kernel-ark/arch/alpha/mm/numa.c
Dave Hansen 22a9835c35 [PATCH] unify PFN_* macros
Just about every architecture defines some macros to do operations on pfns.
 They're all virtually identical.  This patch consolidates all of them.

One minor glitch is that at least i386 uses them in a very skeletal header
file.  To keep away from #include dependency hell, I stuck the new
definitions in a new, isolated header.

Of all of the implementations, sh64 is the only one that varied by a bit.
It used some masks to ensure that any sign-extension got ripped away before
the arithmetic is done.  This has been posted to that sh64 maintainers and
the development list.

Compiles on x86, x86_64, ia64 and ppc64.

Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 08:44:48 -08:00

395 lines
11 KiB
C

/*
* linux/arch/alpha/mm/numa.c
*
* DISCONTIGMEM NUMA alpha support.
*
* Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
*/
#include <linux/config.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/swap.h>
#include <linux/initrd.h>
#include <linux/pfn.h>
#include <asm/hwrpb.h>
#include <asm/pgalloc.h>
pg_data_t node_data[MAX_NUMNODES];
bootmem_data_t node_bdata[MAX_NUMNODES];
#undef DEBUG_DISCONTIG
#ifdef DEBUG_DISCONTIG
#define DBGDCONT(args...) printk(args)
#else
#define DBGDCONT(args...)
#endif
#define for_each_mem_cluster(memdesc, cluster, i) \
for ((cluster) = (memdesc)->cluster, (i) = 0; \
(i) < (memdesc)->numclusters; (i)++, (cluster)++)
static void __init show_mem_layout(void)
{
struct memclust_struct * cluster;
struct memdesc_struct * memdesc;
int i;
/* Find free clusters, and init and free the bootmem accordingly. */
memdesc = (struct memdesc_struct *)
(hwrpb->mddt_offset + (unsigned long) hwrpb);
printk("Raw memory layout:\n");
for_each_mem_cluster(memdesc, cluster, i) {
printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
i, cluster->usage, cluster->start_pfn,
cluster->start_pfn + cluster->numpages);
}
}
static void __init
setup_memory_node(int nid, void *kernel_end)
{
extern unsigned long mem_size_limit;
struct memclust_struct * cluster;
struct memdesc_struct * memdesc;
unsigned long start_kernel_pfn, end_kernel_pfn;
unsigned long bootmap_size, bootmap_pages, bootmap_start;
unsigned long start, end;
unsigned long node_pfn_start, node_pfn_end;
unsigned long node_min_pfn, node_max_pfn;
int i;
unsigned long node_datasz = PFN_UP(sizeof(pg_data_t));
int show_init = 0;
/* Find the bounds of current node */
node_pfn_start = (node_mem_start(nid)) >> PAGE_SHIFT;
node_pfn_end = node_pfn_start + (node_mem_size(nid) >> PAGE_SHIFT);
/* Find free clusters, and init and free the bootmem accordingly. */
memdesc = (struct memdesc_struct *)
(hwrpb->mddt_offset + (unsigned long) hwrpb);
/* find the bounds of this node (node_min_pfn/node_max_pfn) */
node_min_pfn = ~0UL;
node_max_pfn = 0UL;
for_each_mem_cluster(memdesc, cluster, i) {
/* Bit 0 is console/PALcode reserved. Bit 1 is
non-volatile memory -- we might want to mark
this for later. */
if (cluster->usage & 3)
continue;
start = cluster->start_pfn;
end = start + cluster->numpages;
if (start >= node_pfn_end || end <= node_pfn_start)
continue;
if (!show_init) {
show_init = 1;
printk("Initializing bootmem allocator on Node ID %d\n", nid);
}
printk(" memcluster %2d, usage %1lx, start %8lu, end %8lu\n",
i, cluster->usage, cluster->start_pfn,
cluster->start_pfn + cluster->numpages);
if (start < node_pfn_start)
start = node_pfn_start;
if (end > node_pfn_end)
end = node_pfn_end;
if (start < node_min_pfn)
node_min_pfn = start;
if (end > node_max_pfn)
node_max_pfn = end;
}
if (mem_size_limit && node_max_pfn > mem_size_limit) {
static int msg_shown = 0;
if (!msg_shown) {
msg_shown = 1;
printk("setup: forcing memory size to %ldK (from %ldK).\n",
mem_size_limit << (PAGE_SHIFT - 10),
node_max_pfn << (PAGE_SHIFT - 10));
}
node_max_pfn = mem_size_limit;
}
if (node_min_pfn >= node_max_pfn)
return;
/* Update global {min,max}_low_pfn from node information. */
if (node_min_pfn < min_low_pfn)
min_low_pfn = node_min_pfn;
if (node_max_pfn > max_low_pfn)
max_pfn = max_low_pfn = node_max_pfn;
num_physpages += node_max_pfn - node_min_pfn;
#if 0 /* we'll try this one again in a little while */
/* Cute trick to make sure our local node data is on local memory */
node_data[nid] = (pg_data_t *)(__va(node_min_pfn << PAGE_SHIFT));
#endif
/* Quasi-mark the pg_data_t as in-use */
node_min_pfn += node_datasz;
if (node_min_pfn >= node_max_pfn) {
printk(" not enough mem to reserve NODE_DATA");
return;
}
NODE_DATA(nid)->bdata = &node_bdata[nid];
printk(" Detected node memory: start %8lu, end %8lu\n",
node_min_pfn, node_max_pfn);
DBGDCONT(" DISCONTIG: node_data[%d] is at 0x%p\n", nid, NODE_DATA(nid));
DBGDCONT(" DISCONTIG: NODE_DATA(%d)->bdata is at 0x%p\n", nid, NODE_DATA(nid)->bdata);
/* Find the bounds of kernel memory. */
start_kernel_pfn = PFN_DOWN(KERNEL_START_PHYS);
end_kernel_pfn = PFN_UP(virt_to_phys(kernel_end));
bootmap_start = -1;
if (!nid && (node_max_pfn < end_kernel_pfn || node_min_pfn > start_kernel_pfn))
panic("kernel loaded out of ram");
/* Zone start phys-addr must be 2^(MAX_ORDER-1) aligned.
Note that we round this down, not up - node memory
has much larger alignment than 8Mb, so it's safe. */
node_min_pfn &= ~((1UL << (MAX_ORDER-1))-1);
/* We need to know how many physically contiguous pages
we'll need for the bootmap. */
bootmap_pages = bootmem_bootmap_pages(node_max_pfn-node_min_pfn);
/* Now find a good region where to allocate the bootmap. */
for_each_mem_cluster(memdesc, cluster, i) {
if (cluster->usage & 3)
continue;
start = cluster->start_pfn;
end = start + cluster->numpages;
if (start >= node_max_pfn || end <= node_min_pfn)
continue;
if (end > node_max_pfn)
end = node_max_pfn;
if (start < node_min_pfn)
start = node_min_pfn;
if (start < start_kernel_pfn) {
if (end > end_kernel_pfn
&& end - end_kernel_pfn >= bootmap_pages) {
bootmap_start = end_kernel_pfn;
break;
} else if (end > start_kernel_pfn)
end = start_kernel_pfn;
} else if (start < end_kernel_pfn)
start = end_kernel_pfn;
if (end - start >= bootmap_pages) {
bootmap_start = start;
break;
}
}
if (bootmap_start == -1)
panic("couldn't find a contigous place for the bootmap");
/* Allocate the bootmap and mark the whole MM as reserved. */
bootmap_size = init_bootmem_node(NODE_DATA(nid), bootmap_start,
node_min_pfn, node_max_pfn);
DBGDCONT(" bootmap_start %lu, bootmap_size %lu, bootmap_pages %lu\n",
bootmap_start, bootmap_size, bootmap_pages);
/* Mark the free regions. */
for_each_mem_cluster(memdesc, cluster, i) {
if (cluster->usage & 3)
continue;
start = cluster->start_pfn;
end = cluster->start_pfn + cluster->numpages;
if (start >= node_max_pfn || end <= node_min_pfn)
continue;
if (end > node_max_pfn)
end = node_max_pfn;
if (start < node_min_pfn)
start = node_min_pfn;
if (start < start_kernel_pfn) {
if (end > end_kernel_pfn) {
free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start),
(PFN_PHYS(start_kernel_pfn)
- PFN_PHYS(start)));
printk(" freeing pages %ld:%ld\n",
start, start_kernel_pfn);
start = end_kernel_pfn;
} else if (end > start_kernel_pfn)
end = start_kernel_pfn;
} else if (start < end_kernel_pfn)
start = end_kernel_pfn;
if (start >= end)
continue;
free_bootmem_node(NODE_DATA(nid), PFN_PHYS(start), PFN_PHYS(end) - PFN_PHYS(start));
printk(" freeing pages %ld:%ld\n", start, end);
}
/* Reserve the bootmap memory. */
reserve_bootmem_node(NODE_DATA(nid), PFN_PHYS(bootmap_start), bootmap_size);
printk(" reserving pages %ld:%ld\n", bootmap_start, bootmap_start+PFN_UP(bootmap_size));
node_set_online(nid);
}
void __init
setup_memory(void *kernel_end)
{
int nid;
show_mem_layout();
nodes_clear(node_online_map);
min_low_pfn = ~0UL;
max_low_pfn = 0UL;
for (nid = 0; nid < MAX_NUMNODES; nid++)
setup_memory_node(nid, kernel_end);
#ifdef CONFIG_BLK_DEV_INITRD
initrd_start = INITRD_START;
if (initrd_start) {
extern void *move_initrd(unsigned long);
initrd_end = initrd_start+INITRD_SIZE;
printk("Initial ramdisk at: 0x%p (%lu bytes)\n",
(void *) initrd_start, INITRD_SIZE);
if ((void *)initrd_end > phys_to_virt(PFN_PHYS(max_low_pfn))) {
if (!move_initrd(PFN_PHYS(max_low_pfn)))
printk("initrd extends beyond end of memory "
"(0x%08lx > 0x%p)\ndisabling initrd\n",
initrd_end,
phys_to_virt(PFN_PHYS(max_low_pfn)));
} else {
nid = kvaddr_to_nid(initrd_start);
reserve_bootmem_node(NODE_DATA(nid),
virt_to_phys((void *)initrd_start),
INITRD_SIZE);
}
}
#endif /* CONFIG_BLK_DEV_INITRD */
}
void __init paging_init(void)
{
unsigned int nid;
unsigned long zones_size[MAX_NR_ZONES] = {0, };
unsigned long dma_local_pfn;
/*
* The old global MAX_DMA_ADDRESS per-arch API doesn't fit
* in the NUMA model, for now we convert it to a pfn and
* we interpret this pfn as a local per-node information.
* This issue isn't very important since none of these machines
* have legacy ISA slots anyways.
*/
dma_local_pfn = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
for_each_online_node(nid) {
unsigned long start_pfn = node_bdata[nid].node_boot_start >> PAGE_SHIFT;
unsigned long end_pfn = node_bdata[nid].node_low_pfn;
if (dma_local_pfn >= end_pfn - start_pfn)
zones_size[ZONE_DMA] = end_pfn - start_pfn;
else {
zones_size[ZONE_DMA] = dma_local_pfn;
zones_size[ZONE_NORMAL] = (end_pfn - start_pfn) - dma_local_pfn;
}
free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn, NULL);
}
/* Initialize the kernel's ZERO_PGE. */
memset((void *)ZERO_PGE, 0, PAGE_SIZE);
}
void __init mem_init(void)
{
unsigned long codesize, reservedpages, datasize, initsize, pfn;
extern int page_is_ram(unsigned long) __init;
extern char _text, _etext, _data, _edata;
extern char __init_begin, __init_end;
unsigned long nid, i;
high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
reservedpages = 0;
for_each_online_node(nid) {
/*
* This will free up the bootmem, ie, slot 0 memory
*/
totalram_pages += free_all_bootmem_node(NODE_DATA(nid));
pfn = NODE_DATA(nid)->node_start_pfn;
for (i = 0; i < node_spanned_pages(nid); i++, pfn++)
if (page_is_ram(pfn) &&
PageReserved(nid_page_nr(nid, i)))
reservedpages++;
}
codesize = (unsigned long) &_etext - (unsigned long) &_text;
datasize = (unsigned long) &_edata - (unsigned long) &_data;
initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
printk("Memory: %luk/%luk available (%luk kernel code, %luk reserved, "
"%luk data, %luk init)\n",
(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
num_physpages << (PAGE_SHIFT-10),
codesize >> 10,
reservedpages << (PAGE_SHIFT-10),
datasize >> 10,
initsize >> 10);
#if 0
mem_stress();
#endif
}
void
show_mem(void)
{
long i,free = 0,total = 0,reserved = 0;
long shared = 0, cached = 0;
int nid;
printk("\nMem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
for_each_online_node(nid) {
unsigned long flags;
pgdat_resize_lock(NODE_DATA(nid), &flags);
i = node_spanned_pages(nid);
while (i-- > 0) {
struct page *page = nid_page_nr(nid, i);
total++;
if (PageReserved(page))
reserved++;
else if (PageSwapCache(page))
cached++;
else if (!page_count(page))
free++;
else
shared += page_count(page) - 1;
}
pgdat_resize_unlock(NODE_DATA(nid), &flags);
}
printk("%ld pages of RAM\n",total);
printk("%ld free pages\n",free);
printk("%ld reserved pages\n",reserved);
printk("%ld pages shared\n",shared);
printk("%ld pages swap cached\n",cached);
}