kernel-ark/arch/sparc64/mm/init.c
David S. Miller b445e26cbf [SPARC64]: Avoid membar instructions in delay slots.
In particular, avoid membar instructions in the delay
slot of a jmpl instruction.

UltraSPARC-I, II, IIi, and IIe have a bug, documented in
the UltraSPARC-IIi User's Manual, Appendix K, Erratum 51

The long and short of it is that if the IMU unit misses
on a branch or jmpl, and there is a store buffer synchronizing
membar in the delay slot, the chip can stop fetching instructions.

If interrupts are enabled or some other trap is enabled, the
chip will unwedge itself, but performance will suffer.

We already had a workaround for this bug in a few spots, but
it's better to have the entire tree sanitized for this rule.

Signed-off-by: David S. Miller <davem@davemloft.net>
2005-06-27 15:42:04 -07:00

1783 lines
49 KiB
C

/* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
* arch/sparc64/mm/init.c
*
* Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <linux/initrd.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <asm/head.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/iommu.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/dma.h>
#include <asm/starfire.h>
#include <asm/tlb.h>
#include <asm/spitfire.h>
#include <asm/sections.h>
extern void device_scan(void);
struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS];
unsigned long *sparc64_valid_addr_bitmap;
/* Ugly, but necessary... -DaveM */
unsigned long phys_base;
unsigned long kern_base;
unsigned long kern_size;
unsigned long pfn_base;
/* This is even uglier. We have a problem where the kernel may not be
* located at phys_base. However, initial __alloc_bootmem() calls need to
* be adjusted to be within the 4-8Megs that the kernel is mapped to, else
* those page mappings wont work. Things are ok after inherit_prom_mappings
* is called though. Dave says he'll clean this up some other time.
* -- BenC
*/
static unsigned long bootmap_base;
/* get_new_mmu_context() uses "cache + 1". */
DEFINE_SPINLOCK(ctx_alloc_lock);
unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
#define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
/* References to special section boundaries */
extern char _start[], _end[];
/* Initial ramdisk setup */
extern unsigned long sparc_ramdisk_image64;
extern unsigned int sparc_ramdisk_image;
extern unsigned int sparc_ramdisk_size;
struct page *mem_map_zero;
int bigkernel = 0;
/* XXX Tune this... */
#define PGT_CACHE_LOW 25
#define PGT_CACHE_HIGH 50
void check_pgt_cache(void)
{
preempt_disable();
if (pgtable_cache_size > PGT_CACHE_HIGH) {
do {
if (pgd_quicklist)
free_pgd_slow(get_pgd_fast());
if (pte_quicklist[0])
free_pte_slow(pte_alloc_one_fast(NULL, 0));
if (pte_quicklist[1])
free_pte_slow(pte_alloc_one_fast(NULL, 1 << (PAGE_SHIFT + 10)));
} while (pgtable_cache_size > PGT_CACHE_LOW);
}
preempt_enable();
}
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_t dcpage_flushes = ATOMIC_INIT(0);
#ifdef CONFIG_SMP
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
#endif
#endif
__inline__ void flush_dcache_page_impl(struct page *page)
{
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_inc(&dcpage_flushes);
#endif
#ifdef DCACHE_ALIASING_POSSIBLE
__flush_dcache_page(page_address(page),
((tlb_type == spitfire) &&
page_mapping(page) != NULL));
#else
if (page_mapping(page) != NULL &&
tlb_type == spitfire)
__flush_icache_page(__pa(page_address(page)));
#endif
}
#define PG_dcache_dirty PG_arch_1
#define dcache_dirty_cpu(page) \
(((page)->flags >> 24) & (NR_CPUS - 1UL))
static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
{
unsigned long mask = this_cpu;
unsigned long non_cpu_bits = ~((NR_CPUS - 1UL) << 24UL);
mask = (mask << 24) | (1UL << PG_dcache_dirty);
__asm__ __volatile__("1:\n\t"
"ldx [%2], %%g7\n\t"
"and %%g7, %1, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"membar #StoreLoad | #StoreStore\n\t"
"bne,pn %%xcc, 1b\n\t"
" nop"
: /* no outputs */
: "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
: "g1", "g7");
}
static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
{
unsigned long mask = (1UL << PG_dcache_dirty);
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
"1:\n\t"
"ldx [%2], %%g7\n\t"
"srlx %%g7, 24, %%g1\n\t"
"and %%g1, %3, %%g1\n\t"
"cmp %%g1, %0\n\t"
"bne,pn %%icc, 2f\n\t"
" andn %%g7, %1, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"membar #StoreLoad | #StoreStore\n\t"
"bne,pn %%xcc, 1b\n\t"
" nop\n"
"2:"
: /* no outputs */
: "r" (cpu), "r" (mask), "r" (&page->flags),
"i" (NR_CPUS - 1UL)
: "g1", "g7");
}
extern void __update_mmu_cache(unsigned long mmu_context_hw, unsigned long address, pte_t pte, int code);
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
{
struct page *page;
unsigned long pfn;
unsigned long pg_flags;
pfn = pte_pfn(pte);
if (pfn_valid(pfn) &&
(page = pfn_to_page(pfn), page_mapping(page)) &&
((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
int cpu = ((pg_flags >> 24) & (NR_CPUS - 1UL));
int this_cpu = get_cpu();
/* This is just to optimize away some function calls
* in the SMP case.
*/
if (cpu == this_cpu)
flush_dcache_page_impl(page);
else
smp_flush_dcache_page_impl(page, cpu);
clear_dcache_dirty_cpu(page, cpu);
put_cpu();
}
if (get_thread_fault_code())
__update_mmu_cache(CTX_NRBITS(vma->vm_mm->context),
address, pte, get_thread_fault_code());
}
void flush_dcache_page(struct page *page)
{
struct address_space *mapping;
int this_cpu;
/* Do not bother with the expensive D-cache flush if it
* is merely the zero page. The 'bigcore' testcase in GDB
* causes this case to run millions of times.
*/
if (page == ZERO_PAGE(0))
return;
this_cpu = get_cpu();
mapping = page_mapping(page);
if (mapping && !mapping_mapped(mapping)) {
int dirty = test_bit(PG_dcache_dirty, &page->flags);
if (dirty) {
int dirty_cpu = dcache_dirty_cpu(page);
if (dirty_cpu == this_cpu)
goto out;
smp_flush_dcache_page_impl(page, dirty_cpu);
}
set_dcache_dirty(page, this_cpu);
} else {
/* We could delay the flush for the !page_mapping
* case too. But that case is for exec env/arg
* pages and those are %99 certainly going to get
* faulted into the tlb (and thus flushed) anyways.
*/
flush_dcache_page_impl(page);
}
out:
put_cpu();
}
void flush_icache_range(unsigned long start, unsigned long end)
{
/* Cheetah has coherent I-cache. */
if (tlb_type == spitfire) {
unsigned long kaddr;
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
__flush_icache_page(__get_phys(kaddr));
}
}
unsigned long page_to_pfn(struct page *page)
{
return (unsigned long) ((page - mem_map) + pfn_base);
}
struct page *pfn_to_page(unsigned long pfn)
{
return (mem_map + (pfn - pfn_base));
}
void show_mem(void)
{
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n",
nr_swap_pages << (PAGE_SHIFT-10));
printk("%ld pages of RAM\n", num_physpages);
printk("%d free pages\n", nr_free_pages());
printk("%d pages in page table cache\n",pgtable_cache_size);
}
void mmu_info(struct seq_file *m)
{
if (tlb_type == cheetah)
seq_printf(m, "MMU Type\t: Cheetah\n");
else if (tlb_type == cheetah_plus)
seq_printf(m, "MMU Type\t: Cheetah+\n");
else if (tlb_type == spitfire)
seq_printf(m, "MMU Type\t: Spitfire\n");
else
seq_printf(m, "MMU Type\t: ???\n");
#ifdef CONFIG_DEBUG_DCFLUSH
seq_printf(m, "DCPageFlushes\t: %d\n",
atomic_read(&dcpage_flushes));
#ifdef CONFIG_SMP
seq_printf(m, "DCPageFlushesXC\t: %d\n",
atomic_read(&dcpage_flushes_xcall));
#endif /* CONFIG_SMP */
#endif /* CONFIG_DEBUG_DCFLUSH */
}
struct linux_prom_translation {
unsigned long virt;
unsigned long size;
unsigned long data;
};
extern unsigned long prom_boot_page;
extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
extern int prom_get_mmu_ihandle(void);
extern void register_prom_callbacks(void);
/* Exported for SMP bootup purposes. */
unsigned long kern_locked_tte_data;
void __init early_pgtable_allocfail(char *type)
{
prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
prom_halt();
}
#define BASE_PAGE_SIZE 8192
static pmd_t *prompmd;
/*
* Translate PROM's mapping we capture at boot time into physical address.
* The second parameter is only set from prom_callback() invocations.
*/
unsigned long prom_virt_to_phys(unsigned long promva, int *error)
{
pmd_t *pmdp = prompmd + ((promva >> 23) & 0x7ff);
pte_t *ptep;
unsigned long base;
if (pmd_none(*pmdp)) {
if (error)
*error = 1;
return(0);
}
ptep = (pte_t *)__pmd_page(*pmdp) + ((promva >> 13) & 0x3ff);
if (!pte_present(*ptep)) {
if (error)
*error = 1;
return(0);
}
if (error) {
*error = 0;
return(pte_val(*ptep));
}
base = pte_val(*ptep) & _PAGE_PADDR;
return(base + (promva & (BASE_PAGE_SIZE - 1)));
}
static void inherit_prom_mappings(void)
{
struct linux_prom_translation *trans;
unsigned long phys_page, tte_vaddr, tte_data;
void (*remap_func)(unsigned long, unsigned long, int);
pmd_t *pmdp;
pte_t *ptep;
int node, n, i, tsz;
extern unsigned int obp_iaddr_patch[2], obp_daddr_patch[2];
node = prom_finddevice("/virtual-memory");
n = prom_getproplen(node, "translations");
if (n == 0 || n == -1) {
prom_printf("Couldn't get translation property\n");
prom_halt();
}
n += 5 * sizeof(struct linux_prom_translation);
for (tsz = 1; tsz < n; tsz <<= 1)
/* empty */;
trans = __alloc_bootmem(tsz, SMP_CACHE_BYTES, bootmap_base);
if (trans == NULL) {
prom_printf("inherit_prom_mappings: Cannot alloc translations.\n");
prom_halt();
}
memset(trans, 0, tsz);
if ((n = prom_getproperty(node, "translations", (char *)trans, tsz)) == -1) {
prom_printf("Couldn't get translation property\n");
prom_halt();
}
n = n / sizeof(*trans);
/*
* The obp translations are saved based on 8k pagesize, since obp can
* use a mixture of pagesizes. Misses to the 0xf0000000 - 0x100000000,
* ie obp range, are handled in entry.S and do not use the vpte scheme
* (see rant in inherit_locked_prom_mappings()).
*/
#define OBP_PMD_SIZE 2048
prompmd = __alloc_bootmem(OBP_PMD_SIZE, OBP_PMD_SIZE, bootmap_base);
if (prompmd == NULL)
early_pgtable_allocfail("pmd");
memset(prompmd, 0, OBP_PMD_SIZE);
for (i = 0; i < n; i++) {
unsigned long vaddr;
if (trans[i].virt >= LOW_OBP_ADDRESS && trans[i].virt < HI_OBP_ADDRESS) {
for (vaddr = trans[i].virt;
((vaddr < trans[i].virt + trans[i].size) &&
(vaddr < HI_OBP_ADDRESS));
vaddr += BASE_PAGE_SIZE) {
unsigned long val;
pmdp = prompmd + ((vaddr >> 23) & 0x7ff);
if (pmd_none(*pmdp)) {
ptep = __alloc_bootmem(BASE_PAGE_SIZE,
BASE_PAGE_SIZE,
bootmap_base);
if (ptep == NULL)
early_pgtable_allocfail("pte");
memset(ptep, 0, BASE_PAGE_SIZE);
pmd_set(pmdp, ptep);
}
ptep = (pte_t *)__pmd_page(*pmdp) +
((vaddr >> 13) & 0x3ff);
val = trans[i].data;
/* Clear diag TTE bits. */
if (tlb_type == spitfire)
val &= ~0x0003fe0000000000UL;
set_pte_at(&init_mm, vaddr,
ptep, __pte(val | _PAGE_MODIFIED));
trans[i].data += BASE_PAGE_SIZE;
}
}
}
phys_page = __pa(prompmd);
obp_iaddr_patch[0] |= (phys_page >> 10);
obp_iaddr_patch[1] |= (phys_page & 0x3ff);
flushi((long)&obp_iaddr_patch[0]);
obp_daddr_patch[0] |= (phys_page >> 10);
obp_daddr_patch[1] |= (phys_page & 0x3ff);
flushi((long)&obp_daddr_patch[0]);
/* Now fixup OBP's idea about where we really are mapped. */
prom_printf("Remapping the kernel... ");
/* Spitfire Errata #32 workaround */
/* NOTE: Using plain zero for the context value is
* correct here, we are not using the Linux trap
* tables yet so we should not use the special
* UltraSPARC-III+ page size encodings yet.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0), "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
switch (tlb_type) {
default:
case spitfire:
phys_page = spitfire_get_dtlb_data(sparc64_highest_locked_tlbent());
break;
case cheetah:
case cheetah_plus:
phys_page = cheetah_get_litlb_data(sparc64_highest_locked_tlbent());
break;
};
phys_page &= _PAGE_PADDR;
phys_page += ((unsigned long)&prom_boot_page -
(unsigned long)KERNBASE);
if (tlb_type == spitfire) {
/* Lock this into i/d tlb entry 59 */
__asm__ __volatile__(
"stxa %%g0, [%2] %3\n\t"
"stxa %0, [%1] %4\n\t"
"membar #Sync\n\t"
"flush %%g6\n\t"
"stxa %%g0, [%2] %5\n\t"
"stxa %0, [%1] %6\n\t"
"membar #Sync\n\t"
"flush %%g6"
: : "r" (phys_page | _PAGE_VALID | _PAGE_SZ8K | _PAGE_CP |
_PAGE_CV | _PAGE_P | _PAGE_L | _PAGE_W),
"r" (59 << 3), "r" (TLB_TAG_ACCESS),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS),
"i" (ASI_IMMU), "i" (ASI_ITLB_DATA_ACCESS)
: "memory");
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
/* Lock this into i/d tlb-0 entry 11 */
__asm__ __volatile__(
"stxa %%g0, [%2] %3\n\t"
"stxa %0, [%1] %4\n\t"
"membar #Sync\n\t"
"flush %%g6\n\t"
"stxa %%g0, [%2] %5\n\t"
"stxa %0, [%1] %6\n\t"
"membar #Sync\n\t"
"flush %%g6"
: : "r" (phys_page | _PAGE_VALID | _PAGE_SZ8K | _PAGE_CP |
_PAGE_CV | _PAGE_P | _PAGE_L | _PAGE_W),
"r" ((0 << 16) | (11 << 3)), "r" (TLB_TAG_ACCESS),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS),
"i" (ASI_IMMU), "i" (ASI_ITLB_DATA_ACCESS)
: "memory");
} else {
/* Implement me :-) */
BUG();
}
tte_vaddr = (unsigned long) KERNBASE;
/* Spitfire Errata #32 workaround */
/* NOTE: Using plain zero for the context value is
* correct here, we are not using the Linux trap
* tables yet so we should not use the special
* UltraSPARC-III+ page size encodings yet.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (tlb_type == spitfire)
tte_data = spitfire_get_dtlb_data(sparc64_highest_locked_tlbent());
else
tte_data = cheetah_get_ldtlb_data(sparc64_highest_locked_tlbent());
kern_locked_tte_data = tte_data;
remap_func = (void *) ((unsigned long) &prom_remap -
(unsigned long) &prom_boot_page);
/* Spitfire Errata #32 workaround */
/* NOTE: Using plain zero for the context value is
* correct here, we are not using the Linux trap
* tables yet so we should not use the special
* UltraSPARC-III+ page size encodings yet.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
remap_func((tlb_type == spitfire ?
(spitfire_get_dtlb_data(sparc64_highest_locked_tlbent()) & _PAGE_PADDR) :
(cheetah_get_litlb_data(sparc64_highest_locked_tlbent()) & _PAGE_PADDR)),
(unsigned long) KERNBASE,
prom_get_mmu_ihandle());
if (bigkernel)
remap_func(((tte_data + 0x400000) & _PAGE_PADDR),
(unsigned long) KERNBASE + 0x400000, prom_get_mmu_ihandle());
/* Flush out that temporary mapping. */
spitfire_flush_dtlb_nucleus_page(0x0);
spitfire_flush_itlb_nucleus_page(0x0);
/* Now lock us back into the TLBs via OBP. */
prom_dtlb_load(sparc64_highest_locked_tlbent(), tte_data, tte_vaddr);
prom_itlb_load(sparc64_highest_locked_tlbent(), tte_data, tte_vaddr);
if (bigkernel) {
prom_dtlb_load(sparc64_highest_locked_tlbent()-1, tte_data + 0x400000,
tte_vaddr + 0x400000);
prom_itlb_load(sparc64_highest_locked_tlbent()-1, tte_data + 0x400000,
tte_vaddr + 0x400000);
}
/* Re-read translations property. */
if ((n = prom_getproperty(node, "translations", (char *)trans, tsz)) == -1) {
prom_printf("Couldn't get translation property\n");
prom_halt();
}
n = n / sizeof(*trans);
for (i = 0; i < n; i++) {
unsigned long vaddr = trans[i].virt;
unsigned long size = trans[i].size;
if (vaddr < 0xf0000000UL) {
unsigned long avoid_start = (unsigned long) KERNBASE;
unsigned long avoid_end = avoid_start + (4 * 1024 * 1024);
if (bigkernel)
avoid_end += (4 * 1024 * 1024);
if (vaddr < avoid_start) {
unsigned long top = vaddr + size;
if (top > avoid_start)
top = avoid_start;
prom_unmap(top - vaddr, vaddr);
}
if ((vaddr + size) > avoid_end) {
unsigned long bottom = vaddr;
if (bottom < avoid_end)
bottom = avoid_end;
prom_unmap((vaddr + size) - bottom, bottom);
}
}
}
prom_printf("done.\n");
register_prom_callbacks();
}
/* The OBP specifications for sun4u mark 0xfffffffc00000000 and
* upwards as reserved for use by the firmware (I wonder if this
* will be the same on Cheetah...). We use this virtual address
* range for the VPTE table mappings of the nucleus so we need
* to zap them when we enter the PROM. -DaveM
*/
static void __flush_nucleus_vptes(void)
{
unsigned long prom_reserved_base = 0xfffffffc00000000UL;
int i;
/* Only DTLB must be checked for VPTE entries. */
if (tlb_type == spitfire) {
for (i = 0; i < 63; i++) {
unsigned long tag;
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no cheetah+
* page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
tag = spitfire_get_dtlb_tag(i);
if (((tag & ~(PAGE_MASK)) == 0) &&
((tag & (PAGE_MASK)) >= prom_reserved_base)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
spitfire_put_dtlb_data(i, 0x0UL);
}
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
for (i = 0; i < 512; i++) {
unsigned long tag = cheetah_get_dtlb_tag(i, 2);
if ((tag & ~PAGE_MASK) == 0 &&
(tag & PAGE_MASK) >= prom_reserved_base) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
cheetah_put_dtlb_data(i, 0x0UL, 2);
}
if (tlb_type != cheetah_plus)
continue;
tag = cheetah_get_dtlb_tag(i, 3);
if ((tag & ~PAGE_MASK) == 0 &&
(tag & PAGE_MASK) >= prom_reserved_base) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
cheetah_put_dtlb_data(i, 0x0UL, 3);
}
}
} else {
/* Implement me :-) */
BUG();
}
}
static int prom_ditlb_set;
struct prom_tlb_entry {
int tlb_ent;
unsigned long tlb_tag;
unsigned long tlb_data;
};
struct prom_tlb_entry prom_itlb[16], prom_dtlb[16];
void prom_world(int enter)
{
unsigned long pstate;
int i;
if (!enter)
set_fs((mm_segment_t) { get_thread_current_ds() });
if (!prom_ditlb_set)
return;
/* Make sure the following runs atomically. */
__asm__ __volatile__("flushw\n\t"
"rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate"
: "=r" (pstate)
: "i" (PSTATE_IE));
if (enter) {
/* Kick out nucleus VPTEs. */
__flush_nucleus_vptes();
/* Install PROM world. */
for (i = 0; i < 16; i++) {
if (prom_dtlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"membar #Sync"
: : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
"i" (ASI_DMMU));
if (tlb_type == spitfire)
spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
prom_dtlb[i].tlb_data);
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
prom_dtlb[i].tlb_data);
}
if (prom_itlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"membar #Sync"
: : "r" (prom_itlb[i].tlb_tag),
"r" (TLB_TAG_ACCESS),
"i" (ASI_IMMU));
if (tlb_type == spitfire)
spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
prom_itlb[i].tlb_data);
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
prom_itlb[i].tlb_data);
}
}
} else {
for (i = 0; i < 16; i++) {
if (prom_dtlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
if (tlb_type == spitfire)
spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
else
cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
}
if (prom_itlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS),
"i" (ASI_IMMU));
if (tlb_type == spitfire)
spitfire_put_itlb_data(prom_itlb[i].tlb_ent, 0x0UL);
else
cheetah_put_litlb_data(prom_itlb[i].tlb_ent, 0x0UL);
}
}
}
__asm__ __volatile__("wrpr %0, 0, %%pstate"
: : "r" (pstate));
}
void inherit_locked_prom_mappings(int save_p)
{
int i;
int dtlb_seen = 0;
int itlb_seen = 0;
/* Fucking losing PROM has more mappings in the TLB, but
* it (conveniently) fails to mention any of these in the
* translations property. The only ones that matter are
* the locked PROM tlb entries, so we impose the following
* irrecovable rule on the PROM, it is allowed 8 locked
* entries in the ITLB and 8 in the DTLB.
*
* Supposedly the upper 16GB of the address space is
* reserved for OBP, BUT I WISH THIS WAS DOCUMENTED
* SOMEWHERE!!!!!!!!!!!!!!!!! Furthermore the entire interface
* used between the client program and the firmware on sun5
* systems to coordinate mmu mappings is also COMPLETELY
* UNDOCUMENTED!!!!!! Thanks S(t)un!
*/
if (save_p) {
for (i = 0; i < 16; i++) {
prom_itlb[i].tlb_ent = -1;
prom_dtlb[i].tlb_ent = -1;
}
}
if (tlb_type == spitfire) {
int high = SPITFIRE_HIGHEST_LOCKED_TLBENT - bigkernel;
for (i = 0; i < high; i++) {
unsigned long data;
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no cheetah+
* page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
data = spitfire_get_dtlb_data(i);
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
unsigned long tag;
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
tag = spitfire_get_dtlb_tag(i);
if (save_p) {
prom_dtlb[dtlb_seen].tlb_ent = i;
prom_dtlb[dtlb_seen].tlb_tag = tag;
prom_dtlb[dtlb_seen].tlb_data = data;
}
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
spitfire_put_dtlb_data(i, 0x0UL);
dtlb_seen++;
if (dtlb_seen > 15)
break;
}
}
for (i = 0; i < high; i++) {
unsigned long data;
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
data = spitfire_get_itlb_data(i);
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
unsigned long tag;
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
tag = spitfire_get_itlb_tag(i);
if (save_p) {
prom_itlb[itlb_seen].tlb_ent = i;
prom_itlb[itlb_seen].tlb_tag = tag;
prom_itlb[itlb_seen].tlb_data = data;
}
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
spitfire_put_itlb_data(i, 0x0UL);
itlb_seen++;
if (itlb_seen > 15)
break;
}
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
int high = CHEETAH_HIGHEST_LOCKED_TLBENT - bigkernel;
for (i = 0; i < high; i++) {
unsigned long data;
data = cheetah_get_ldtlb_data(i);
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
unsigned long tag;
tag = cheetah_get_ldtlb_tag(i);
if (save_p) {
prom_dtlb[dtlb_seen].tlb_ent = i;
prom_dtlb[dtlb_seen].tlb_tag = tag;
prom_dtlb[dtlb_seen].tlb_data = data;
}
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
cheetah_put_ldtlb_data(i, 0x0UL);
dtlb_seen++;
if (dtlb_seen > 15)
break;
}
}
for (i = 0; i < high; i++) {
unsigned long data;
data = cheetah_get_litlb_data(i);
if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
unsigned long tag;
tag = cheetah_get_litlb_tag(i);
if (save_p) {
prom_itlb[itlb_seen].tlb_ent = i;
prom_itlb[itlb_seen].tlb_tag = tag;
prom_itlb[itlb_seen].tlb_data = data;
}
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
cheetah_put_litlb_data(i, 0x0UL);
itlb_seen++;
if (itlb_seen > 15)
break;
}
}
} else {
/* Implement me :-) */
BUG();
}
if (save_p)
prom_ditlb_set = 1;
}
/* Give PROM back his world, done during reboots... */
void prom_reload_locked(void)
{
int i;
for (i = 0; i < 16; i++) {
if (prom_dtlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"membar #Sync"
: : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
"i" (ASI_DMMU));
if (tlb_type == spitfire)
spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
prom_dtlb[i].tlb_data);
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
prom_dtlb[i].tlb_data);
}
if (prom_itlb[i].tlb_ent != -1) {
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"membar #Sync"
: : "r" (prom_itlb[i].tlb_tag),
"r" (TLB_TAG_ACCESS),
"i" (ASI_IMMU));
if (tlb_type == spitfire)
spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
prom_itlb[i].tlb_data);
else
cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
prom_itlb[i].tlb_data);
}
}
}
#ifdef DCACHE_ALIASING_POSSIBLE
void __flush_dcache_range(unsigned long start, unsigned long end)
{
unsigned long va;
if (tlb_type == spitfire) {
int n = 0;
for (va = start; va < end; va += 32) {
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
if (++n >= 512)
break;
}
} else {
start = __pa(start);
end = __pa(end);
for (va = start; va < end; va += 32)
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (va),
"i" (ASI_DCACHE_INVALIDATE));
}
}
#endif /* DCACHE_ALIASING_POSSIBLE */
/* If not locked, zap it. */
void __flush_tlb_all(void)
{
unsigned long pstate;
int i;
__asm__ __volatile__("flushw\n\t"
"rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate"
: "=r" (pstate)
: "i" (PSTATE_IE));
if (tlb_type == spitfire) {
for (i = 0; i < 64; i++) {
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
spitfire_put_dtlb_data(i, 0x0UL);
}
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
spitfire_put_itlb_data(i, 0x0UL);
}
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
cheetah_flush_dtlb_all();
cheetah_flush_itlb_all();
}
__asm__ __volatile__("wrpr %0, 0, %%pstate"
: : "r" (pstate));
}
/* Caller does TLB context flushing on local CPU if necessary.
* The caller also ensures that CTX_VALID(mm->context) is false.
*
* We must be careful about boundary cases so that we never
* let the user have CTX 0 (nucleus) or we ever use a CTX
* version of zero (and thus NO_CONTEXT would not be caught
* by version mis-match tests in mmu_context.h).
*/
void get_new_mmu_context(struct mm_struct *mm)
{
unsigned long ctx, new_ctx;
unsigned long orig_pgsz_bits;
spin_lock(&ctx_alloc_lock);
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
if (new_ctx >= (1 << CTX_NR_BITS)) {
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
if (new_ctx >= ctx) {
int i;
new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
CTX_FIRST_VERSION;
if (new_ctx == 1)
new_ctx = CTX_FIRST_VERSION;
/* Don't call memset, for 16 entries that's just
* plain silly...
*/
mmu_context_bmap[0] = 3;
mmu_context_bmap[1] = 0;
mmu_context_bmap[2] = 0;
mmu_context_bmap[3] = 0;
for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
mmu_context_bmap[i + 0] = 0;
mmu_context_bmap[i + 1] = 0;
mmu_context_bmap[i + 2] = 0;
mmu_context_bmap[i + 3] = 0;
}
goto out;
}
}
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
out:
tlb_context_cache = new_ctx;
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
spin_unlock(&ctx_alloc_lock);
}
#ifndef CONFIG_SMP
struct pgtable_cache_struct pgt_quicklists;
#endif
/* OK, we have to color these pages. The page tables are accessed
* by non-Dcache enabled mapping in the VPTE area by the dtlb_backend.S
* code, as well as by PAGE_OFFSET range direct-mapped addresses by
* other parts of the kernel. By coloring, we make sure that the tlbmiss
* fast handlers do not get data from old/garbage dcache lines that
* correspond to an old/stale virtual address (user/kernel) that
* previously mapped the pagetable page while accessing vpte range
* addresses. The idea is that if the vpte color and PAGE_OFFSET range
* color is the same, then when the kernel initializes the pagetable
* using the later address range, accesses with the first address
* range will see the newly initialized data rather than the garbage.
*/
#ifdef DCACHE_ALIASING_POSSIBLE
#define DC_ALIAS_SHIFT 1
#else
#define DC_ALIAS_SHIFT 0
#endif
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
{
struct page *page;
unsigned long color;
{
pte_t *ptep = pte_alloc_one_fast(mm, address);
if (ptep)
return ptep;
}
color = VPTE_COLOR(address);
page = alloc_pages(GFP_KERNEL|__GFP_REPEAT, DC_ALIAS_SHIFT);
if (page) {
unsigned long *to_free;
unsigned long paddr;
pte_t *pte;
#ifdef DCACHE_ALIASING_POSSIBLE
set_page_count(page, 1);
ClearPageCompound(page);
set_page_count((page + 1), 1);
ClearPageCompound(page + 1);
#endif
paddr = (unsigned long) page_address(page);
memset((char *)paddr, 0, (PAGE_SIZE << DC_ALIAS_SHIFT));
if (!color) {
pte = (pte_t *) paddr;
to_free = (unsigned long *) (paddr + PAGE_SIZE);
} else {
pte = (pte_t *) (paddr + PAGE_SIZE);
to_free = (unsigned long *) paddr;
}
#ifdef DCACHE_ALIASING_POSSIBLE
/* Now free the other one up, adjust cache size. */
preempt_disable();
*to_free = (unsigned long) pte_quicklist[color ^ 0x1];
pte_quicklist[color ^ 0x1] = to_free;
pgtable_cache_size++;
preempt_enable();
#endif
return pte;
}
return NULL;
}
void sparc_ultra_dump_itlb(void)
{
int slot;
if (tlb_type == spitfire) {
printk ("Contents of itlb: ");
for (slot = 0; slot < 14; slot++) printk (" ");
printk ("%2x:%016lx,%016lx\n",
0,
spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
for (slot = 1; slot < 64; slot+=3) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
slot+1,
spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
slot+2,
spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
printk ("Contents of itlb0:\n");
for (slot = 0; slot < 16; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
slot+1,
cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
}
printk ("Contents of itlb2:\n");
for (slot = 0; slot < 128; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
slot+1,
cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
}
}
}
void sparc_ultra_dump_dtlb(void)
{
int slot;
if (tlb_type == spitfire) {
printk ("Contents of dtlb: ");
for (slot = 0; slot < 14; slot++) printk (" ");
printk ("%2x:%016lx,%016lx\n", 0,
spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
for (slot = 1; slot < 64; slot+=3) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
slot+1,
spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
slot+2,
spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
printk ("Contents of dtlb0:\n");
for (slot = 0; slot < 16; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
slot+1,
cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
}
printk ("Contents of dtlb2:\n");
for (slot = 0; slot < 512; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
slot+1,
cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
}
if (tlb_type == cheetah_plus) {
printk ("Contents of dtlb3:\n");
for (slot = 0; slot < 512; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
slot+1,
cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
}
}
}
}
extern unsigned long cmdline_memory_size;
unsigned long __init bootmem_init(unsigned long *pages_avail)
{
unsigned long bootmap_size, start_pfn, end_pfn;
unsigned long end_of_phys_memory = 0UL;
unsigned long bootmap_pfn, bytes_avail, size;
int i;
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("bootmem_init: Scan sp_banks, ");
#endif
bytes_avail = 0UL;
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
end_of_phys_memory = sp_banks[i].base_addr +
sp_banks[i].num_bytes;
bytes_avail += sp_banks[i].num_bytes;
if (cmdline_memory_size) {
if (bytes_avail > cmdline_memory_size) {
unsigned long slack = bytes_avail - cmdline_memory_size;
bytes_avail -= slack;
end_of_phys_memory -= slack;
sp_banks[i].num_bytes -= slack;
if (sp_banks[i].num_bytes == 0) {
sp_banks[i].base_addr = 0xdeadbeef;
} else {
sp_banks[i+1].num_bytes = 0;
sp_banks[i+1].base_addr = 0xdeadbeef;
}
break;
}
}
}
*pages_avail = bytes_avail >> PAGE_SHIFT;
/* Start with page aligned address of last symbol in kernel
* image. The kernel is hard mapped below PAGE_OFFSET in a
* 4MB locked TLB translation.
*/
start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
bootmap_pfn = start_pfn;
end_pfn = end_of_phys_memory >> PAGE_SHIFT;
#ifdef CONFIG_BLK_DEV_INITRD
/* Now have to check initial ramdisk, so that bootmap does not overwrite it */
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
unsigned long ramdisk_image = sparc_ramdisk_image ?
sparc_ramdisk_image : sparc_ramdisk_image64;
if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
ramdisk_image -= KERNBASE;
initrd_start = ramdisk_image + phys_base;
initrd_end = initrd_start + sparc_ramdisk_size;
if (initrd_end > end_of_phys_memory) {
printk(KERN_CRIT "initrd extends beyond end of memory "
"(0x%016lx > 0x%016lx)\ndisabling initrd\n",
initrd_end, end_of_phys_memory);
initrd_start = 0;
}
if (initrd_start) {
if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
}
}
#endif
/* Initialize the boot-time allocator. */
max_pfn = max_low_pfn = end_pfn;
min_low_pfn = pfn_base;
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
min_low_pfn, bootmap_pfn, max_low_pfn);
#endif
bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
bootmap_base = bootmap_pfn << PAGE_SHIFT;
/* Now register the available physical memory with the
* allocator.
*/
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("free_bootmem(sp_banks:%d): base[%lx] size[%lx]\n",
i, sp_banks[i].base_addr, sp_banks[i].num_bytes);
#endif
free_bootmem(sp_banks[i].base_addr, sp_banks[i].num_bytes);
}
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start) {
size = initrd_end - initrd_start;
/* Resert the initrd image area. */
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
initrd_start, initrd_end);
#endif
reserve_bootmem(initrd_start, size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
initrd_start += PAGE_OFFSET;
initrd_end += PAGE_OFFSET;
}
#endif
/* Reserve the kernel text/data/bss. */
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
#endif
reserve_bootmem(kern_base, kern_size);
*pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
/* Reserve the bootmem map. We do not account for it
* in pages_avail because we will release that memory
* in free_all_bootmem.
*/
size = bootmap_size;
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
(bootmap_pfn << PAGE_SHIFT), size);
#endif
reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
return end_pfn;
}
/* paging_init() sets up the page tables */
extern void cheetah_ecache_flush_init(void);
static unsigned long last_valid_pfn;
void __init paging_init(void)
{
extern pmd_t swapper_pmd_dir[1024];
extern unsigned int sparc64_vpte_patchme1[1];
extern unsigned int sparc64_vpte_patchme2[1];
unsigned long alias_base = kern_base + PAGE_OFFSET;
unsigned long second_alias_page = 0;
unsigned long pt, flags, end_pfn, pages_avail;
unsigned long shift = alias_base - ((unsigned long)KERNBASE);
unsigned long real_end;
set_bit(0, mmu_context_bmap);
real_end = (unsigned long)_end;
if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
bigkernel = 1;
#ifdef CONFIG_BLK_DEV_INITRD
if (sparc_ramdisk_image || sparc_ramdisk_image64)
real_end = (PAGE_ALIGN(real_end) + PAGE_ALIGN(sparc_ramdisk_size));
#endif
/* We assume physical memory starts at some 4mb multiple,
* if this were not true we wouldn't boot up to this point
* anyways.
*/
pt = kern_base | _PAGE_VALID | _PAGE_SZ4MB;
pt |= _PAGE_CP | _PAGE_CV | _PAGE_P | _PAGE_L | _PAGE_W;
local_irq_save(flags);
if (tlb_type == spitfire) {
__asm__ __volatile__(
" stxa %1, [%0] %3\n"
" stxa %2, [%5] %4\n"
" membar #Sync\n"
" flush %%g6\n"
" nop\n"
" nop\n"
" nop\n"
: /* No outputs */
: "r" (TLB_TAG_ACCESS), "r" (alias_base), "r" (pt),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" (61 << 3)
: "memory");
if (real_end >= KERNBASE + 0x340000) {
second_alias_page = alias_base + 0x400000;
__asm__ __volatile__(
" stxa %1, [%0] %3\n"
" stxa %2, [%5] %4\n"
" membar #Sync\n"
" flush %%g6\n"
" nop\n"
" nop\n"
" nop\n"
: /* No outputs */
: "r" (TLB_TAG_ACCESS), "r" (second_alias_page), "r" (pt + 0x400000),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" (60 << 3)
: "memory");
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
__asm__ __volatile__(
" stxa %1, [%0] %3\n"
" stxa %2, [%5] %4\n"
" membar #Sync\n"
" flush %%g6\n"
" nop\n"
" nop\n"
" nop\n"
: /* No outputs */
: "r" (TLB_TAG_ACCESS), "r" (alias_base), "r" (pt),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" ((0<<16) | (13<<3))
: "memory");
if (real_end >= KERNBASE + 0x340000) {
second_alias_page = alias_base + 0x400000;
__asm__ __volatile__(
" stxa %1, [%0] %3\n"
" stxa %2, [%5] %4\n"
" membar #Sync\n"
" flush %%g6\n"
" nop\n"
" nop\n"
" nop\n"
: /* No outputs */
: "r" (TLB_TAG_ACCESS), "r" (second_alias_page), "r" (pt + 0x400000),
"i" (ASI_DMMU), "i" (ASI_DTLB_DATA_ACCESS), "r" ((0<<16) | (12<<3))
: "memory");
}
}
local_irq_restore(flags);
/* Now set kernel pgd to upper alias so physical page computations
* work.
*/
init_mm.pgd += ((shift) / (sizeof(pgd_t)));
memset(swapper_pmd_dir, 0, sizeof(swapper_pmd_dir));
/* Now can init the kernel/bad page tables. */
pud_set(pud_offset(&swapper_pg_dir[0], 0),
swapper_pmd_dir + (shift / sizeof(pgd_t)));
sparc64_vpte_patchme1[0] |=
(((unsigned long)pgd_val(init_mm.pgd[0])) >> 10);
sparc64_vpte_patchme2[0] |=
(((unsigned long)pgd_val(init_mm.pgd[0])) & 0x3ff);
flushi((long)&sparc64_vpte_patchme1[0]);
/* Setup bootmem... */
pages_avail = 0;
last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
/* Inherit non-locked OBP mappings. */
inherit_prom_mappings();
/* Ok, we can use our TLB miss and window trap handlers safely.
* We need to do a quick peek here to see if we are on StarFire
* or not, so setup_tba can setup the IRQ globals correctly (it
* needs to get the hard smp processor id correctly).
*/
{
extern void setup_tba(int);
setup_tba(this_is_starfire);
}
inherit_locked_prom_mappings(1);
/* We only created DTLB mapping of this stuff. */
spitfire_flush_dtlb_nucleus_page(alias_base);
if (second_alias_page)
spitfire_flush_dtlb_nucleus_page(second_alias_page);
__flush_tlb_all();
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
unsigned long npages;
int znum;
for (znum = 0; znum < MAX_NR_ZONES; znum++)
zones_size[znum] = zholes_size[znum] = 0;
npages = end_pfn - pfn_base;
zones_size[ZONE_DMA] = npages;
zholes_size[ZONE_DMA] = npages - pages_avail;
free_area_init_node(0, &contig_page_data, zones_size,
phys_base >> PAGE_SHIFT, zholes_size);
}
device_scan();
}
/* Ok, it seems that the prom can allocate some more memory chunks
* as a side effect of some prom calls we perform during the
* boot sequence. My most likely theory is that it is from the
* prom_set_traptable() call, and OBP is allocating a scratchpad
* for saving client program register state etc.
*/
static void __init sort_memlist(struct linux_mlist_p1275 *thislist)
{
int swapi = 0;
int i, mitr;
unsigned long tmpaddr, tmpsize;
unsigned long lowest;
for (i = 0; thislist[i].theres_more != 0; i++) {
lowest = thislist[i].start_adr;
for (mitr = i+1; thislist[mitr-1].theres_more != 0; mitr++)
if (thislist[mitr].start_adr < lowest) {
lowest = thislist[mitr].start_adr;
swapi = mitr;
}
if (lowest == thislist[i].start_adr)
continue;
tmpaddr = thislist[swapi].start_adr;
tmpsize = thislist[swapi].num_bytes;
for (mitr = swapi; mitr > i; mitr--) {
thislist[mitr].start_adr = thislist[mitr-1].start_adr;
thislist[mitr].num_bytes = thislist[mitr-1].num_bytes;
}
thislist[i].start_adr = tmpaddr;
thislist[i].num_bytes = tmpsize;
}
}
void __init rescan_sp_banks(void)
{
struct linux_prom64_registers memlist[64];
struct linux_mlist_p1275 avail[64], *mlist;
unsigned long bytes, base_paddr;
int num_regs, node = prom_finddevice("/memory");
int i;
num_regs = prom_getproperty(node, "available",
(char *) memlist, sizeof(memlist));
num_regs = (num_regs / sizeof(struct linux_prom64_registers));
for (i = 0; i < num_regs; i++) {
avail[i].start_adr = memlist[i].phys_addr;
avail[i].num_bytes = memlist[i].reg_size;
avail[i].theres_more = &avail[i + 1];
}
avail[i - 1].theres_more = NULL;
sort_memlist(avail);
mlist = &avail[0];
i = 0;
bytes = mlist->num_bytes;
base_paddr = mlist->start_adr;
sp_banks[0].base_addr = base_paddr;
sp_banks[0].num_bytes = bytes;
while (mlist->theres_more != NULL){
i++;
mlist = mlist->theres_more;
bytes = mlist->num_bytes;
if (i >= SPARC_PHYS_BANKS-1) {
printk ("The machine has more banks than "
"this kernel can support\n"
"Increase the SPARC_PHYS_BANKS "
"setting (currently %d)\n",
SPARC_PHYS_BANKS);
i = SPARC_PHYS_BANKS-1;
break;
}
sp_banks[i].base_addr = mlist->start_adr;
sp_banks[i].num_bytes = mlist->num_bytes;
}
i++;
sp_banks[i].base_addr = 0xdeadbeefbeefdeadUL;
sp_banks[i].num_bytes = 0;
for (i = 0; sp_banks[i].num_bytes != 0; i++)
sp_banks[i].num_bytes &= PAGE_MASK;
}
static void __init taint_real_pages(void)
{
struct sparc_phys_banks saved_sp_banks[SPARC_PHYS_BANKS];
int i;
for (i = 0; i < SPARC_PHYS_BANKS; i++) {
saved_sp_banks[i].base_addr =
sp_banks[i].base_addr;
saved_sp_banks[i].num_bytes =
sp_banks[i].num_bytes;
}
rescan_sp_banks();
/* Find changes discovered in the sp_bank rescan and
* reserve the lost portions in the bootmem maps.
*/
for (i = 0; saved_sp_banks[i].num_bytes; i++) {
unsigned long old_start, old_end;
old_start = saved_sp_banks[i].base_addr;
old_end = old_start +
saved_sp_banks[i].num_bytes;
while (old_start < old_end) {
int n;
for (n = 0; sp_banks[n].num_bytes; n++) {
unsigned long new_start, new_end;
new_start = sp_banks[n].base_addr;
new_end = new_start + sp_banks[n].num_bytes;
if (new_start <= old_start &&
new_end >= (old_start + PAGE_SIZE)) {
set_bit (old_start >> 22,
sparc64_valid_addr_bitmap);
goto do_next_page;
}
}
reserve_bootmem(old_start, PAGE_SIZE);
do_next_page:
old_start += PAGE_SIZE;
}
}
}
void __init mem_init(void)
{
unsigned long codepages, datapages, initpages;
unsigned long addr, last;
int i;
i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
i += 1;
sparc64_valid_addr_bitmap = (unsigned long *)
__alloc_bootmem(i << 3, SMP_CACHE_BYTES, bootmap_base);
if (sparc64_valid_addr_bitmap == NULL) {
prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
prom_halt();
}
memset(sparc64_valid_addr_bitmap, 0, i << 3);
addr = PAGE_OFFSET + kern_base;
last = PAGE_ALIGN(kern_size) + addr;
while (addr < last) {
set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
addr += PAGE_SIZE;
}
taint_real_pages();
max_mapnr = last_valid_pfn - pfn_base;
high_memory = __va(last_valid_pfn << PAGE_SHIFT);
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("mem_init: Calling free_all_bootmem().\n");
#endif
totalram_pages = num_physpages = free_all_bootmem() - 1;
/*
* Set up the zero page, mark it reserved, so that page count
* is not manipulated when freeing the page from user ptes.
*/
mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
if (mem_map_zero == NULL) {
prom_printf("paging_init: Cannot alloc zero page.\n");
prom_halt();
}
SetPageReserved(mem_map_zero);
codepages = (((unsigned long) _etext) - ((unsigned long) _start));
codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
nr_free_pages() << (PAGE_SHIFT-10),
codepages << (PAGE_SHIFT-10),
datapages << (PAGE_SHIFT-10),
initpages << (PAGE_SHIFT-10),
PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_ecache_flush_init();
}
void free_initmem (void)
{
unsigned long addr, initend;
/*
* The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
*/
addr = PAGE_ALIGN((unsigned long)(__init_begin));
initend = (unsigned long)(__init_end) & PAGE_MASK;
for (; addr < initend; addr += PAGE_SIZE) {
unsigned long page;
struct page *p;
page = (addr +
((unsigned long) __va(kern_base)) -
((unsigned long) KERNBASE));
memset((void *)addr, 0xcc, PAGE_SIZE);
p = virt_to_page(page);
ClearPageReserved(p);
set_page_count(p, 1);
__free_page(p);
num_physpages++;
totalram_pages++;
}
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start < end)
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
struct page *p = virt_to_page(start);
ClearPageReserved(p);
set_page_count(p, 1);
__free_page(p);
num_physpages++;
totalram_pages++;
}
}
#endif