kernel-ark/mm/huge_memory.c
Andrea Arcangeli b9bbfbe30a thp: memcg huge memory
Add memcg charge/uncharge to hugepage faults in huge_memory.c.

Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13 17:32:43 -08:00

960 lines
26 KiB
C

/*
* Copyright (C) 2009 Red Hat, Inc.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*/
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"
unsigned long transparent_hugepage_flags __read_mostly =
(1<<TRANSPARENT_HUGEPAGE_FLAG);
#ifdef CONFIG_SYSFS
static ssize_t double_flag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf,
enum transparent_hugepage_flag enabled,
enum transparent_hugepage_flag req_madv)
{
if (test_bit(enabled, &transparent_hugepage_flags)) {
VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
return sprintf(buf, "[always] madvise never\n");
} else if (test_bit(req_madv, &transparent_hugepage_flags))
return sprintf(buf, "always [madvise] never\n");
else
return sprintf(buf, "always madvise [never]\n");
}
static ssize_t double_flag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count,
enum transparent_hugepage_flag enabled,
enum transparent_hugepage_flag req_madv)
{
if (!memcmp("always", buf,
min(sizeof("always")-1, count))) {
set_bit(enabled, &transparent_hugepage_flags);
clear_bit(req_madv, &transparent_hugepage_flags);
} else if (!memcmp("madvise", buf,
min(sizeof("madvise")-1, count))) {
clear_bit(enabled, &transparent_hugepage_flags);
set_bit(req_madv, &transparent_hugepage_flags);
} else if (!memcmp("never", buf,
min(sizeof("never")-1, count))) {
clear_bit(enabled, &transparent_hugepage_flags);
clear_bit(req_madv, &transparent_hugepage_flags);
} else
return -EINVAL;
return count;
}
static ssize_t enabled_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return double_flag_show(kobj, attr, buf,
TRANSPARENT_HUGEPAGE_FLAG,
TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
}
static ssize_t enabled_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
return double_flag_store(kobj, attr, buf, count,
TRANSPARENT_HUGEPAGE_FLAG,
TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
}
static struct kobj_attribute enabled_attr =
__ATTR(enabled, 0644, enabled_show, enabled_store);
static ssize_t single_flag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf,
enum transparent_hugepage_flag flag)
{
if (test_bit(flag, &transparent_hugepage_flags))
return sprintf(buf, "[yes] no\n");
else
return sprintf(buf, "yes [no]\n");
}
static ssize_t single_flag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count,
enum transparent_hugepage_flag flag)
{
if (!memcmp("yes", buf,
min(sizeof("yes")-1, count))) {
set_bit(flag, &transparent_hugepage_flags);
} else if (!memcmp("no", buf,
min(sizeof("no")-1, count))) {
clear_bit(flag, &transparent_hugepage_flags);
} else
return -EINVAL;
return count;
}
/*
* Currently defrag only disables __GFP_NOWAIT for allocation. A blind
* __GFP_REPEAT is too aggressive, it's never worth swapping tons of
* memory just to allocate one more hugepage.
*/
static ssize_t defrag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return double_flag_show(kobj, attr, buf,
TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
}
static ssize_t defrag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
return double_flag_store(kobj, attr, buf, count,
TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
}
static struct kobj_attribute defrag_attr =
__ATTR(defrag, 0644, defrag_show, defrag_store);
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
return single_flag_show(kobj, attr, buf,
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
return single_flag_store(kobj, attr, buf, count,
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */
static struct attribute *hugepage_attr[] = {
&enabled_attr.attr,
&defrag_attr.attr,
#ifdef CONFIG_DEBUG_VM
&debug_cow_attr.attr,
#endif
NULL,
};
static struct attribute_group hugepage_attr_group = {
.attrs = hugepage_attr,
.name = "transparent_hugepage",
};
#endif /* CONFIG_SYSFS */
static int __init hugepage_init(void)
{
#ifdef CONFIG_SYSFS
int err;
err = sysfs_create_group(mm_kobj, &hugepage_attr_group);
if (err)
printk(KERN_ERR "hugepage: register sysfs failed\n");
#endif
return 0;
}
module_init(hugepage_init)
static int __init setup_transparent_hugepage(char *str)
{
int ret = 0;
if (!str)
goto out;
if (!strcmp(str, "always")) {
set_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
} else if (!strcmp(str, "madvise")) {
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
} else if (!strcmp(str, "never")) {
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
&transparent_hugepage_flags);
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
&transparent_hugepage_flags);
ret = 1;
}
out:
if (!ret)
printk(KERN_WARNING
"transparent_hugepage= cannot parse, ignored\n");
return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);
static void prepare_pmd_huge_pte(pgtable_t pgtable,
struct mm_struct *mm)
{
assert_spin_locked(&mm->page_table_lock);
/* FIFO */
if (!mm->pmd_huge_pte)
INIT_LIST_HEAD(&pgtable->lru);
else
list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
mm->pmd_huge_pte = pgtable;
}
static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
{
if (likely(vma->vm_flags & VM_WRITE))
pmd = pmd_mkwrite(pmd);
return pmd;
}
static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long haddr, pmd_t *pmd,
struct page *page)
{
int ret = 0;
pgtable_t pgtable;
VM_BUG_ON(!PageCompound(page));
pgtable = pte_alloc_one(mm, haddr);
if (unlikely(!pgtable)) {
mem_cgroup_uncharge_page(page);
put_page(page);
return VM_FAULT_OOM;
}
clear_huge_page(page, haddr, HPAGE_PMD_NR);
__SetPageUptodate(page);
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_none(*pmd))) {
spin_unlock(&mm->page_table_lock);
mem_cgroup_uncharge_page(page);
put_page(page);
pte_free(mm, pgtable);
} else {
pmd_t entry;
entry = mk_pmd(page, vma->vm_page_prot);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
entry = pmd_mkhuge(entry);
/*
* The spinlocking to take the lru_lock inside
* page_add_new_anon_rmap() acts as a full memory
* barrier to be sure clear_huge_page writes become
* visible after the set_pmd_at() write.
*/
page_add_new_anon_rmap(page, vma, haddr);
set_pmd_at(mm, haddr, pmd, entry);
prepare_pmd_huge_pte(pgtable, mm);
add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
spin_unlock(&mm->page_table_lock);
}
return ret;
}
static inline struct page *alloc_hugepage(int defrag)
{
return alloc_pages(GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT),
HPAGE_PMD_ORDER);
}
int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd,
unsigned int flags)
{
struct page *page;
unsigned long haddr = address & HPAGE_PMD_MASK;
pte_t *pte;
if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
if (unlikely(anon_vma_prepare(vma)))
return VM_FAULT_OOM;
page = alloc_hugepage(transparent_hugepage_defrag(vma));
if (unlikely(!page))
goto out;
if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
put_page(page);
goto out;
}
return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
}
out:
/*
* Use __pte_alloc instead of pte_alloc_map, because we can't
* run pte_offset_map on the pmd, if an huge pmd could
* materialize from under us from a different thread.
*/
if (unlikely(__pte_alloc(mm, vma, pmd, address)))
return VM_FAULT_OOM;
/* if an huge pmd materialized from under us just retry later */
if (unlikely(pmd_trans_huge(*pmd)))
return 0;
/*
* A regular pmd is established and it can't morph into a huge pmd
* from under us anymore at this point because we hold the mmap_sem
* read mode and khugepaged takes it in write mode. So now it's
* safe to run pte_offset_map().
*/
pte = pte_offset_map(pmd, address);
return handle_pte_fault(mm, vma, address, pte, pmd, flags);
}
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
struct vm_area_struct *vma)
{
struct page *src_page;
pmd_t pmd;
pgtable_t pgtable;
int ret;
ret = -ENOMEM;
pgtable = pte_alloc_one(dst_mm, addr);
if (unlikely(!pgtable))
goto out;
spin_lock(&dst_mm->page_table_lock);
spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
ret = -EAGAIN;
pmd = *src_pmd;
if (unlikely(!pmd_trans_huge(pmd))) {
pte_free(dst_mm, pgtable);
goto out_unlock;
}
if (unlikely(pmd_trans_splitting(pmd))) {
/* split huge page running from under us */
spin_unlock(&src_mm->page_table_lock);
spin_unlock(&dst_mm->page_table_lock);
pte_free(dst_mm, pgtable);
wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
goto out;
}
src_page = pmd_page(pmd);
VM_BUG_ON(!PageHead(src_page));
get_page(src_page);
page_dup_rmap(src_page);
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
pmdp_set_wrprotect(src_mm, addr, src_pmd);
pmd = pmd_mkold(pmd_wrprotect(pmd));
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
prepare_pmd_huge_pte(pgtable, dst_mm);
ret = 0;
out_unlock:
spin_unlock(&src_mm->page_table_lock);
spin_unlock(&dst_mm->page_table_lock);
out:
return ret;
}
/* no "address" argument so destroys page coloring of some arch */
pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
{
pgtable_t pgtable;
assert_spin_locked(&mm->page_table_lock);
/* FIFO */
pgtable = mm->pmd_huge_pte;
if (list_empty(&pgtable->lru))
mm->pmd_huge_pte = NULL;
else {
mm->pmd_huge_pte = list_entry(pgtable->lru.next,
struct page, lru);
list_del(&pgtable->lru);
}
return pgtable;
}
static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
struct vm_area_struct *vma,
unsigned long address,
pmd_t *pmd, pmd_t orig_pmd,
struct page *page,
unsigned long haddr)
{
pgtable_t pgtable;
pmd_t _pmd;
int ret = 0, i;
struct page **pages;
pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
GFP_KERNEL);
if (unlikely(!pages)) {
ret |= VM_FAULT_OOM;
goto out;
}
for (i = 0; i < HPAGE_PMD_NR; i++) {
pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
vma, address);
if (unlikely(!pages[i] ||
mem_cgroup_newpage_charge(pages[i], mm,
GFP_KERNEL))) {
if (pages[i])
put_page(pages[i]);
mem_cgroup_uncharge_start();
while (--i >= 0) {
mem_cgroup_uncharge_page(pages[i]);
put_page(pages[i]);
}
mem_cgroup_uncharge_end();
kfree(pages);
ret |= VM_FAULT_OOM;
goto out;
}
}
for (i = 0; i < HPAGE_PMD_NR; i++) {
copy_user_highpage(pages[i], page + i,
haddr + PAGE_SHIFT*i, vma);
__SetPageUptodate(pages[i]);
cond_resched();
}
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto out_free_pages;
VM_BUG_ON(!PageHead(page));
pmdp_clear_flush_notify(vma, haddr, pmd);
/* leave pmd empty until pte is filled */
pgtable = get_pmd_huge_pte(mm);
pmd_populate(mm, &_pmd, pgtable);
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
pte_t *pte, entry;
entry = mk_pte(pages[i], vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
page_add_new_anon_rmap(pages[i], vma, haddr);
pte = pte_offset_map(&_pmd, haddr);
VM_BUG_ON(!pte_none(*pte));
set_pte_at(mm, haddr, pte, entry);
pte_unmap(pte);
}
kfree(pages);
mm->nr_ptes++;
smp_wmb(); /* make pte visible before pmd */
pmd_populate(mm, pmd, pgtable);
page_remove_rmap(page);
spin_unlock(&mm->page_table_lock);
ret |= VM_FAULT_WRITE;
put_page(page);
out:
return ret;
out_free_pages:
spin_unlock(&mm->page_table_lock);
mem_cgroup_uncharge_start();
for (i = 0; i < HPAGE_PMD_NR; i++) {
mem_cgroup_uncharge_page(pages[i]);
put_page(pages[i]);
}
mem_cgroup_uncharge_end();
kfree(pages);
goto out;
}
int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
{
int ret = 0;
struct page *page, *new_page;
unsigned long haddr;
VM_BUG_ON(!vma->anon_vma);
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_same(*pmd, orig_pmd)))
goto out_unlock;
page = pmd_page(orig_pmd);
VM_BUG_ON(!PageCompound(page) || !PageHead(page));
haddr = address & HPAGE_PMD_MASK;
if (page_mapcount(page) == 1) {
pmd_t entry;
entry = pmd_mkyoung(orig_pmd);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
update_mmu_cache(vma, address, entry);
ret |= VM_FAULT_WRITE;
goto out_unlock;
}
get_page(page);
spin_unlock(&mm->page_table_lock);
if (transparent_hugepage_enabled(vma) &&
!transparent_hugepage_debug_cow())
new_page = alloc_hugepage(transparent_hugepage_defrag(vma));
else
new_page = NULL;
if (unlikely(!new_page)) {
ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
pmd, orig_pmd, page, haddr);
put_page(page);
goto out;
}
if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
put_page(new_page);
put_page(page);
ret |= VM_FAULT_OOM;
goto out;
}
copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
__SetPageUptodate(new_page);
spin_lock(&mm->page_table_lock);
put_page(page);
if (unlikely(!pmd_same(*pmd, orig_pmd))) {
mem_cgroup_uncharge_page(new_page);
put_page(new_page);
} else {
pmd_t entry;
VM_BUG_ON(!PageHead(page));
entry = mk_pmd(new_page, vma->vm_page_prot);
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
entry = pmd_mkhuge(entry);
pmdp_clear_flush_notify(vma, haddr, pmd);
page_add_new_anon_rmap(new_page, vma, haddr);
set_pmd_at(mm, haddr, pmd, entry);
update_mmu_cache(vma, address, entry);
page_remove_rmap(page);
put_page(page);
ret |= VM_FAULT_WRITE;
}
out_unlock:
spin_unlock(&mm->page_table_lock);
out:
return ret;
}
struct page *follow_trans_huge_pmd(struct mm_struct *mm,
unsigned long addr,
pmd_t *pmd,
unsigned int flags)
{
struct page *page = NULL;
assert_spin_locked(&mm->page_table_lock);
if (flags & FOLL_WRITE && !pmd_write(*pmd))
goto out;
page = pmd_page(*pmd);
VM_BUG_ON(!PageHead(page));
if (flags & FOLL_TOUCH) {
pmd_t _pmd;
/*
* We should set the dirty bit only for FOLL_WRITE but
* for now the dirty bit in the pmd is meaningless.
* And if the dirty bit will become meaningful and
* we'll only set it with FOLL_WRITE, an atomic
* set_bit will be required on the pmd to set the
* young bit, instead of the current set_pmd_at.
*/
_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
}
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
VM_BUG_ON(!PageCompound(page));
if (flags & FOLL_GET)
get_page(page);
out:
return page;
}
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
pmd_t *pmd)
{
int ret = 0;
spin_lock(&tlb->mm->page_table_lock);
if (likely(pmd_trans_huge(*pmd))) {
if (unlikely(pmd_trans_splitting(*pmd))) {
spin_unlock(&tlb->mm->page_table_lock);
wait_split_huge_page(vma->anon_vma,
pmd);
} else {
struct page *page;
pgtable_t pgtable;
pgtable = get_pmd_huge_pte(tlb->mm);
page = pmd_page(*pmd);
pmd_clear(pmd);
page_remove_rmap(page);
VM_BUG_ON(page_mapcount(page) < 0);
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
VM_BUG_ON(!PageHead(page));
spin_unlock(&tlb->mm->page_table_lock);
tlb_remove_page(tlb, page);
pte_free(tlb->mm, pgtable);
ret = 1;
}
} else
spin_unlock(&tlb->mm->page_table_lock);
return ret;
}
pmd_t *page_check_address_pmd(struct page *page,
struct mm_struct *mm,
unsigned long address,
enum page_check_address_pmd_flag flag)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd, *ret = NULL;
if (address & ~HPAGE_PMD_MASK)
goto out;
pgd = pgd_offset(mm, address);
if (!pgd_present(*pgd))
goto out;
pud = pud_offset(pgd, address);
if (!pud_present(*pud))
goto out;
pmd = pmd_offset(pud, address);
if (pmd_none(*pmd))
goto out;
if (pmd_page(*pmd) != page)
goto out;
VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
pmd_trans_splitting(*pmd));
if (pmd_trans_huge(*pmd)) {
VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
!pmd_trans_splitting(*pmd));
ret = pmd;
}
out:
return ret;
}
static int __split_huge_page_splitting(struct page *page,
struct vm_area_struct *vma,
unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
pmd_t *pmd;
int ret = 0;
spin_lock(&mm->page_table_lock);
pmd = page_check_address_pmd(page, mm, address,
PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
if (pmd) {
/*
* We can't temporarily set the pmd to null in order
* to split it, the pmd must remain marked huge at all
* times or the VM won't take the pmd_trans_huge paths
* and it won't wait on the anon_vma->root->lock to
* serialize against split_huge_page*.
*/
pmdp_splitting_flush_notify(vma, address, pmd);
ret = 1;
}
spin_unlock(&mm->page_table_lock);
return ret;
}
static void __split_huge_page_refcount(struct page *page)
{
int i;
unsigned long head_index = page->index;
struct zone *zone = page_zone(page);
/* prevent PageLRU to go away from under us, and freeze lru stats */
spin_lock_irq(&zone->lru_lock);
compound_lock(page);
for (i = 1; i < HPAGE_PMD_NR; i++) {
struct page *page_tail = page + i;
/* tail_page->_count cannot change */
atomic_sub(atomic_read(&page_tail->_count), &page->_count);
BUG_ON(page_count(page) <= 0);
atomic_add(page_mapcount(page) + 1, &page_tail->_count);
BUG_ON(atomic_read(&page_tail->_count) <= 0);
/* after clearing PageTail the gup refcount can be released */
smp_mb();
page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
page_tail->flags |= (page->flags &
((1L << PG_referenced) |
(1L << PG_swapbacked) |
(1L << PG_mlocked) |
(1L << PG_uptodate)));
page_tail->flags |= (1L << PG_dirty);
/*
* 1) clear PageTail before overwriting first_page
* 2) clear PageTail before clearing PageHead for VM_BUG_ON
*/
smp_wmb();
/*
* __split_huge_page_splitting() already set the
* splitting bit in all pmd that could map this
* hugepage, that will ensure no CPU can alter the
* mapcount on the head page. The mapcount is only
* accounted in the head page and it has to be
* transferred to all tail pages in the below code. So
* for this code to be safe, the split the mapcount
* can't change. But that doesn't mean userland can't
* keep changing and reading the page contents while
* we transfer the mapcount, so the pmd splitting
* status is achieved setting a reserved bit in the
* pmd, not by clearing the present bit.
*/
BUG_ON(page_mapcount(page_tail));
page_tail->_mapcount = page->_mapcount;
BUG_ON(page_tail->mapping);
page_tail->mapping = page->mapping;
page_tail->index = ++head_index;
BUG_ON(!PageAnon(page_tail));
BUG_ON(!PageUptodate(page_tail));
BUG_ON(!PageDirty(page_tail));
BUG_ON(!PageSwapBacked(page_tail));
lru_add_page_tail(zone, page, page_tail);
}
ClearPageCompound(page);
compound_unlock(page);
spin_unlock_irq(&zone->lru_lock);
for (i = 1; i < HPAGE_PMD_NR; i++) {
struct page *page_tail = page + i;
BUG_ON(page_count(page_tail) <= 0);
/*
* Tail pages may be freed if there wasn't any mapping
* like if add_to_swap() is running on a lru page that
* had its mapping zapped. And freeing these pages
* requires taking the lru_lock so we do the put_page
* of the tail pages after the split is complete.
*/
put_page(page_tail);
}
/*
* Only the head page (now become a regular page) is required
* to be pinned by the caller.
*/
BUG_ON(page_count(page) <= 0);
}
static int __split_huge_page_map(struct page *page,
struct vm_area_struct *vma,
unsigned long address)
{
struct mm_struct *mm = vma->vm_mm;
pmd_t *pmd, _pmd;
int ret = 0, i;
pgtable_t pgtable;
unsigned long haddr;
spin_lock(&mm->page_table_lock);
pmd = page_check_address_pmd(page, mm, address,
PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
if (pmd) {
pgtable = get_pmd_huge_pte(mm);
pmd_populate(mm, &_pmd, pgtable);
for (i = 0, haddr = address; i < HPAGE_PMD_NR;
i++, haddr += PAGE_SIZE) {
pte_t *pte, entry;
BUG_ON(PageCompound(page+i));
entry = mk_pte(page + i, vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
if (!pmd_write(*pmd))
entry = pte_wrprotect(entry);
else
BUG_ON(page_mapcount(page) != 1);
if (!pmd_young(*pmd))
entry = pte_mkold(entry);
pte = pte_offset_map(&_pmd, haddr);
BUG_ON(!pte_none(*pte));
set_pte_at(mm, haddr, pte, entry);
pte_unmap(pte);
}
mm->nr_ptes++;
smp_wmb(); /* make pte visible before pmd */
/*
* Up to this point the pmd is present and huge and
* userland has the whole access to the hugepage
* during the split (which happens in place). If we
* overwrite the pmd with the not-huge version
* pointing to the pte here (which of course we could
* if all CPUs were bug free), userland could trigger
* a small page size TLB miss on the small sized TLB
* while the hugepage TLB entry is still established
* in the huge TLB. Some CPU doesn't like that. See
* http://support.amd.com/us/Processor_TechDocs/41322.pdf,
* Erratum 383 on page 93. Intel should be safe but is
* also warns that it's only safe if the permission
* and cache attributes of the two entries loaded in
* the two TLB is identical (which should be the case
* here). But it is generally safer to never allow
* small and huge TLB entries for the same virtual
* address to be loaded simultaneously. So instead of
* doing "pmd_populate(); flush_tlb_range();" we first
* mark the current pmd notpresent (atomically because
* here the pmd_trans_huge and pmd_trans_splitting
* must remain set at all times on the pmd until the
* split is complete for this pmd), then we flush the
* SMP TLB and finally we write the non-huge version
* of the pmd entry with pmd_populate.
*/
set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
pmd_populate(mm, pmd, pgtable);
ret = 1;
}
spin_unlock(&mm->page_table_lock);
return ret;
}
/* must be called with anon_vma->root->lock hold */
static void __split_huge_page(struct page *page,
struct anon_vma *anon_vma)
{
int mapcount, mapcount2;
struct anon_vma_chain *avc;
BUG_ON(!PageHead(page));
BUG_ON(PageTail(page));
mapcount = 0;
list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
struct vm_area_struct *vma = avc->vma;
unsigned long addr = vma_address(page, vma);
BUG_ON(is_vma_temporary_stack(vma));
if (addr == -EFAULT)
continue;
mapcount += __split_huge_page_splitting(page, vma, addr);
}
/*
* It is critical that new vmas are added to the tail of the
* anon_vma list. This guarantes that if copy_huge_pmd() runs
* and establishes a child pmd before
* __split_huge_page_splitting() freezes the parent pmd (so if
* we fail to prevent copy_huge_pmd() from running until the
* whole __split_huge_page() is complete), we will still see
* the newly established pmd of the child later during the
* walk, to be able to set it as pmd_trans_splitting too.
*/
if (mapcount != page_mapcount(page))
printk(KERN_ERR "mapcount %d page_mapcount %d\n",
mapcount, page_mapcount(page));
BUG_ON(mapcount != page_mapcount(page));
__split_huge_page_refcount(page);
mapcount2 = 0;
list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
struct vm_area_struct *vma = avc->vma;
unsigned long addr = vma_address(page, vma);
BUG_ON(is_vma_temporary_stack(vma));
if (addr == -EFAULT)
continue;
mapcount2 += __split_huge_page_map(page, vma, addr);
}
if (mapcount != mapcount2)
printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
mapcount, mapcount2, page_mapcount(page));
BUG_ON(mapcount != mapcount2);
}
int split_huge_page(struct page *page)
{
struct anon_vma *anon_vma;
int ret = 1;
BUG_ON(!PageAnon(page));
anon_vma = page_lock_anon_vma(page);
if (!anon_vma)
goto out;
ret = 0;
if (!PageCompound(page))
goto out_unlock;
BUG_ON(!PageSwapBacked(page));
__split_huge_page(page, anon_vma);
BUG_ON(PageCompound(page));
out_unlock:
page_unlock_anon_vma(anon_vma);
out:
return ret;
}
int hugepage_madvise(unsigned long *vm_flags)
{
/*
* Be somewhat over-protective like KSM for now!
*/
if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE |
VM_PFNMAP | VM_IO | VM_DONTEXPAND |
VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
VM_MIXEDMAP | VM_SAO))
return -EINVAL;
*vm_flags |= VM_HUGEPAGE;
return 0;
}
void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
{
struct page *page;
spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_trans_huge(*pmd))) {
spin_unlock(&mm->page_table_lock);
return;
}
page = pmd_page(*pmd);
VM_BUG_ON(!page_count(page));
get_page(page);
spin_unlock(&mm->page_table_lock);
split_huge_page(page);
put_page(page);
BUG_ON(pmd_trans_huge(*pmd));
}