kernel-ark/drivers/crypto/mv_cesa.c
Phil Sutter 6ef84509f3 crypto: mv_cesa - make count_sgs() null-pointer proof
This also makes the dummy scatterlist in mv_hash_final() needless, so
drop it.

XXX: should this routine be made pulicly available? There are probably
other users with their own implementations.

Signed-off-by: Phil Sutter <phil.sutter@viprinet.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2011-05-11 15:06:22 +10:00

1143 lines
27 KiB
C

/*
* Support for Marvell's crypto engine which can be found on some Orion5X
* boards.
*
* Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
* License: GPLv2
*
*/
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <linux/crypto.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kthread.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
#include "mv_cesa.h"
#define MV_CESA "MV-CESA:"
#define MAX_HW_HASH_SIZE 0xFFFF
/*
* STM:
* /---------------------------------------\
* | | request complete
* \./ |
* IDLE -> new request -> BUSY -> done -> DEQUEUE
* /°\ |
* | | more scatter entries
* \________________/
*/
enum engine_status {
ENGINE_IDLE,
ENGINE_BUSY,
ENGINE_W_DEQUEUE,
};
/**
* struct req_progress - used for every crypt request
* @src_sg_it: sg iterator for src
* @dst_sg_it: sg iterator for dst
* @sg_src_left: bytes left in src to process (scatter list)
* @src_start: offset to add to src start position (scatter list)
* @crypt_len: length of current hw crypt/hash process
* @hw_nbytes: total bytes to process in hw for this request
* @copy_back: whether to copy data back (crypt) or not (hash)
* @sg_dst_left: bytes left dst to process in this scatter list
* @dst_start: offset to add to dst start position (scatter list)
* @hw_processed_bytes: number of bytes processed by hw (request).
*
* sg helper are used to iterate over the scatterlist. Since the size of the
* SRAM may be less than the scatter size, this struct struct is used to keep
* track of progress within current scatterlist.
*/
struct req_progress {
struct sg_mapping_iter src_sg_it;
struct sg_mapping_iter dst_sg_it;
void (*complete) (void);
void (*process) (int is_first);
/* src mostly */
int sg_src_left;
int src_start;
int crypt_len;
int hw_nbytes;
/* dst mostly */
int copy_back;
int sg_dst_left;
int dst_start;
int hw_processed_bytes;
};
struct crypto_priv {
void __iomem *reg;
void __iomem *sram;
int irq;
struct task_struct *queue_th;
/* the lock protects queue and eng_st */
spinlock_t lock;
struct crypto_queue queue;
enum engine_status eng_st;
struct crypto_async_request *cur_req;
struct req_progress p;
int max_req_size;
int sram_size;
int has_sha1;
int has_hmac_sha1;
};
static struct crypto_priv *cpg;
struct mv_ctx {
u8 aes_enc_key[AES_KEY_LEN];
u32 aes_dec_key[8];
int key_len;
u32 need_calc_aes_dkey;
};
enum crypto_op {
COP_AES_ECB,
COP_AES_CBC,
};
struct mv_req_ctx {
enum crypto_op op;
int decrypt;
};
enum hash_op {
COP_SHA1,
COP_HMAC_SHA1
};
struct mv_tfm_hash_ctx {
struct crypto_shash *fallback;
struct crypto_shash *base_hash;
u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
int count_add;
enum hash_op op;
};
struct mv_req_hash_ctx {
u64 count;
u32 state[SHA1_DIGEST_SIZE / 4];
u8 buffer[SHA1_BLOCK_SIZE];
int first_hash; /* marks that we don't have previous state */
int last_chunk; /* marks that this is the 'final' request */
int extra_bytes; /* unprocessed bytes in buffer */
enum hash_op op;
int count_add;
};
static void compute_aes_dec_key(struct mv_ctx *ctx)
{
struct crypto_aes_ctx gen_aes_key;
int key_pos;
if (!ctx->need_calc_aes_dkey)
return;
crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
key_pos = ctx->key_len + 24;
memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
switch (ctx->key_len) {
case AES_KEYSIZE_256:
key_pos -= 2;
/* fall */
case AES_KEYSIZE_192:
key_pos -= 2;
memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
4 * 4);
break;
}
ctx->need_calc_aes_dkey = 0;
}
static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
switch (len) {
case AES_KEYSIZE_128:
case AES_KEYSIZE_192:
case AES_KEYSIZE_256:
break;
default:
crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
ctx->key_len = len;
ctx->need_calc_aes_dkey = 1;
memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
return 0;
}
static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
{
int ret;
void *sbuf;
int copy_len;
while (len) {
if (!p->sg_src_left) {
ret = sg_miter_next(&p->src_sg_it);
BUG_ON(!ret);
p->sg_src_left = p->src_sg_it.length;
p->src_start = 0;
}
sbuf = p->src_sg_it.addr + p->src_start;
copy_len = min(p->sg_src_left, len);
memcpy(dbuf, sbuf, copy_len);
p->src_start += copy_len;
p->sg_src_left -= copy_len;
len -= copy_len;
dbuf += copy_len;
}
}
static void setup_data_in(void)
{
struct req_progress *p = &cpg->p;
int data_in_sram =
min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
data_in_sram - p->crypt_len);
p->crypt_len = data_in_sram;
}
static void mv_process_current_q(int first_block)
{
struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
struct sec_accel_config op;
switch (req_ctx->op) {
case COP_AES_ECB:
op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
break;
case COP_AES_CBC:
default:
op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
if (first_block)
memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
break;
}
if (req_ctx->decrypt) {
op.config |= CFG_DIR_DEC;
memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
AES_KEY_LEN);
} else {
op.config |= CFG_DIR_ENC;
memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
AES_KEY_LEN);
}
switch (ctx->key_len) {
case AES_KEYSIZE_128:
op.config |= CFG_AES_LEN_128;
break;
case AES_KEYSIZE_192:
op.config |= CFG_AES_LEN_192;
break;
case AES_KEYSIZE_256:
op.config |= CFG_AES_LEN_256;
break;
}
op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
ENC_P_DST(SRAM_DATA_OUT_START);
op.enc_key_p = SRAM_DATA_KEY_P;
setup_data_in();
op.enc_len = cpg->p.crypt_len;
memcpy(cpg->sram + SRAM_CONFIG, &op,
sizeof(struct sec_accel_config));
/* GO */
writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
/*
* XXX: add timer if the interrupt does not occur for some mystery
* reason
*/
}
static void mv_crypto_algo_completion(void)
{
struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
sg_miter_stop(&cpg->p.src_sg_it);
sg_miter_stop(&cpg->p.dst_sg_it);
if (req_ctx->op != COP_AES_CBC)
return ;
memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
}
static void mv_process_hash_current(int first_block)
{
struct ahash_request *req = ahash_request_cast(cpg->cur_req);
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
struct req_progress *p = &cpg->p;
struct sec_accel_config op = { 0 };
int is_last;
switch (req_ctx->op) {
case COP_SHA1:
default:
op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
break;
case COP_HMAC_SHA1:
op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
memcpy(cpg->sram + SRAM_HMAC_IV_IN,
tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
break;
}
op.mac_src_p =
MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
req_ctx->
count);
setup_data_in();
op.mac_digest =
MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
op.mac_iv =
MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
is_last = req_ctx->last_chunk
&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
&& (req_ctx->count <= MAX_HW_HASH_SIZE);
if (req_ctx->first_hash) {
if (is_last)
op.config |= CFG_NOT_FRAG;
else
op.config |= CFG_FIRST_FRAG;
req_ctx->first_hash = 0;
} else {
if (is_last)
op.config |= CFG_LAST_FRAG;
else
op.config |= CFG_MID_FRAG;
writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
}
memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
/* GO */
writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
/*
* XXX: add timer if the interrupt does not occur for some mystery
* reason
*/
}
static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
struct shash_desc *desc)
{
int i;
struct sha1_state shash_state;
shash_state.count = ctx->count + ctx->count_add;
for (i = 0; i < 5; i++)
shash_state.state[i] = ctx->state[i];
memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
return crypto_shash_import(desc, &shash_state);
}
static int mv_hash_final_fallback(struct ahash_request *req)
{
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
struct {
struct shash_desc shash;
char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
} desc;
int rc;
desc.shash.tfm = tfm_ctx->fallback;
desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
if (unlikely(req_ctx->first_hash)) {
crypto_shash_init(&desc.shash);
crypto_shash_update(&desc.shash, req_ctx->buffer,
req_ctx->extra_bytes);
} else {
/* only SHA1 for now....
*/
rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
if (rc)
goto out;
}
rc = crypto_shash_final(&desc.shash, req->result);
out:
return rc;
}
static void mv_hash_algo_completion(void)
{
struct ahash_request *req = ahash_request_cast(cpg->cur_req);
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
if (ctx->extra_bytes)
copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
sg_miter_stop(&cpg->p.src_sg_it);
if (likely(ctx->last_chunk)) {
if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
crypto_ahash_digestsize(crypto_ahash_reqtfm
(req)));
} else
mv_hash_final_fallback(req);
} else {
ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
}
}
static void dequeue_complete_req(void)
{
struct crypto_async_request *req = cpg->cur_req;
void *buf;
int ret;
cpg->p.hw_processed_bytes += cpg->p.crypt_len;
if (cpg->p.copy_back) {
int need_copy_len = cpg->p.crypt_len;
int sram_offset = 0;
do {
int dst_copy;
if (!cpg->p.sg_dst_left) {
ret = sg_miter_next(&cpg->p.dst_sg_it);
BUG_ON(!ret);
cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
cpg->p.dst_start = 0;
}
buf = cpg->p.dst_sg_it.addr;
buf += cpg->p.dst_start;
dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
memcpy(buf,
cpg->sram + SRAM_DATA_OUT_START + sram_offset,
dst_copy);
sram_offset += dst_copy;
cpg->p.sg_dst_left -= dst_copy;
need_copy_len -= dst_copy;
cpg->p.dst_start += dst_copy;
} while (need_copy_len > 0);
}
cpg->p.crypt_len = 0;
BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
/* process next scatter list entry */
cpg->eng_st = ENGINE_BUSY;
cpg->p.process(0);
} else {
cpg->p.complete();
cpg->eng_st = ENGINE_IDLE;
local_bh_disable();
req->complete(req, 0);
local_bh_enable();
}
}
static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
{
int i = 0;
size_t cur_len;
while (sl) {
cur_len = sl[i].length;
++i;
if (total_bytes > cur_len)
total_bytes -= cur_len;
else
break;
}
return i;
}
static void mv_start_new_crypt_req(struct ablkcipher_request *req)
{
struct req_progress *p = &cpg->p;
int num_sgs;
cpg->cur_req = &req->base;
memset(p, 0, sizeof(struct req_progress));
p->hw_nbytes = req->nbytes;
p->complete = mv_crypto_algo_completion;
p->process = mv_process_current_q;
p->copy_back = 1;
num_sgs = count_sgs(req->src, req->nbytes);
sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
num_sgs = count_sgs(req->dst, req->nbytes);
sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
mv_process_current_q(1);
}
static void mv_start_new_hash_req(struct ahash_request *req)
{
struct req_progress *p = &cpg->p;
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
int num_sgs, hw_bytes, old_extra_bytes, rc;
cpg->cur_req = &req->base;
memset(p, 0, sizeof(struct req_progress));
hw_bytes = req->nbytes + ctx->extra_bytes;
old_extra_bytes = ctx->extra_bytes;
ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
if (ctx->extra_bytes != 0
&& (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
hw_bytes -= ctx->extra_bytes;
else
ctx->extra_bytes = 0;
num_sgs = count_sgs(req->src, req->nbytes);
sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
if (hw_bytes) {
p->hw_nbytes = hw_bytes;
p->complete = mv_hash_algo_completion;
p->process = mv_process_hash_current;
if (unlikely(old_extra_bytes)) {
memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
old_extra_bytes);
p->crypt_len = old_extra_bytes;
}
mv_process_hash_current(1);
} else {
copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
ctx->extra_bytes - old_extra_bytes);
sg_miter_stop(&p->src_sg_it);
if (ctx->last_chunk)
rc = mv_hash_final_fallback(req);
else
rc = 0;
cpg->eng_st = ENGINE_IDLE;
local_bh_disable();
req->base.complete(&req->base, rc);
local_bh_enable();
}
}
static int queue_manag(void *data)
{
cpg->eng_st = ENGINE_IDLE;
do {
struct crypto_async_request *async_req = NULL;
struct crypto_async_request *backlog;
__set_current_state(TASK_INTERRUPTIBLE);
if (cpg->eng_st == ENGINE_W_DEQUEUE)
dequeue_complete_req();
spin_lock_irq(&cpg->lock);
if (cpg->eng_st == ENGINE_IDLE) {
backlog = crypto_get_backlog(&cpg->queue);
async_req = crypto_dequeue_request(&cpg->queue);
if (async_req) {
BUG_ON(cpg->eng_st != ENGINE_IDLE);
cpg->eng_st = ENGINE_BUSY;
}
}
spin_unlock_irq(&cpg->lock);
if (backlog) {
backlog->complete(backlog, -EINPROGRESS);
backlog = NULL;
}
if (async_req) {
if (async_req->tfm->__crt_alg->cra_type !=
&crypto_ahash_type) {
struct ablkcipher_request *req =
ablkcipher_request_cast(async_req);
mv_start_new_crypt_req(req);
} else {
struct ahash_request *req =
ahash_request_cast(async_req);
mv_start_new_hash_req(req);
}
async_req = NULL;
}
schedule();
} while (!kthread_should_stop());
return 0;
}
static int mv_handle_req(struct crypto_async_request *req)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&cpg->lock, flags);
ret = crypto_enqueue_request(&cpg->queue, req);
spin_unlock_irqrestore(&cpg->lock, flags);
wake_up_process(cpg->queue_th);
return ret;
}
static int mv_enc_aes_ecb(struct ablkcipher_request *req)
{
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
req_ctx->op = COP_AES_ECB;
req_ctx->decrypt = 0;
return mv_handle_req(&req->base);
}
static int mv_dec_aes_ecb(struct ablkcipher_request *req)
{
struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
req_ctx->op = COP_AES_ECB;
req_ctx->decrypt = 1;
compute_aes_dec_key(ctx);
return mv_handle_req(&req->base);
}
static int mv_enc_aes_cbc(struct ablkcipher_request *req)
{
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
req_ctx->op = COP_AES_CBC;
req_ctx->decrypt = 0;
return mv_handle_req(&req->base);
}
static int mv_dec_aes_cbc(struct ablkcipher_request *req)
{
struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
req_ctx->op = COP_AES_CBC;
req_ctx->decrypt = 1;
compute_aes_dec_key(ctx);
return mv_handle_req(&req->base);
}
static int mv_cra_init(struct crypto_tfm *tfm)
{
tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
return 0;
}
static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
int is_last, unsigned int req_len,
int count_add)
{
memset(ctx, 0, sizeof(*ctx));
ctx->op = op;
ctx->count = req_len;
ctx->first_hash = 1;
ctx->last_chunk = is_last;
ctx->count_add = count_add;
}
static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
unsigned req_len)
{
ctx->last_chunk = is_last;
ctx->count += req_len;
}
static int mv_hash_init(struct ahash_request *req)
{
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
tfm_ctx->count_add);
return 0;
}
static int mv_hash_update(struct ahash_request *req)
{
if (!req->nbytes)
return 0;
mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
return mv_handle_req(&req->base);
}
static int mv_hash_final(struct ahash_request *req)
{
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
mv_update_hash_req_ctx(ctx, 1, 0);
return mv_handle_req(&req->base);
}
static int mv_hash_finup(struct ahash_request *req)
{
mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
return mv_handle_req(&req->base);
}
static int mv_hash_digest(struct ahash_request *req)
{
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
req->nbytes, tfm_ctx->count_add);
return mv_handle_req(&req->base);
}
static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
const void *ostate)
{
const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
int i;
for (i = 0; i < 5; i++) {
ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
}
}
static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
unsigned int keylen)
{
int rc;
struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
int bs, ds, ss;
if (!ctx->base_hash)
return 0;
rc = crypto_shash_setkey(ctx->fallback, key, keylen);
if (rc)
return rc;
/* Can't see a way to extract the ipad/opad from the fallback tfm
so I'm basically copying code from the hmac module */
bs = crypto_shash_blocksize(ctx->base_hash);
ds = crypto_shash_digestsize(ctx->base_hash);
ss = crypto_shash_statesize(ctx->base_hash);
{
struct {
struct shash_desc shash;
char ctx[crypto_shash_descsize(ctx->base_hash)];
} desc;
unsigned int i;
char ipad[ss];
char opad[ss];
desc.shash.tfm = ctx->base_hash;
desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
CRYPTO_TFM_REQ_MAY_SLEEP;
if (keylen > bs) {
int err;
err =
crypto_shash_digest(&desc.shash, key, keylen, ipad);
if (err)
return err;
keylen = ds;
} else
memcpy(ipad, key, keylen);
memset(ipad + keylen, 0, bs - keylen);
memcpy(opad, ipad, bs);
for (i = 0; i < bs; i++) {
ipad[i] ^= 0x36;
opad[i] ^= 0x5c;
}
rc = crypto_shash_init(&desc.shash) ? :
crypto_shash_update(&desc.shash, ipad, bs) ? :
crypto_shash_export(&desc.shash, ipad) ? :
crypto_shash_init(&desc.shash) ? :
crypto_shash_update(&desc.shash, opad, bs) ? :
crypto_shash_export(&desc.shash, opad);
if (rc == 0)
mv_hash_init_ivs(ctx, ipad, opad);
return rc;
}
}
static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
enum hash_op op, int count_add)
{
const char *fallback_driver_name = tfm->__crt_alg->cra_name;
struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
struct crypto_shash *fallback_tfm = NULL;
struct crypto_shash *base_hash = NULL;
int err = -ENOMEM;
ctx->op = op;
ctx->count_add = count_add;
/* Allocate a fallback and abort if it failed. */
fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback_tfm)) {
printk(KERN_WARNING MV_CESA
"Fallback driver '%s' could not be loaded!\n",
fallback_driver_name);
err = PTR_ERR(fallback_tfm);
goto out;
}
ctx->fallback = fallback_tfm;
if (base_hash_name) {
/* Allocate a hash to compute the ipad/opad of hmac. */
base_hash = crypto_alloc_shash(base_hash_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(base_hash)) {
printk(KERN_WARNING MV_CESA
"Base driver '%s' could not be loaded!\n",
base_hash_name);
err = PTR_ERR(base_hash);
goto err_bad_base;
}
}
ctx->base_hash = base_hash;
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct mv_req_hash_ctx) +
crypto_shash_descsize(ctx->fallback));
return 0;
err_bad_base:
crypto_free_shash(fallback_tfm);
out:
return err;
}
static void mv_cra_hash_exit(struct crypto_tfm *tfm)
{
struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_shash(ctx->fallback);
if (ctx->base_hash)
crypto_free_shash(ctx->base_hash);
}
static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
{
return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
}
static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
{
return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
}
irqreturn_t crypto_int(int irq, void *priv)
{
u32 val;
val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
if (!(val & SEC_INT_ACCEL0_DONE))
return IRQ_NONE;
val &= ~SEC_INT_ACCEL0_DONE;
writel(val, cpg->reg + FPGA_INT_STATUS);
writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
BUG_ON(cpg->eng_st != ENGINE_BUSY);
cpg->eng_st = ENGINE_W_DEQUEUE;
wake_up_process(cpg->queue_th);
return IRQ_HANDLED;
}
struct crypto_alg mv_aes_alg_ecb = {
.cra_name = "ecb(aes)",
.cra_driver_name = "mv-ecb-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = 16,
.cra_ctxsize = sizeof(struct mv_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = mv_cra_init,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = mv_setkey_aes,
.encrypt = mv_enc_aes_ecb,
.decrypt = mv_dec_aes_ecb,
},
},
};
struct crypto_alg mv_aes_alg_cbc = {
.cra_name = "cbc(aes)",
.cra_driver_name = "mv-cbc-aes",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct mv_ctx),
.cra_alignmask = 0,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = mv_cra_init,
.cra_u = {
.ablkcipher = {
.ivsize = AES_BLOCK_SIZE,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = mv_setkey_aes,
.encrypt = mv_enc_aes_cbc,
.decrypt = mv_dec_aes_cbc,
},
},
};
struct ahash_alg mv_sha1_alg = {
.init = mv_hash_init,
.update = mv_hash_update,
.final = mv_hash_final,
.finup = mv_hash_finup,
.digest = mv_hash_digest,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "sha1",
.cra_driver_name = "mv-sha1",
.cra_priority = 300,
.cra_flags =
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
.cra_init = mv_cra_hash_sha1_init,
.cra_exit = mv_cra_hash_exit,
.cra_module = THIS_MODULE,
}
}
};
struct ahash_alg mv_hmac_sha1_alg = {
.init = mv_hash_init,
.update = mv_hash_update,
.final = mv_hash_final,
.finup = mv_hash_finup,
.digest = mv_hash_digest,
.setkey = mv_hash_setkey,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "mv-hmac-sha1",
.cra_priority = 300,
.cra_flags =
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
.cra_init = mv_cra_hash_hmac_sha1_init,
.cra_exit = mv_cra_hash_exit,
.cra_module = THIS_MODULE,
}
}
};
static int mv_probe(struct platform_device *pdev)
{
struct crypto_priv *cp;
struct resource *res;
int irq;
int ret;
if (cpg) {
printk(KERN_ERR MV_CESA "Second crypto dev?\n");
return -EEXIST;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
if (!res)
return -ENXIO;
cp = kzalloc(sizeof(*cp), GFP_KERNEL);
if (!cp)
return -ENOMEM;
spin_lock_init(&cp->lock);
crypto_init_queue(&cp->queue, 50);
cp->reg = ioremap(res->start, resource_size(res));
if (!cp->reg) {
ret = -ENOMEM;
goto err;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
if (!res) {
ret = -ENXIO;
goto err_unmap_reg;
}
cp->sram_size = resource_size(res);
cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
cp->sram = ioremap(res->start, cp->sram_size);
if (!cp->sram) {
ret = -ENOMEM;
goto err_unmap_reg;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0 || irq == NO_IRQ) {
ret = irq;
goto err_unmap_sram;
}
cp->irq = irq;
platform_set_drvdata(pdev, cp);
cpg = cp;
cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
if (IS_ERR(cp->queue_th)) {
ret = PTR_ERR(cp->queue_th);
goto err_unmap_sram;
}
ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
cp);
if (ret)
goto err_thread;
writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
ret = crypto_register_alg(&mv_aes_alg_ecb);
if (ret) {
printk(KERN_WARNING MV_CESA
"Could not register aes-ecb driver\n");
goto err_irq;
}
ret = crypto_register_alg(&mv_aes_alg_cbc);
if (ret) {
printk(KERN_WARNING MV_CESA
"Could not register aes-cbc driver\n");
goto err_unreg_ecb;
}
ret = crypto_register_ahash(&mv_sha1_alg);
if (ret == 0)
cpg->has_sha1 = 1;
else
printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
ret = crypto_register_ahash(&mv_hmac_sha1_alg);
if (ret == 0) {
cpg->has_hmac_sha1 = 1;
} else {
printk(KERN_WARNING MV_CESA
"Could not register hmac-sha1 driver\n");
}
return 0;
err_unreg_ecb:
crypto_unregister_alg(&mv_aes_alg_ecb);
err_irq:
free_irq(irq, cp);
err_thread:
kthread_stop(cp->queue_th);
err_unmap_sram:
iounmap(cp->sram);
err_unmap_reg:
iounmap(cp->reg);
err:
kfree(cp);
cpg = NULL;
platform_set_drvdata(pdev, NULL);
return ret;
}
static int mv_remove(struct platform_device *pdev)
{
struct crypto_priv *cp = platform_get_drvdata(pdev);
crypto_unregister_alg(&mv_aes_alg_ecb);
crypto_unregister_alg(&mv_aes_alg_cbc);
if (cp->has_sha1)
crypto_unregister_ahash(&mv_sha1_alg);
if (cp->has_hmac_sha1)
crypto_unregister_ahash(&mv_hmac_sha1_alg);
kthread_stop(cp->queue_th);
free_irq(cp->irq, cp);
memset(cp->sram, 0, cp->sram_size);
iounmap(cp->sram);
iounmap(cp->reg);
kfree(cp);
cpg = NULL;
return 0;
}
static struct platform_driver marvell_crypto = {
.probe = mv_probe,
.remove = mv_remove,
.driver = {
.owner = THIS_MODULE,
.name = "mv_crypto",
},
};
MODULE_ALIAS("platform:mv_crypto");
static int __init mv_crypto_init(void)
{
return platform_driver_register(&marvell_crypto);
}
module_init(mv_crypto_init);
static void __exit mv_crypto_exit(void)
{
platform_driver_unregister(&marvell_crypto);
}
module_exit(mv_crypto_exit);
MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
MODULE_LICENSE("GPL");