kernel-ark/arch/powerpc/sysdev/commproc.c
Vitaly Bordug f2a0bd3753 [POWERPC] 8xx: powerpc port of core CPM PIC
This covers common CPM access functions, CPM interrupt controller code,
micropatch and a few compatibility things to kee the same driver base
working with arch/ppc. This version is refined with all the comments
(mostly PIC-related) addressed.

Signed-off-by: Vitaly Bordug <vbordug@ru.mvista.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2007-02-07 14:03:17 +11:00

399 lines
9.9 KiB
C

/*
* General Purpose functions for the global management of the
* Communication Processor Module.
* Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
*
* In addition to the individual control of the communication
* channels, there are a few functions that globally affect the
* communication processor.
*
* Buffer descriptors must be allocated from the dual ported memory
* space. The allocator for that is here. When the communication
* process is reset, we reclaim the memory available. There is
* currently no deallocator for this memory.
* The amount of space available is platform dependent. On the
* MBX, the EPPC software loads additional microcode into the
* communication processor, and uses some of the DP ram for this
* purpose. Current, the first 512 bytes and the last 256 bytes of
* memory are used. Right now I am conservative and only use the
* memory that can never be used for microcode. If there are
* applications that require more DP ram, we can expand the boundaries
* but then we have to be careful of any downloaded microcode.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/dma-mapping.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <asm/mpc8xx.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/8xx_immap.h>
#include <asm/commproc.h>
#include <asm/io.h>
#include <asm/tlbflush.h>
#include <asm/rheap.h>
#include <asm/prom.h>
#include <asm/fs_pd.h>
#define CPM_MAP_SIZE (0x4000)
static void m8xx_cpm_dpinit(void);
static uint host_buffer; /* One page of host buffer */
static uint host_end; /* end + 1 */
cpm8xx_t *cpmp; /* Pointer to comm processor space */
cpic8xx_t *cpic_reg;
static struct device_node *cpm_pic_node;
static struct irq_host *cpm_pic_host;
static void cpm_mask_irq(unsigned int irq)
{
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
}
static void cpm_unmask_irq(unsigned int irq)
{
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
}
static void cpm_end_irq(unsigned int irq)
{
unsigned int cpm_vec = (unsigned int)irq_map[irq].hwirq;
out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
}
static struct irq_chip cpm_pic = {
.typename = " CPM PIC ",
.mask = cpm_mask_irq,
.unmask = cpm_unmask_irq,
.eoi = cpm_end_irq,
};
int cpm_get_irq(void)
{
int cpm_vec;
/* Get the vector by setting the ACK bit and then reading
* the register.
*/
out_be16(&cpic_reg->cpic_civr, 1);
cpm_vec = in_be16(&cpic_reg->cpic_civr);
cpm_vec >>= 11;
return irq_linear_revmap(cpm_pic_host, cpm_vec);
}
static int cpm_pic_host_match(struct irq_host *h, struct device_node *node)
{
return cpm_pic_node == node;
}
static int cpm_pic_host_map(struct irq_host *h, unsigned int virq,
irq_hw_number_t hw)
{
pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
get_irq_desc(virq)->status |= IRQ_LEVEL;
set_irq_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
return 0;
}
/* The CPM can generate the error interrupt when there is a race condition
* between generating and masking interrupts. All we have to do is ACK it
* and return. This is a no-op function so we don't need any special
* tests in the interrupt handler.
*/
static irqreturn_t cpm_error_interrupt(int irq, void *dev)
{
return IRQ_HANDLED;
}
static struct irqaction cpm_error_irqaction = {
.handler = cpm_error_interrupt,
.mask = CPU_MASK_NONE,
.name = "error",
};
static struct irq_host_ops cpm_pic_host_ops = {
.match = cpm_pic_host_match,
.map = cpm_pic_host_map,
};
unsigned int cpm_pic_init(void)
{
struct device_node *np = NULL;
struct resource res;
unsigned int sirq = NO_IRQ, hwirq, eirq;
int ret;
pr_debug("cpm_pic_init\n");
np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
if (np == NULL) {
printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
return sirq;
}
ret = of_address_to_resource(np, 0, &res);
if (ret)
goto end;
cpic_reg = (void *)ioremap(res.start, res.end - res.start + 1);
if (cpic_reg == NULL)
goto end;
sirq = irq_of_parse_and_map(np, 0);
if (sirq == NO_IRQ)
goto end;
/* Initialize the CPM interrupt controller. */
hwirq = (unsigned int)irq_map[sirq].hwirq;
out_be32(&cpic_reg->cpic_cicr,
(CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
((hwirq/2) << 13) | CICR_HP_MASK);
out_be32(&cpic_reg->cpic_cimr, 0);
cpm_pic_node = of_node_get(np);
cpm_pic_host = irq_alloc_host(IRQ_HOST_MAP_LINEAR, 64, &cpm_pic_host_ops, 64);
if (cpm_pic_host == NULL) {
printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
sirq = NO_IRQ;
goto end;
}
of_node_put(np);
/* Install our own error handler. */
np = of_find_node_by_type(NULL, "cpm");
if (np == NULL) {
printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
goto end;
}
eirq= irq_of_parse_and_map(np, 0);
if (eirq == NO_IRQ)
goto end;
if (setup_irq(eirq, &cpm_error_irqaction))
printk(KERN_ERR "Could not allocate CPM error IRQ!");
setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
end:
of_node_put(np);
return sirq;
}
void cpm_reset(void)
{
cpm8xx_t *commproc;
sysconf8xx_t *siu_conf;
commproc = (cpm8xx_t *)ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE);
#ifdef CONFIG_UCODE_PATCH
/* Perform a reset.
*/
out_be16(&commproc->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
/* Wait for it.
*/
while (in_be16(&commproc->cp_cpcr) & CPM_CR_FLG);
cpm_load_patch(commproc);
#endif
/* Set SDMA Bus Request priority 5.
* On 860T, this also enables FEC priority 6. I am not sure
* this is what we realy want for some applications, but the
* manual recommends it.
* Bit 25, FAM can also be set to use FEC aggressive mode (860T).
*/
siu_conf = (sysconf8xx_t*)immr_map(im_siu_conf);
out_be32(&siu_conf->sc_sdcr, 1);
immr_unmap(siu_conf);
/* Reclaim the DP memory for our use. */
m8xx_cpm_dpinit();
/* Tell everyone where the comm processor resides.
*/
cpmp = commproc;
}
/* We used to do this earlier, but have to postpone as long as possible
* to ensure the kernel VM is now running.
*/
static void
alloc_host_memory(void)
{
dma_addr_t physaddr;
/* Set the host page for allocation.
*/
host_buffer = (uint)dma_alloc_coherent(NULL, PAGE_SIZE, &physaddr,
GFP_KERNEL);
host_end = host_buffer + PAGE_SIZE;
}
/* We also own one page of host buffer space for the allocation of
* UART "fifos" and the like.
*/
uint
m8xx_cpm_hostalloc(uint size)
{
uint retloc;
if (host_buffer == 0)
alloc_host_memory();
if ((host_buffer + size) >= host_end)
return(0);
retloc = host_buffer;
host_buffer += size;
return(retloc);
}
/* Set a baud rate generator. This needs lots of work. There are
* four BRGs, any of which can be wired to any channel.
* The internal baud rate clock is the system clock divided by 16.
* This assumes the baudrate is 16x oversampled by the uart.
*/
#define BRG_INT_CLK (get_brgfreq())
#define BRG_UART_CLK (BRG_INT_CLK/16)
#define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
void
cpm_setbrg(uint brg, uint rate)
{
volatile uint *bp;
/* This is good enough to get SMCs running.....
*/
bp = (uint *)&cpmp->cp_brgc1;
bp += brg;
/* The BRG has a 12-bit counter. For really slow baud rates (or
* really fast processors), we may have to further divide by 16.
*/
if (((BRG_UART_CLK / rate) - 1) < 4096)
*bp = (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN;
else
*bp = (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
CPM_BRG_EN | CPM_BRG_DIV16;
}
/*
* dpalloc / dpfree bits.
*/
static spinlock_t cpm_dpmem_lock;
/*
* 16 blocks should be enough to satisfy all requests
* until the memory subsystem goes up...
*/
static rh_block_t cpm_boot_dpmem_rh_block[16];
static rh_info_t cpm_dpmem_info;
#define CPM_DPMEM_ALIGNMENT 8
static u8* dpram_vbase;
static uint dpram_pbase;
void m8xx_cpm_dpinit(void)
{
spin_lock_init(&cpm_dpmem_lock);
dpram_vbase = immr_map_size(im_cpm.cp_dpmem, CPM_DATAONLY_BASE + CPM_DATAONLY_SIZE);
dpram_pbase = (uint)&((immap_t *)IMAP_ADDR)->im_cpm.cp_dpmem;
/* Initialize the info header */
rh_init(&cpm_dpmem_info, CPM_DPMEM_ALIGNMENT,
sizeof(cpm_boot_dpmem_rh_block) /
sizeof(cpm_boot_dpmem_rh_block[0]),
cpm_boot_dpmem_rh_block);
/*
* Attach the usable dpmem area.
* XXX: This is actually crap. CPM_DATAONLY_BASE and
* CPM_DATAONLY_SIZE are a subset of the available dparm. It varies
* with the processor and the microcode patches applied / activated.
* But the following should be at least safe.
*/
rh_attach_region(&cpm_dpmem_info, (void *)CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
}
/*
* Allocate the requested size worth of DP memory.
* This function returns an offset into the DPRAM area.
* Use cpm_dpram_addr() to get the virtual address of the area.
*/
uint cpm_dpalloc(uint size, uint align)
{
void *start;
unsigned long flags;
spin_lock_irqsave(&cpm_dpmem_lock, flags);
cpm_dpmem_info.alignment = align;
start = rh_alloc(&cpm_dpmem_info, size, "commproc");
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
return (uint)start;
}
EXPORT_SYMBOL(cpm_dpalloc);
int cpm_dpfree(uint offset)
{
int ret;
unsigned long flags;
spin_lock_irqsave(&cpm_dpmem_lock, flags);
ret = rh_free(&cpm_dpmem_info, (void *)offset);
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
return ret;
}
EXPORT_SYMBOL(cpm_dpfree);
uint cpm_dpalloc_fixed(uint offset, uint size, uint align)
{
void *start;
unsigned long flags;
spin_lock_irqsave(&cpm_dpmem_lock, flags);
cpm_dpmem_info.alignment = align;
start = rh_alloc_fixed(&cpm_dpmem_info, (void *)offset, size, "commproc");
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
return (uint)start;
}
EXPORT_SYMBOL(cpm_dpalloc_fixed);
void cpm_dpdump(void)
{
rh_dump(&cpm_dpmem_info);
}
EXPORT_SYMBOL(cpm_dpdump);
void *cpm_dpram_addr(uint offset)
{
return (void *)(dpram_vbase + offset);
}
EXPORT_SYMBOL(cpm_dpram_addr);
uint cpm_dpram_phys(u8* addr)
{
return (dpram_pbase + (uint)(addr - dpram_vbase));
}
EXPORT_SYMBOL(cpm_dpram_addr);