if (chip->mixer_free)
chip->mixer_free(chip);
snd_pmac_detach_beep(chip);
/* release resources */
if (chip->irq >= 0)
free_irq(chip->irq, (void*)chip);
if (chip->tx_irq >= 0)
free_irq(chip->tx_irq, (void*)chip);
if (chip->rx_irq >= 0)
free_irq(chip->rx_irq, (void*)chip);
snd_pmac_dbdma_free(chip, &chip->playback.cmd);
snd_pmac_dbdma_free(chip, &chip->capture.cmd);
snd_pmac_dbdma_free(chip, &chip->extra_dma);
if (chip->macio_base)
iounmap(chip->macio_base);
if (chip->latch_base)
iounmap(chip->latch_base);
if (chip->awacs)
iounmap(chip->awacs);
if (chip->playback.dma)
iounmap(chip->playback.dma);
if (chip->capture.dma)
iounmap(chip->capture.dma);
#ifndef CONFIG_PPC64
if (chip->node) {
int i;
for (i = 0; i < 3; i++) {
if (chip->of_requested & (1 << i)) {
if (chip->is_k2)
release_OF_resource(chip->node->parent,
i);
else
release_OF_resource(chip->node, i);
}
}
}
#endif /* CONFIG_PPC64 */
if (chip->pdev)
pci_dev_put(chip->pdev);
kfree(chip);
return 0;
}
/*
* free the device
*/
static int snd_pmac_dev_free(snd_device_t *device)
{
pmac_t *chip = device->device_data;
return snd_pmac_free(chip);
}
/*
* check the machine support byteswap (little-endian)
*/
static void __init detect_byte_swap(pmac_t *chip)
{
struct device_node *mio;
/* if seems that Keylargo can't byte-swap */
for (mio = chip->node->parent; mio; mio = mio->parent) {
if (strcmp(mio->name, "mac-io") == 0) {
if (device_is_compatible(mio, "Keylargo"))
chip->can_byte_swap = 0;
break;
}
}
/* it seems the Pismo & iBook can't byte-swap in hardware. */
if (machine_is_compatible("PowerBook3,1") ||
machine_is_compatible("PowerBook2,1"))
chip->can_byte_swap = 0 ;
if (machine_is_compatible("PowerBook2,1"))
chip->can_duplex = 0;
}
/*
* detect a sound chip
*/
static int __init snd_pmac_detect(pmac_t *chip)
{
struct device_node *sound = NULL;
unsigned int *prop, l;
struct macio_chip* macio;
u32 layout_id = 0;
if (_machine != _MACH_Pmac)
return -ENODEV;
chip->subframe = 0;
chip->revision = 0;
chip->freqs_ok = 0xff; /* all ok */
chip->model = PMAC_AWACS;
chip->can_byte_swap = 1;
chip->can_duplex = 1;
chip->can_capture = 1;
chip->num_freqs = ARRAY_SIZE(awacs_freqs);
chip->freq_table = awacs_freqs;
chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
/* check machine type */
if (machine_is_compatible("AAPL,3400/2400")
|| machine_is_compatible("AAPL,3500"))
chip->is_pbook_3400 = 1;
else if (machine_is_compatible("PowerBook1,1")
|| machine_is_compatible("AAPL,PowerBook1998"))
chip->is_pbook_G3 = 1;
chip->node = find_devices("awacs");
if (chip->node)
sound = chip->node;
/*
* powermac G3 models have a node called "davbus"
* with a child called "sound".
*/
if (!chip->node)
chip->node = find_devices("davbus");
/*
* if we didn't find a davbus device, try 'i2s-a' since
* this seems to be what iBooks have
*/
if (! chip->node) {
chip->node = find_devices("i2s-a");
if (chip->node && chip->node->parent &&
chip->node->parent->parent) {
if (device_is_compatible(chip->node->parent->parent,
"K2-Keylargo"))
chip->is_k2 = 1;
}
}
if (! chip->node)
return -ENODEV;
if (!sound) {
sound = find_devices("sound");
while (sound && sound->parent != chip->node)
sound = sound->next;
}
if (! sound)
return -ENODEV;
prop = (unsigned int *) get_property(sound, "sub-frame", NULL);
if (prop && *prop < 16)
chip->subframe = *prop;
prop = (unsigned int *) get_property(sound, "layout-id", NULL);
if (prop)
layout_id = *prop;
/* This should be verified on older screamers */
if (device_is_compatible(sound, "screamer")) {
chip->model = PMAC_SCREAMER;
// chip->can_byte_swap = 0; /* FIXME: check this */
}
if (device_is_compatible(sound, "burgundy")) {
chip->model = PMAC_BURGUNDY;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "daca")) {
chip->model = PMAC_DACA;
chip->can_capture = 0; /* no capture */
chip->can_duplex = 0;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "tumbler")) {
chip->model = PMAC_TUMBLER;
chip->can_capture = 0; /* no capture */
chip->can_duplex = 0;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
chip->freq_table = tumbler_freqs;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "snapper")) {
chip->model = PMAC_SNAPPER;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
chip->freq_table = tumbler_freqs;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "AOAKeylargo") ||
device_is_compatible(sound, "AOAbase") ||
device_is_compatible(sound, "AOAK2")) {
/* For now, only support very basic TAS3004 based machines with
* single frequency until proper i2s control is implemented
*/
switch(layout_id) {
case 0x48:
case 0x46:
case 0x33:
case 0x29:
case 0x24:
case 0x5c:
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
chip->model = PMAC_SNAPPER;
chip->can_byte_swap = 0; /* FIXME: check this */
chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
break;
case 0x3a:
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
chip->model = PMAC_TOONIE;
chip->can_byte_swap = 0; /* FIXME: check this */
chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
break;
}
}
prop = (unsigned int *)get_property(sound, "device-id", NULL);
if (prop)
chip->device_id = *prop;
chip->has_iic = (find_devices("perch") != NULL);
/* We need the PCI device for DMA allocations, let's use a crude method
* for now ...
*/
macio = macio_find(chip->node, macio_unknown);
if (macio == NULL)
printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
else {
struct pci_dev *pdev = NULL;
for_each_pci_dev(pdev) {
struct device_node *np = pci_device_to_OF_node(pdev);
if (np && np == macio->of_node) {
chip->pdev = pdev;
break;
}
}
}
if (chip->pdev == NULL)
printk(KERN_WARNING "snd-powermac: can't locate macio PCI"
" device !\n");
detect_byte_swap(chip);
/* look for a property saying what sample rates
are available */
prop = (unsigned int *) get_property(sound, "sample-rates", &l);
if (! prop)
prop = (unsigned int *) get_property(sound,
"output-frame-rates", &l);
if (prop) {
int i;
chip->freqs_ok = 0;
for (l /= sizeof(int); l > 0; --l) {
unsigned int r = *prop++;
/* Apple 'Fixed' format */
if (r >= 0x10000)
r >>= 16;
for (i = 0; i < chip->num_freqs; ++i) {
if (r == chip->freq_table[i]) {
chip->freqs_ok |= (1 << i);
break;
}
}
}
} else {
/* assume only 44.1khz */
chip->freqs_ok = 1;
}
return 0;
}
/*
* exported - boolean info callbacks for ease of programming
*/
int snd_pmac_boolean_stereo_info(snd_kcontrol_t *kcontrol,
snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
int snd_pmac_boolean_mono_info(snd_kcontrol_t *kcontrol,
snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
#ifdef PMAC_SUPPORT_AUTOMUTE
/*
* auto-mute
*/
static int pmac_auto_mute_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
pmac_t *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = chip->auto_mute;
return 0;
}
static int pmac_auto_mute_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
pmac_t *chip = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] != chip->auto_mute) {
chip->auto_mute = ucontrol->value.integer.value[0];
if (chip->update_automute)
chip->update_automute(chip, 1);
return 1;
}
return 0;
}
static int pmac_hp_detect_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
pmac_t *chip = snd_kcontrol_chip(kcontrol);
if (chip->detect_headphone)
ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
else
ucontrol->value.integer.value[0] = 0;
return 0;
}
static snd_kcontrol_new_t auto_mute_controls[] __initdata = {
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Auto Mute Switch",
.info = snd_pmac_boolean_mono_info,
.get = pmac_auto_mute_get,
.put = pmac_auto_mute_put,
},
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphone Detection",
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_pmac_boolean_mono_info,
.get = pmac_hp_detect_get,
},
};
int __init snd_pmac_add_automute(pmac_t *chip)
{
int err;
chip->auto_mute = 1;
err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
if (err < 0) {
printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
return err;
}
chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
return snd_ctl_add(chip->card, chip->hp_detect_ctl);
}
#endif /* PMAC_SUPPORT_AUTOMUTE */
/*
* create and detect a pmac chip record
*/
int __init snd_pmac_new(snd_card_t *card, pmac_t **chip_return)
{
pmac_t *chip;
struct device_node *np;
int i, err;
unsigned long ctrl_addr, txdma_addr, rxdma_addr;
static snd_device_ops_t ops = {
.dev_free = snd_pmac_dev_free,
};
snd_runtime_check(chip_return, return -EINVAL);
*chip_return = NULL;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (chip == NULL)
return -ENOMEM;
chip->card = card;
spin_lock_init(&chip->reg_lock);
chip->irq = chip->tx_irq = chip->rx_irq = -1;
chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
if ((err = snd_pmac_detect(chip)) < 0)
goto __error;
if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0) {
err = -ENOMEM;
goto __error;
}
np = chip->node;
if (chip->is_k2) {
if (np->parent->n_addrs < 2 || np->n_intrs < 3) {
err = -ENODEV;
goto __error;
}
for (i = 0; i < 2; i++) {
#ifndef CONFIG_PPC64
static char *name[2] = { "- Control", "- DMA" };
if (! request_OF_resource(np->parent, i, name[i])) {
snd_printk(KERN_ERR "pmac: can't request resource %d!\n", i);
err = -ENODEV;
goto __error;
}
chip->of_requested |= (1 << i);
#endif /* CONFIG_PPC64 */
ctrl_addr = np->parent->addrs[0].address;
txdma_addr = np->parent->addrs[1].address;
rxdma_addr = txdma_addr + 0x100;
}
} else {
if (np->n_addrs < 3 || np->n_intrs < 3) {
err = -ENODEV;
goto __error;
}
for (i = 0; i < 3; i++) {
#ifndef CONFIG_PPC64
static char *name[3] = { "- Control", "- Tx DMA", "- Rx DMA" };
if (! request_OF_resource(np, i, name[i])) {
snd_printk(KERN_ERR "pmac: can't request resource %d!\n", i);
err = -ENODEV;
goto __error;
}
chip->of_requested |= (1 << i);
#endif /* CONFIG_PPC64 */
ctrl_addr = np->addrs[0].address;
txdma_addr = np->addrs[1].address;
rxdma_addr = np->addrs[2].address;
}
}
chip->awacs = ioremap(ctrl_addr, 0x1000);
chip->playback.dma = ioremap(txdma_addr, 0x100);
chip->capture.dma = ioremap(rxdma_addr, 0x100);
if (chip->model <= PMAC_BURGUNDY) {
if (request_irq(np->intrs[0].line, snd_pmac_ctrl_intr, 0,
"PMac", (void*)chip)) {
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[0].line);
err = -EBUSY;
goto __error;
}
chip->irq = np->intrs[0].line;
}
if (request_irq(np->intrs[1].line, snd_pmac_tx_intr, 0,
"PMac Output", (void*)chip)) {
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[1].line);
err = -EBUSY;
goto __error;
}
chip->tx_irq = np->intrs[1].line;
if (request_irq(np->intrs[2].line, snd_pmac_rx_intr, 0,
"PMac Input", (void*)chip)) {
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[2].line);
err = -EBUSY;
goto __error;
}
chip->rx_irq = np->intrs[2].line;
snd_pmac_sound_feature(chip, 1);
/* reset */
if (chip->model == PMAC_AWACS)
out_le32(&chip->awacs->control, 0x11);
/* Powerbooks have odd ways of enabling inputs such as
an expansion-bay CD or sound from an internal modem
or a PC-card modem. */
if (chip->is_pbook_3400) {
/* Enable CD and PC-card sound inputs. */
/* This is done by reading from address
* f301a000, + 0x10 to enable the expansion-bay
* CD sound input, + 0x80 to enable the PC-card
* sound input. The 0x100 enables the SCSI bus
* terminator power.
*/
chip->latch_base = ioremap (0xf301a000, 0x1000);
in_8(chip->latch_base + 0x190);
} else if (chip->is_pbook_G3) {
struct device_node* mio;
for (mio = chip->node->parent; mio; mio = mio->parent) {
if (strcmp(mio->name, "mac-io") == 0
&& mio->n_addrs > 0) {
chip->macio_base = ioremap(mio->addrs[0].address, 0x40);
break;
}
}
/* Enable CD sound input. */
/* The relevant bits for writing to this byte are 0x8f.
* I haven't found out what the 0x80 bit does.
* For the 0xf bits, writing 3 or 7 enables the CD
* input, any other value disables it. Values
* 1, 3, 5, 7 enable the microphone. Values 0, 2,
* 4, 6, 8 - f enable the input from the modem.
*/
if (chip->macio_base)
out_8(chip->macio_base + 0x37, 3);
}
/* Reset dbdma channels */
snd_pmac_dbdma_reset(chip);
#ifdef CONFIG_PM
/* add sleep notifier */
if (! snd_pmac_register_sleep_notifier(chip))
snd_card_set_pm_callback(chip->card, snd_pmac_suspend, snd_pmac_resume, chip);
#endif
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
goto __error;
*chip_return = chip;
return 0;
__error:
if (chip->pdev)
pci_dev_put(chip->pdev);
snd_pmac_free(chip);
return err;
}
/*
* sleep notify for powerbook
*/
#ifdef CONFIG_PM
/*
* Save state when going to sleep, restore it afterwards.
*/
static int snd_pmac_suspend(snd_card_t *card, pm_message_t state)
{
pmac_t *chip = card->pm_private_data;
unsigned long flags;
if (chip->suspend)
chip->suspend(chip);
snd_pcm_suspend_all(chip->pcm);
spin_lock_irqsave(&chip->reg_lock, flags);
snd_pmac_beep_stop(chip);
spin_unlock_irqrestore(&chip->reg_lock, flags);
if (chip->irq >= 0)
disable_irq(chip->irq);
if (chip->tx_irq >= 0)
disable_irq(chip->tx_irq);
if (chip->rx_irq >= 0)
disable_irq(chip->rx_irq);
snd_pmac_sound_feature(chip, 0);
return 0;
}
static int snd_pmac_resume(snd_card_t *card)
{
pmac_t *chip = card->pm_private_data;
snd_pmac_sound_feature(chip, 1);
if (chip->resume)
chip->resume(chip);
/* enable CD sound input */
if (chip->macio_base && chip->is_pbook_G3) {
out_8(chip->macio_base + 0x37, 3);
} else if (chip->is_pbook_3400) {
in_8(chip->latch_base + 0x190);
}
snd_pmac_pcm_set_format(chip);
if (chip->irq >= 0)
enable_irq(chip->irq);
if (chip->tx_irq >= 0)
enable_irq(chip->tx_irq);
if (chip->rx_irq >= 0)
enable_irq(chip->rx_irq);
return 0;
}
/* the chip is stored statically by snd_pmac_register_sleep_notifier
* because we can't have any private data for notify callback.
*/
static pmac_t *sleeping_pmac = NULL;
static int snd_pmac_sleep_notify(struct pmu_sleep_notifier *self, int when)
{
pmac_t *chip;
chip = sleeping_pmac;
snd_runtime_check(chip, return 0);
switch (when) {
case PBOOK_SLEEP_NOW:
snd_pmac_suspend(chip->card, PMSG_SUSPEND);
break;
case PBOOK_WAKE:
snd_pmac_resume(chip->card);
break;
}
return PBOOK_SLEEP_OK;
}
static struct pmu_sleep_notifier snd_pmac_sleep_notifier = {
snd_pmac_sleep_notify, SLEEP_LEVEL_SOUND,
};
static int __init snd_pmac_register_sleep_notifier(pmac_t *chip)
{
/* should be protected here.. */
snd_assert(! sleeping_pmac, return -EBUSY);
sleeping_pmac = chip;
pmu_register_sleep_notifier(&snd_pmac_sleep_notifier);
return 0;
}
static int snd_pmac_unregister_sleep_notifier(pmac_t *chip)
{
/* should be protected here.. */
snd_assert(sleeping_pmac == chip, return -ENODEV);
pmu_unregister_sleep_notifier(&snd_pmac_sleep_notifier);
sleeping_pmac = NULL;
return 0;
}
#endif /* CONFIG_PM */