kernel-ark/drivers/crypto/nx/nx.c
Marcelo Cerri a8fc391a15 crypto: nx - add offset to nx_build_sg_lists()
This patch includes one more parameter to nx_build_sg_lists() to skip
the given number of bytes from beginning of each sg list.

This is needed in order to implement the fixes for the AES modes to make
them able to process larger chunks of data.

Reviewed-by: Joy Latten <jmlatten@linux.vnet.ibm.com>
Signed-off-by: Marcelo Cerri <mhcerri@linux.vnet.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2013-09-02 20:32:52 +10:00

711 lines
19 KiB
C

/**
* Routines supporting the Power 7+ Nest Accelerators driver
*
* Copyright (C) 2011-2012 International Business Machines Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 only.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Author: Kent Yoder <yoder1@us.ibm.com>
*/
#include <crypto/internal/hash.h>
#include <crypto/hash.h>
#include <crypto/aes.h>
#include <crypto/sha.h>
#include <crypto/algapi.h>
#include <crypto/scatterwalk.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include <linux/device.h>
#include <linux/of.h>
#include <asm/hvcall.h>
#include <asm/vio.h>
#include "nx_csbcpb.h"
#include "nx.h"
/**
* nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
*
* @nx_ctx: the crypto context handle
* @op: PFO operation struct to pass in
* @may_sleep: flag indicating the request can sleep
*
* Make the hcall, retrying while the hardware is busy. If we cannot yield
* the thread, limit the number of retries to 10 here.
*/
int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
struct vio_pfo_op *op,
u32 may_sleep)
{
int rc, retries = 10;
struct vio_dev *viodev = nx_driver.viodev;
atomic_inc(&(nx_ctx->stats->sync_ops));
do {
rc = vio_h_cop_sync(viodev, op);
} while (rc == -EBUSY && !may_sleep && retries--);
if (rc) {
dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
"hcall rc: %ld\n", rc, op->hcall_err);
atomic_inc(&(nx_ctx->stats->errors));
atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
}
return rc;
}
/**
* nx_build_sg_list - build an NX scatter list describing a single buffer
*
* @sg_head: pointer to the first scatter list element to build
* @start_addr: pointer to the linear buffer
* @len: length of the data at @start_addr
* @sgmax: the largest number of scatter list elements we're allowed to create
*
* This function will start writing nx_sg elements at @sg_head and keep
* writing them until all of the data from @start_addr is described or
* until sgmax elements have been written. Scatter list elements will be
* created such that none of the elements describes a buffer that crosses a 4K
* boundary.
*/
struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
u8 *start_addr,
unsigned int len,
u32 sgmax)
{
unsigned int sg_len = 0;
struct nx_sg *sg;
u64 sg_addr = (u64)start_addr;
u64 end_addr;
/* determine the start and end for this address range - slightly
* different if this is in VMALLOC_REGION */
if (is_vmalloc_addr(start_addr))
sg_addr = page_to_phys(vmalloc_to_page(start_addr))
+ offset_in_page(sg_addr);
else
sg_addr = __pa(sg_addr);
end_addr = sg_addr + len;
/* each iteration will write one struct nx_sg element and add the
* length of data described by that element to sg_len. Once @len bytes
* have been described (or @sgmax elements have been written), the
* loop ends. min_t is used to ensure @end_addr falls on the same page
* as sg_addr, if not, we need to create another nx_sg element for the
* data on the next page.
*
* Also when using vmalloc'ed data, every time that a system page
* boundary is crossed the physical address needs to be re-calculated.
*/
for (sg = sg_head; sg_len < len; sg++) {
u64 next_page;
sg->addr = sg_addr;
sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
end_addr);
next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
sg_len += sg->len;
if (sg_addr >= next_page &&
is_vmalloc_addr(start_addr + sg_len)) {
sg_addr = page_to_phys(vmalloc_to_page(
start_addr + sg_len));
end_addr = sg_addr + len - sg_len;
}
if ((sg - sg_head) == sgmax) {
pr_err("nx: scatter/gather list overflow, pid: %d\n",
current->pid);
return NULL;
}
}
/* return the moved sg_head pointer */
return sg;
}
/**
* nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
*
* @nx_dst: pointer to the first nx_sg element to write
* @sglen: max number of nx_sg entries we're allowed to write
* @sg_src: pointer to the source linux scatterlist to walk
* @start: number of bytes to fast-forward past at the beginning of @sg_src
* @src_len: number of bytes to walk in @sg_src
*/
struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst,
unsigned int sglen,
struct scatterlist *sg_src,
unsigned int start,
unsigned int src_len)
{
struct scatter_walk walk;
struct nx_sg *nx_sg = nx_dst;
unsigned int n, offset = 0, len = src_len;
char *dst;
/* we need to fast forward through @start bytes first */
for (;;) {
scatterwalk_start(&walk, sg_src);
if (start < offset + sg_src->length)
break;
offset += sg_src->length;
sg_src = scatterwalk_sg_next(sg_src);
}
/* start - offset is the number of bytes to advance in the scatterlist
* element we're currently looking at */
scatterwalk_advance(&walk, start - offset);
while (len && nx_sg) {
n = scatterwalk_clamp(&walk, len);
if (!n) {
scatterwalk_start(&walk, sg_next(walk.sg));
n = scatterwalk_clamp(&walk, len);
}
dst = scatterwalk_map(&walk);
nx_sg = nx_build_sg_list(nx_sg, dst, n, sglen);
len -= n;
scatterwalk_unmap(dst);
scatterwalk_advance(&walk, n);
scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
}
/* return the moved destination pointer */
return nx_sg;
}
/**
* nx_build_sg_lists - walk the input scatterlists and build arrays of NX
* scatterlists based on them.
*
* @nx_ctx: NX crypto context for the lists we're building
* @desc: the block cipher descriptor for the operation
* @dst: destination scatterlist
* @src: source scatterlist
* @nbytes: length of data described in the scatterlists
* @offset: number of bytes to fast-forward past at the beginning of
* scatterlists.
* @iv: destination for the iv data, if the algorithm requires it
*
* This is common code shared by all the AES algorithms. It uses the block
* cipher walk routines to traverse input and output scatterlists, building
* corresponding NX scatterlists
*/
int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx,
struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src,
unsigned int nbytes,
unsigned int offset,
u8 *iv)
{
struct nx_sg *nx_insg = nx_ctx->in_sg;
struct nx_sg *nx_outsg = nx_ctx->out_sg;
if (iv)
memcpy(iv, desc->info, AES_BLOCK_SIZE);
nx_insg = nx_walk_and_build(nx_insg, nx_ctx->ap->sglen, src,
offset, nbytes);
nx_outsg = nx_walk_and_build(nx_outsg, nx_ctx->ap->sglen, dst,
offset, nbytes);
/* these lengths should be negative, which will indicate to phyp that
* the input and output parameters are scatterlists, not linear
* buffers */
nx_ctx->op.inlen = (nx_ctx->in_sg - nx_insg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - nx_outsg) * sizeof(struct nx_sg);
return 0;
}
/**
* nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
*
* @nx_ctx: the nx context to initialize
* @function: the function code for the op
*/
void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
{
spin_lock_init(&nx_ctx->lock);
memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
nx_ctx->op.flags = function;
nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
nx_ctx->op.in = __pa(nx_ctx->in_sg);
nx_ctx->op.out = __pa(nx_ctx->out_sg);
if (nx_ctx->csbcpb_aead) {
nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
nx_ctx->op_aead.flags = function;
nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
}
}
static void nx_of_update_status(struct device *dev,
struct property *p,
struct nx_of *props)
{
if (!strncmp(p->value, "okay", p->length)) {
props->status = NX_WAITING;
props->flags |= NX_OF_FLAG_STATUS_SET;
} else {
dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
(char *)p->value);
}
}
static void nx_of_update_sglen(struct device *dev,
struct property *p,
struct nx_of *props)
{
if (p->length != sizeof(props->max_sg_len)) {
dev_err(dev, "%s: unexpected format for "
"ibm,max-sg-len property\n", __func__);
dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
"long, expected %zd bytes\n", __func__,
p->length, sizeof(props->max_sg_len));
return;
}
props->max_sg_len = *(u32 *)p->value;
props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
}
static void nx_of_update_msc(struct device *dev,
struct property *p,
struct nx_of *props)
{
struct msc_triplet *trip;
struct max_sync_cop *msc;
unsigned int bytes_so_far, i, lenp;
msc = (struct max_sync_cop *)p->value;
lenp = p->length;
/* You can't tell if the data read in for this property is sane by its
* size alone. This is because there are sizes embedded in the data
* structure. The best we can do is check lengths as we parse and bail
* as soon as a length error is detected. */
bytes_so_far = 0;
while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
bytes_so_far += sizeof(struct max_sync_cop);
trip = msc->trip;
for (i = 0;
((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
i < msc->triplets;
i++) {
if (msc->fc > NX_MAX_FC || msc->mode > NX_MAX_MODE) {
dev_err(dev, "unknown function code/mode "
"combo: %d/%d (ignored)\n", msc->fc,
msc->mode);
goto next_loop;
}
switch (trip->keybitlen) {
case 128:
case 160:
props->ap[msc->fc][msc->mode][0].databytelen =
trip->databytelen;
props->ap[msc->fc][msc->mode][0].sglen =
trip->sglen;
break;
case 192:
props->ap[msc->fc][msc->mode][1].databytelen =
trip->databytelen;
props->ap[msc->fc][msc->mode][1].sglen =
trip->sglen;
break;
case 256:
if (msc->fc == NX_FC_AES) {
props->ap[msc->fc][msc->mode][2].
databytelen = trip->databytelen;
props->ap[msc->fc][msc->mode][2].sglen =
trip->sglen;
} else if (msc->fc == NX_FC_AES_HMAC ||
msc->fc == NX_FC_SHA) {
props->ap[msc->fc][msc->mode][1].
databytelen = trip->databytelen;
props->ap[msc->fc][msc->mode][1].sglen =
trip->sglen;
} else {
dev_warn(dev, "unknown function "
"code/key bit len combo"
": (%u/256)\n", msc->fc);
}
break;
case 512:
props->ap[msc->fc][msc->mode][2].databytelen =
trip->databytelen;
props->ap[msc->fc][msc->mode][2].sglen =
trip->sglen;
break;
default:
dev_warn(dev, "unknown function code/key bit "
"len combo: (%u/%u)\n", msc->fc,
trip->keybitlen);
break;
}
next_loop:
bytes_so_far += sizeof(struct msc_triplet);
trip++;
}
msc = (struct max_sync_cop *)trip;
}
props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
}
/**
* nx_of_init - read openFirmware values from the device tree
*
* @dev: device handle
* @props: pointer to struct to hold the properties values
*
* Called once at driver probe time, this function will read out the
* openFirmware properties we use at runtime. If all the OF properties are
* acceptable, when we exit this function props->flags will indicate that
* we're ready to register our crypto algorithms.
*/
static void nx_of_init(struct device *dev, struct nx_of *props)
{
struct device_node *base_node = dev->of_node;
struct property *p;
p = of_find_property(base_node, "status", NULL);
if (!p)
dev_info(dev, "%s: property 'status' not found\n", __func__);
else
nx_of_update_status(dev, p, props);
p = of_find_property(base_node, "ibm,max-sg-len", NULL);
if (!p)
dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
__func__);
else
nx_of_update_sglen(dev, p, props);
p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
if (!p)
dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
__func__);
else
nx_of_update_msc(dev, p, props);
}
/**
* nx_register_algs - register algorithms with the crypto API
*
* Called from nx_probe()
*
* If all OF properties are in an acceptable state, the driver flags will
* indicate that we're ready and we'll create our debugfs files and register
* out crypto algorithms.
*/
static int nx_register_algs(void)
{
int rc = -1;
if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
goto out;
memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
rc = NX_DEBUGFS_INIT(&nx_driver);
if (rc)
goto out;
nx_driver.of.status = NX_OKAY;
rc = crypto_register_alg(&nx_ecb_aes_alg);
if (rc)
goto out;
rc = crypto_register_alg(&nx_cbc_aes_alg);
if (rc)
goto out_unreg_ecb;
rc = crypto_register_alg(&nx_ctr_aes_alg);
if (rc)
goto out_unreg_cbc;
rc = crypto_register_alg(&nx_ctr3686_aes_alg);
if (rc)
goto out_unreg_ctr;
rc = crypto_register_alg(&nx_gcm_aes_alg);
if (rc)
goto out_unreg_ctr3686;
rc = crypto_register_alg(&nx_gcm4106_aes_alg);
if (rc)
goto out_unreg_gcm;
rc = crypto_register_alg(&nx_ccm_aes_alg);
if (rc)
goto out_unreg_gcm4106;
rc = crypto_register_alg(&nx_ccm4309_aes_alg);
if (rc)
goto out_unreg_ccm;
rc = crypto_register_shash(&nx_shash_sha256_alg);
if (rc)
goto out_unreg_ccm4309;
rc = crypto_register_shash(&nx_shash_sha512_alg);
if (rc)
goto out_unreg_s256;
rc = crypto_register_shash(&nx_shash_aes_xcbc_alg);
if (rc)
goto out_unreg_s512;
goto out;
out_unreg_s512:
crypto_unregister_shash(&nx_shash_sha512_alg);
out_unreg_s256:
crypto_unregister_shash(&nx_shash_sha256_alg);
out_unreg_ccm4309:
crypto_unregister_alg(&nx_ccm4309_aes_alg);
out_unreg_ccm:
crypto_unregister_alg(&nx_ccm_aes_alg);
out_unreg_gcm4106:
crypto_unregister_alg(&nx_gcm4106_aes_alg);
out_unreg_gcm:
crypto_unregister_alg(&nx_gcm_aes_alg);
out_unreg_ctr3686:
crypto_unregister_alg(&nx_ctr3686_aes_alg);
out_unreg_ctr:
crypto_unregister_alg(&nx_ctr_aes_alg);
out_unreg_cbc:
crypto_unregister_alg(&nx_cbc_aes_alg);
out_unreg_ecb:
crypto_unregister_alg(&nx_ecb_aes_alg);
out:
return rc;
}
/**
* nx_crypto_ctx_init - create and initialize a crypto api context
*
* @nx_ctx: the crypto api context
* @fc: function code for the context
* @mode: the function code specific mode for this context
*/
static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
{
if (nx_driver.of.status != NX_OKAY) {
pr_err("Attempt to initialize NX crypto context while device "
"is not available!\n");
return -ENODEV;
}
/* we need an extra page for csbcpb_aead for these modes */
if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
sizeof(struct nx_csbcpb);
else
nx_ctx->kmem_len = (3 * NX_PAGE_SIZE) +
sizeof(struct nx_csbcpb);
nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
if (!nx_ctx->kmem)
return -ENOMEM;
/* the csbcpb and scatterlists must be 4K aligned pages */
nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
(u64)NX_PAGE_SIZE));
nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
nx_ctx->csbcpb_aead =
(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
NX_PAGE_SIZE);
/* give each context a pointer to global stats and their OF
* properties */
nx_ctx->stats = &nx_driver.stats;
memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
sizeof(struct alg_props) * 3);
return 0;
}
/* entry points from the crypto tfm initializers */
int nx_crypto_ctx_aes_ccm_init(struct crypto_tfm *tfm)
{
return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
NX_MODE_AES_CCM);
}
int nx_crypto_ctx_aes_gcm_init(struct crypto_tfm *tfm)
{
return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
NX_MODE_AES_GCM);
}
int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
{
return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
NX_MODE_AES_CTR);
}
int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
{
return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
NX_MODE_AES_CBC);
}
int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
{
return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
NX_MODE_AES_ECB);
}
int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
{
return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
}
int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
{
return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
NX_MODE_AES_XCBC_MAC);
}
/**
* nx_crypto_ctx_exit - destroy a crypto api context
*
* @tfm: the crypto transform pointer for the context
*
* As crypto API contexts are destroyed, this exit hook is called to free the
* memory associated with it.
*/
void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
{
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
kzfree(nx_ctx->kmem);
nx_ctx->csbcpb = NULL;
nx_ctx->csbcpb_aead = NULL;
nx_ctx->in_sg = NULL;
nx_ctx->out_sg = NULL;
}
static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
{
dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
viodev->name, viodev->resource_id);
if (nx_driver.viodev) {
dev_err(&viodev->dev, "%s: Attempt to register more than one "
"instance of the hardware\n", __func__);
return -EINVAL;
}
nx_driver.viodev = viodev;
nx_of_init(&viodev->dev, &nx_driver.of);
return nx_register_algs();
}
static int nx_remove(struct vio_dev *viodev)
{
dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
viodev->unit_address);
if (nx_driver.of.status == NX_OKAY) {
NX_DEBUGFS_FINI(&nx_driver);
crypto_unregister_alg(&nx_ccm_aes_alg);
crypto_unregister_alg(&nx_ccm4309_aes_alg);
crypto_unregister_alg(&nx_gcm_aes_alg);
crypto_unregister_alg(&nx_gcm4106_aes_alg);
crypto_unregister_alg(&nx_ctr_aes_alg);
crypto_unregister_alg(&nx_ctr3686_aes_alg);
crypto_unregister_alg(&nx_cbc_aes_alg);
crypto_unregister_alg(&nx_ecb_aes_alg);
crypto_unregister_shash(&nx_shash_sha256_alg);
crypto_unregister_shash(&nx_shash_sha512_alg);
crypto_unregister_shash(&nx_shash_aes_xcbc_alg);
}
return 0;
}
/* module wide initialization/cleanup */
static int __init nx_init(void)
{
return vio_register_driver(&nx_driver.viodriver);
}
static void __exit nx_fini(void)
{
vio_unregister_driver(&nx_driver.viodriver);
}
static struct vio_device_id nx_crypto_driver_ids[] = {
{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
{ "", "" }
};
MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
/* driver state structure */
struct nx_crypto_driver nx_driver = {
.viodriver = {
.id_table = nx_crypto_driver_ids,
.probe = nx_probe,
.remove = nx_remove,
.name = NX_NAME,
},
};
module_init(nx_init);
module_exit(nx_fini);
MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
MODULE_DESCRIPTION(NX_STRING);
MODULE_LICENSE("GPL");
MODULE_VERSION(NX_VERSION);