kernel-ark/drivers/mtd/chips/jedec_probe.c
Eric W. Biederman 467622ef2a [MTD] [NOR] Fix cfi_send_gen_cmd handling of x16 devices in x8 mode (v4)
For "unlock" cycles to 16bit devices in 8bit compatibility mode we need
to use the byte addresses 0xaaa and 0x555. These effectively match
the word address 0x555 and 0x2aa, except the latter has its low bit set.

Most chips don't care about the value of the 'A-1' pin in x8 mode,
but some -- like the ST M29W320D -- do. So we need to be careful to
set it where appropriate.

cfi_send_gen_cmd is only ever passed addresses where the low byte
is 0x00, 0x55 or 0xaa. Of those, only addresses ending 0xaa are
affected by this patch, by masking in the extra low bit when the device
is known to be in compatibility mode.

[dwmw2: Do it only when (cmd_ofs & 0xff) == 0xaa]
v4: Fix  stupid typo in cfi_build_cmd_addr that failed to compile
    I'm writing this patch way to late at night.
v3: Bring all of the work back into cfi_build_cmd_addr
    including calling of map_bankwidth(map) and cfi_interleave(cfi)
    So every caller doesn't need to.
v2: Only modified the address if we our device_type is larger than our
    bus width.

Cc: stable@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2008-11-05 14:40:25 +01:00

2210 lines
56 KiB
C

/*
Common Flash Interface probe code.
(C) 2000 Red Hat. GPL'd.
See JEDEC (http://www.jedec.org/) standard JESD21C (section 3.5)
for the standard this probe goes back to.
Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <asm/io.h>
#include <asm/byteorder.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/map.h>
#include <linux/mtd/cfi.h>
#include <linux/mtd/gen_probe.h>
/* Manufacturers */
#define MANUFACTURER_AMD 0x0001
#define MANUFACTURER_ATMEL 0x001f
#define MANUFACTURER_EON 0x001c
#define MANUFACTURER_FUJITSU 0x0004
#define MANUFACTURER_HYUNDAI 0x00AD
#define MANUFACTURER_INTEL 0x0089
#define MANUFACTURER_MACRONIX 0x00C2
#define MANUFACTURER_NEC 0x0010
#define MANUFACTURER_PMC 0x009D
#define MANUFACTURER_SHARP 0x00b0
#define MANUFACTURER_SST 0x00BF
#define MANUFACTURER_ST 0x0020
#define MANUFACTURER_TOSHIBA 0x0098
#define MANUFACTURER_WINBOND 0x00da
#define CONTINUATION_CODE 0x007f
/* AMD */
#define AM29DL800BB 0x22CB
#define AM29DL800BT 0x224A
#define AM29F800BB 0x2258
#define AM29F800BT 0x22D6
#define AM29LV400BB 0x22BA
#define AM29LV400BT 0x22B9
#define AM29LV800BB 0x225B
#define AM29LV800BT 0x22DA
#define AM29LV160DT 0x22C4
#define AM29LV160DB 0x2249
#define AM29F017D 0x003D
#define AM29F016D 0x00AD
#define AM29F080 0x00D5
#define AM29F040 0x00A4
#define AM29LV040B 0x004F
#define AM29F032B 0x0041
#define AM29F002T 0x00B0
#define AM29SL800DB 0x226B
#define AM29SL800DT 0x22EA
/* Atmel */
#define AT49BV512 0x0003
#define AT29LV512 0x003d
#define AT49BV16X 0x00C0
#define AT49BV16XT 0x00C2
#define AT49BV32X 0x00C8
#define AT49BV32XT 0x00C9
/* Eon */
#define EN29SL800BB 0x226B
#define EN29SL800BT 0x22EA
/* Fujitsu */
#define MBM29F040C 0x00A4
#define MBM29F800BA 0x2258
#define MBM29LV650UE 0x22D7
#define MBM29LV320TE 0x22F6
#define MBM29LV320BE 0x22F9
#define MBM29LV160TE 0x22C4
#define MBM29LV160BE 0x2249
#define MBM29LV800BA 0x225B
#define MBM29LV800TA 0x22DA
#define MBM29LV400TC 0x22B9
#define MBM29LV400BC 0x22BA
/* Hyundai */
#define HY29F002T 0x00B0
/* Intel */
#define I28F004B3T 0x00d4
#define I28F004B3B 0x00d5
#define I28F400B3T 0x8894
#define I28F400B3B 0x8895
#define I28F008S5 0x00a6
#define I28F016S5 0x00a0
#define I28F008SA 0x00a2
#define I28F008B3T 0x00d2
#define I28F008B3B 0x00d3
#define I28F800B3T 0x8892
#define I28F800B3B 0x8893
#define I28F016S3 0x00aa
#define I28F016B3T 0x00d0
#define I28F016B3B 0x00d1
#define I28F160B3T 0x8890
#define I28F160B3B 0x8891
#define I28F320B3T 0x8896
#define I28F320B3B 0x8897
#define I28F640B3T 0x8898
#define I28F640B3B 0x8899
#define I82802AB 0x00ad
#define I82802AC 0x00ac
/* Macronix */
#define MX29LV040C 0x004F
#define MX29LV160T 0x22C4
#define MX29LV160B 0x2249
#define MX29F040 0x00A4
#define MX29F016 0x00AD
#define MX29F002T 0x00B0
#define MX29F004T 0x0045
#define MX29F004B 0x0046
/* NEC */
#define UPD29F064115 0x221C
/* PMC */
#define PM49FL002 0x006D
#define PM49FL004 0x006E
#define PM49FL008 0x006A
/* Sharp */
#define LH28F640BF 0x00b0
/* ST - www.st.com */
#define M29F800AB 0x0058
#define M29W800DT 0x00D7
#define M29W800DB 0x005B
#define M29W400DT 0x00EE
#define M29W400DB 0x00EF
#define M29W160DT 0x22C4
#define M29W160DB 0x2249
#define M29W040B 0x00E3
#define M50FW040 0x002C
#define M50FW080 0x002D
#define M50FW016 0x002E
#define M50LPW080 0x002F
#define M50FLW080A 0x0080
#define M50FLW080B 0x0081
/* SST */
#define SST29EE020 0x0010
#define SST29LE020 0x0012
#define SST29EE512 0x005d
#define SST29LE512 0x003d
#define SST39LF800 0x2781
#define SST39LF160 0x2782
#define SST39VF1601 0x234b
#define SST39LF512 0x00D4
#define SST39LF010 0x00D5
#define SST39LF020 0x00D6
#define SST39LF040 0x00D7
#define SST39SF010A 0x00B5
#define SST39SF020A 0x00B6
#define SST49LF004B 0x0060
#define SST49LF040B 0x0050
#define SST49LF008A 0x005a
#define SST49LF030A 0x001C
#define SST49LF040A 0x0051
#define SST49LF080A 0x005B
#define SST36VF3203 0x7354
/* Toshiba */
#define TC58FVT160 0x00C2
#define TC58FVB160 0x0043
#define TC58FVT321 0x009A
#define TC58FVB321 0x009C
#define TC58FVT641 0x0093
#define TC58FVB641 0x0095
/* Winbond */
#define W49V002A 0x00b0
/*
* Unlock address sets for AMD command sets.
* Intel command sets use the MTD_UADDR_UNNECESSARY.
* Each identifier, except MTD_UADDR_UNNECESSARY, and
* MTD_UADDR_NO_SUPPORT must be defined below in unlock_addrs[].
* MTD_UADDR_NOT_SUPPORTED must be 0 so that structure
* initialization need not require initializing all of the
* unlock addresses for all bit widths.
*/
enum uaddr {
MTD_UADDR_NOT_SUPPORTED = 0, /* data width not supported */
MTD_UADDR_0x0555_0x02AA,
MTD_UADDR_0x0555_0x0AAA,
MTD_UADDR_0x5555_0x2AAA,
MTD_UADDR_0x0AAA_0x0555,
MTD_UADDR_0xAAAA_0x5555,
MTD_UADDR_DONT_CARE, /* Requires an arbitrary address */
MTD_UADDR_UNNECESSARY, /* Does not require any address */
};
struct unlock_addr {
uint32_t addr1;
uint32_t addr2;
};
/*
* I don't like the fact that the first entry in unlock_addrs[]
* exists, but is for MTD_UADDR_NOT_SUPPORTED - and, therefore,
* should not be used. The problem is that structures with
* initializers have extra fields initialized to 0. It is _very_
* desireable to have the unlock address entries for unsupported
* data widths automatically initialized - that means that
* MTD_UADDR_NOT_SUPPORTED must be 0 and the first entry here
* must go unused.
*/
static const struct unlock_addr unlock_addrs[] = {
[MTD_UADDR_NOT_SUPPORTED] = {
.addr1 = 0xffff,
.addr2 = 0xffff
},
[MTD_UADDR_0x0555_0x02AA] = {
.addr1 = 0x0555,
.addr2 = 0x02aa
},
[MTD_UADDR_0x0555_0x0AAA] = {
.addr1 = 0x0555,
.addr2 = 0x0aaa
},
[MTD_UADDR_0x5555_0x2AAA] = {
.addr1 = 0x5555,
.addr2 = 0x2aaa
},
[MTD_UADDR_0x0AAA_0x0555] = {
.addr1 = 0x0AAA,
.addr2 = 0x0555
},
[MTD_UADDR_0xAAAA_0x5555] = {
.addr1 = 0xaaaa,
.addr2 = 0x5555
},
[MTD_UADDR_DONT_CARE] = {
.addr1 = 0x0000, /* Doesn't matter which address */
.addr2 = 0x0000 /* is used - must be last entry */
},
[MTD_UADDR_UNNECESSARY] = {
.addr1 = 0x0000,
.addr2 = 0x0000
}
};
struct amd_flash_info {
const char *name;
const uint16_t mfr_id;
const uint16_t dev_id;
const uint8_t dev_size;
const uint8_t nr_regions;
const uint16_t cmd_set;
const uint32_t regions[6];
const uint8_t devtypes; /* Bitmask for x8, x16 etc. */
const uint8_t uaddr; /* unlock addrs for 8, 16, 32, 64 */
};
#define ERASEINFO(size,blocks) (size<<8)|(blocks-1)
#define SIZE_64KiB 16
#define SIZE_128KiB 17
#define SIZE_256KiB 18
#define SIZE_512KiB 19
#define SIZE_1MiB 20
#define SIZE_2MiB 21
#define SIZE_4MiB 22
#define SIZE_8MiB 23
/*
* Please keep this list ordered by manufacturer!
* Fortunately, the list isn't searched often and so a
* slow, linear search isn't so bad.
*/
static const struct amd_flash_info jedec_table[] = {
{
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F032B,
.name = "AMD AM29F032B",
.uaddr = MTD_UADDR_0x0555_0x02AA,
.devtypes = CFI_DEVICETYPE_X8,
.dev_size = SIZE_4MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,64)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV160DT,
.name = "AMD AM29LV160DT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV160DB,
.name = "AMD AM29LV160DB",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV400BB,
.name = "AMD AM29LV400BB",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,7)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV400BT,
.name = "AMD AM29LV400BT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,7),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV800BB,
.name = "AMD AM29LV800BB",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15),
}
}, {
/* add DL */
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29DL800BB,
.name = "AMD AM29DL800BB",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 6,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,4),
ERASEINFO(0x08000,1),
ERASEINFO(0x04000,1),
ERASEINFO(0x10000,14)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29DL800BT,
.name = "AMD AM29DL800BT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 6,
.regions = {
ERASEINFO(0x10000,14),
ERASEINFO(0x04000,1),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,4),
ERASEINFO(0x08000,1),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F800BB,
.name = "AMD AM29F800BB",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV800BT,
.name = "AMD AM29LV800BT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,15),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F800BT,
.name = "AMD AM29F800BT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,15),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F017D,
.name = "AMD AM29F017D",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_DONT_CARE,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,32),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F016D,
.name = "AMD AM29F016D",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,32),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F080,
.name = "AMD AM29F080",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,16),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F040,
.name = "AMD AM29F040",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29LV040B,
.name = "AMD AM29LV040B",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29F002T,
.name = "AMD AM29F002T",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_256KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,3),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29SL800DT,
.name = "AMD AM29SL800DT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,15),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1),
}
}, {
.mfr_id = MANUFACTURER_AMD,
.dev_id = AM29SL800DB,
.name = "AMD AM29SL800DB",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15),
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT49BV512,
.name = "Atmel AT49BV512",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_64KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,1)
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT29LV512,
.name = "Atmel AT29LV512",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_64KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x80,256),
ERASEINFO(0x80,256)
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT49BV16X,
.name = "Atmel AT49BV16X",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x0AAA, /* ???? */
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000,8),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT49BV16XT,
.name = "Atmel AT49BV16XT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x0AAA, /* ???? */
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x02000,8)
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT49BV32X,
.name = "Atmel AT49BV32X",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x0AAA, /* ???? */
.dev_size = SIZE_4MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000,8),
ERASEINFO(0x10000,63)
}
}, {
.mfr_id = MANUFACTURER_ATMEL,
.dev_id = AT49BV32XT,
.name = "Atmel AT49BV32XT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x0AAA, /* ???? */
.dev_size = SIZE_4MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000,63),
ERASEINFO(0x02000,8)
}
}, {
.mfr_id = MANUFACTURER_EON,
.dev_id = EN29SL800BT,
.name = "Eon EN29SL800BT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,15),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1),
}
}, {
.mfr_id = MANUFACTURER_EON,
.dev_id = EN29SL800BB,
.name = "Eon EN29SL800BB",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15),
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29F040C,
.name = "Fujitsu MBM29F040C",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,8)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29F800BA,
.name = "Fujitsu MBM29F800BA",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15),
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV650UE,
.name = "Fujitsu MBM29LV650UE",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_DONT_CARE,
.dev_size = SIZE_8MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,128)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV320TE,
.name = "Fujitsu MBM29LV320TE",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_4MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000,63),
ERASEINFO(0x02000,8)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV320BE,
.name = "Fujitsu MBM29LV320BE",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_4MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000,8),
ERASEINFO(0x10000,63)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV160TE,
.name = "Fujitsu MBM29LV160TE",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV160BE,
.name = "Fujitsu MBM29LV160BE",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV800BA,
.name = "Fujitsu MBM29LV800BA",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV800TA,
.name = "Fujitsu MBM29LV800TA",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,15),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV400BC,
.name = "Fujitsu MBM29LV400BC",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,7)
}
}, {
.mfr_id = MANUFACTURER_FUJITSU,
.dev_id = MBM29LV400TC,
.name = "Fujitsu MBM29LV400TC",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,7),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_HYUNDAI,
.dev_id = HY29F002T,
.name = "Hyundai HY29F002T",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_256KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,3),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F004B3B,
.name = "Intel 28F004B3B",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 7),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F004B3T,
.name = "Intel 28F004B3T",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000, 7),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F400B3B,
.name = "Intel 28F400B3B",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 7),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F400B3T,
.name = "Intel 28F400B3T",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000, 7),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F008B3B,
.name = "Intel 28F008B3B",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 15),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F008B3T,
.name = "Intel 28F008B3T",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000, 15),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F008S5,
.name = "Intel 28F008S5",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_INTEL_EXT,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,16),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F016S5,
.name = "Intel 28F016S5",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_INTEL_EXT,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,32),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F008SA,
.name = "Intel 28F008SA",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000, 16),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F800B3B,
.name = "Intel 28F800B3B",
.devtypes = CFI_DEVICETYPE_X16,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 15),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F800B3T,
.name = "Intel 28F800B3T",
.devtypes = CFI_DEVICETYPE_X16,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000, 15),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F016B3B,
.name = "Intel 28F016B3B",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 31),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F016S3,
.name = "Intel I28F016S3",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000, 32),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F016B3T,
.name = "Intel 28F016B3T",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000, 31),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F160B3B,
.name = "Intel 28F160B3B",
.devtypes = CFI_DEVICETYPE_X16,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 31),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F160B3T,
.name = "Intel 28F160B3T",
.devtypes = CFI_DEVICETYPE_X16,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000, 31),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F320B3B,
.name = "Intel 28F320B3B",
.devtypes = CFI_DEVICETYPE_X16,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_4MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 63),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F320B3T,
.name = "Intel 28F320B3T",
.devtypes = CFI_DEVICETYPE_X16,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_4MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000, 63),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F640B3B,
.name = "Intel 28F640B3B",
.devtypes = CFI_DEVICETYPE_X16,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_8MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000, 8),
ERASEINFO(0x10000, 127),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I28F640B3T,
.name = "Intel 28F640B3T",
.devtypes = CFI_DEVICETYPE_X16,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_8MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000, 127),
ERASEINFO(0x02000, 8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I82802AB,
.name = "Intel 82802AB",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_INTEL_EXT,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_INTEL,
.dev_id = I82802AC,
.name = "Intel 82802AC",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_INTEL_EXT,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,16),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29LV040C,
.name = "Macronix MX29LV040C",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29LV160T,
.name = "MXIC MX29LV160T",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_NEC,
.dev_id = UPD29F064115,
.name = "NEC uPD29F064115",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA, /* ???? */
.dev_size = SIZE_8MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 3,
.regions = {
ERASEINFO(0x2000,8),
ERASEINFO(0x10000,126),
ERASEINFO(0x2000,8),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29LV160B,
.name = "MXIC MX29LV160B",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29F040,
.name = "Macronix MX29F040",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29F016,
.name = "Macronix MX29F016",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,32),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29F004T,
.name = "Macronix MX29F004T",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,7),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29F004B,
.name = "Macronix MX29F004B",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,7),
}
}, {
.mfr_id = MANUFACTURER_MACRONIX,
.dev_id = MX29F002T,
.name = "Macronix MX29F002T",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_256KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,3),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1),
}
}, {
.mfr_id = MANUFACTURER_PMC,
.dev_id = PM49FL002,
.name = "PMC Pm49FL002",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_256KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO( 0x01000, 64 )
}
}, {
.mfr_id = MANUFACTURER_PMC,
.dev_id = PM49FL004,
.name = "PMC Pm49FL004",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO( 0x01000, 128 )
}
}, {
.mfr_id = MANUFACTURER_PMC,
.dev_id = PM49FL008,
.name = "PMC Pm49FL008",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO( 0x01000, 256 )
}
}, {
.mfr_id = MANUFACTURER_SHARP,
.dev_id = LH28F640BF,
.name = "LH28F640BF",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_4MiB,
.cmd_set = P_ID_INTEL_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x40000,16),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39LF512,
.name = "SST 39LF512",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_64KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,16),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39LF010,
.name = "SST 39LF010",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_128KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,32),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST29EE020,
.name = "SST 29EE020",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_256KiB,
.cmd_set = P_ID_SST_PAGE,
.nr_regions = 1,
.regions = {ERASEINFO(0x01000,64),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST29LE020,
.name = "SST 29LE020",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_256KiB,
.cmd_set = P_ID_SST_PAGE,
.nr_regions = 1,
.regions = {ERASEINFO(0x01000,64),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39LF020,
.name = "SST 39LF020",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_256KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,64),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39LF040,
.name = "SST 39LF040",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,128),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39SF010A,
.name = "SST 39SF010A",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_128KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,32),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST39SF020A,
.name = "SST 39SF020A",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_256KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,64),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST49LF040B,
.name = "SST 49LF040B",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,128),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST49LF004B,
.name = "SST 49LF004B",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,128),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST49LF008A,
.name = "SST 49LF008A",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,256),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST49LF030A,
.name = "SST 49LF030A",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,96),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST49LF040A,
.name = "SST 49LF040A",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,128),
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST49LF080A,
.name = "SST 49LF080A",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x01000,256),
}
}, {
.mfr_id = MANUFACTURER_SST, /* should be CFI */
.dev_id = SST39LF160,
.name = "SST 39LF160",
.devtypes = CFI_DEVICETYPE_X16,
.uaddr = MTD_UADDR_0xAAAA_0x5555,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x1000,256),
ERASEINFO(0x1000,256)
}
}, {
.mfr_id = MANUFACTURER_SST, /* should be CFI */
.dev_id = SST39VF1601,
.name = "SST 39VF1601",
.devtypes = CFI_DEVICETYPE_X16,
.uaddr = MTD_UADDR_0xAAAA_0x5555,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x1000,256),
ERASEINFO(0x1000,256)
}
}, {
.mfr_id = MANUFACTURER_SST,
.dev_id = SST36VF3203,
.name = "SST 36VF3203",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_4MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,64),
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M29F800AB,
.name = "ST M29F800AB",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15),
}
}, {
.mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */
.dev_id = M29W800DT,
.name = "ST M29W800DT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA, /* ???? */
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,15),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */
.dev_id = M29W800DB,
.name = "ST M29W800DB",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA, /* ???? */
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,15)
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M29W400DT,
.name = "ST M29W400DT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,7),
ERASEINFO(0x02000,1),
ERASEINFO(0x08000,2),
ERASEINFO(0x10000,1)
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M29W400DB,
.name = "ST M29W400DB",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,7)
}
}, {
.mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */
.dev_id = M29W160DT,
.name = "ST M29W160DT",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA, /* ???? */
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_ST, /* FIXME - CFI device? */
.dev_id = M29W160DB,
.name = "ST M29W160DB",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA, /* ???? */
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M29W040B,
.name = "ST M29W040B",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0555_0x02AA,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M50FW040,
.name = "ST M50FW040",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_512KiB,
.cmd_set = P_ID_INTEL_EXT,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,8),
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M50FW080,
.name = "ST M50FW080",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_INTEL_EXT,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,16),
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M50FW016,
.name = "ST M50FW016",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_INTEL_EXT,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,32),
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M50LPW080,
.name = "ST M50LPW080",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_INTEL_EXT,
.nr_regions = 1,
.regions = {
ERASEINFO(0x10000,16),
},
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M50FLW080A,
.name = "ST M50FLW080A",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_INTEL_EXT,
.nr_regions = 4,
.regions = {
ERASEINFO(0x1000,16),
ERASEINFO(0x10000,13),
ERASEINFO(0x1000,16),
ERASEINFO(0x1000,16),
}
}, {
.mfr_id = MANUFACTURER_ST,
.dev_id = M50FLW080B,
.name = "ST M50FLW080B",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_UNNECESSARY,
.dev_size = SIZE_1MiB,
.cmd_set = P_ID_INTEL_EXT,
.nr_regions = 4,
.regions = {
ERASEINFO(0x1000,16),
ERASEINFO(0x1000,16),
ERASEINFO(0x10000,13),
ERASEINFO(0x1000,16),
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVT160,
.name = "Toshiba TC58FVT160",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000,31),
ERASEINFO(0x08000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x04000,1)
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVB160,
.name = "Toshiba TC58FVB160",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_2MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x04000,1),
ERASEINFO(0x02000,2),
ERASEINFO(0x08000,1),
ERASEINFO(0x10000,31)
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVB321,
.name = "Toshiba TC58FVB321",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_4MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000,8),
ERASEINFO(0x10000,63)
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVT321,
.name = "Toshiba TC58FVT321",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_4MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000,63),
ERASEINFO(0x02000,8)
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVB641,
.name = "Toshiba TC58FVB641",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_8MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x02000,8),
ERASEINFO(0x10000,127)
}
}, {
.mfr_id = MANUFACTURER_TOSHIBA,
.dev_id = TC58FVT641,
.name = "Toshiba TC58FVT641",
.devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x0AAA_0x0555,
.dev_size = SIZE_8MiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 2,
.regions = {
ERASEINFO(0x10000,127),
ERASEINFO(0x02000,8)
}
}, {
.mfr_id = MANUFACTURER_WINBOND,
.dev_id = W49V002A,
.name = "Winbond W49V002A",
.devtypes = CFI_DEVICETYPE_X8,
.uaddr = MTD_UADDR_0x5555_0x2AAA,
.dev_size = SIZE_256KiB,
.cmd_set = P_ID_AMD_STD,
.nr_regions = 4,
.regions = {
ERASEINFO(0x10000, 3),
ERASEINFO(0x08000, 1),
ERASEINFO(0x02000, 2),
ERASEINFO(0x04000, 1),
}
}
};
static inline u32 jedec_read_mfr(struct map_info *map, uint32_t base,
struct cfi_private *cfi)
{
map_word result;
unsigned long mask;
int bank = 0;
/* According to JEDEC "Standard Manufacturer's Identification Code"
* (http://www.jedec.org/download/search/jep106W.pdf)
* several first banks can contain 0x7f instead of actual ID
*/
do {
uint32_t ofs = cfi_build_cmd_addr(0 + (bank << 8), map, cfi);
mask = (1 << (cfi->device_type * 8)) - 1;
result = map_read(map, base + ofs);
bank++;
} while ((result.x[0] & mask) == CONTINUATION_CODE);
return result.x[0] & mask;
}
static inline u32 jedec_read_id(struct map_info *map, uint32_t base,
struct cfi_private *cfi)
{
map_word result;
unsigned long mask;
u32 ofs = cfi_build_cmd_addr(1, map, cfi);
mask = (1 << (cfi->device_type * 8)) -1;
result = map_read(map, base + ofs);
return result.x[0] & mask;
}
static void jedec_reset(u32 base, struct map_info *map, struct cfi_private *cfi)
{
/* Reset */
/* after checking the datasheets for SST, MACRONIX and ATMEL
* (oh and incidentaly the jedec spec - 3.5.3.3) the reset
* sequence is *supposed* to be 0xaa at 0x5555, 0x55 at
* 0x2aaa, 0xF0 at 0x5555 this will not affect the AMD chips
* as they will ignore the writes and dont care what address
* the F0 is written to */
if (cfi->addr_unlock1) {
DEBUG( MTD_DEBUG_LEVEL3,
"reset unlock called %x %x \n",
cfi->addr_unlock1,cfi->addr_unlock2);
cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL);
}
cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
/* Some misdesigned Intel chips do not respond for 0xF0 for a reset,
* so ensure we're in read mode. Send both the Intel and the AMD command
* for this. Intel uses 0xff for this, AMD uses 0xff for NOP, so
* this should be safe.
*/
cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
/* FIXME - should have reset delay before continuing */
}
static int cfi_jedec_setup(struct cfi_private *p_cfi, int index)
{
int i,num_erase_regions;
uint8_t uaddr;
if (! (jedec_table[index].devtypes & p_cfi->device_type)) {
DEBUG(MTD_DEBUG_LEVEL1, "Rejecting potential %s with incompatible %d-bit device type\n",
jedec_table[index].name, 4 * (1<<p_cfi->device_type));
return 0;
}
printk(KERN_INFO "Found: %s\n",jedec_table[index].name);
num_erase_regions = jedec_table[index].nr_regions;
p_cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL);
if (!p_cfi->cfiq) {
//xx printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name);
return 0;
}
memset(p_cfi->cfiq,0,sizeof(struct cfi_ident));
p_cfi->cfiq->P_ID = jedec_table[index].cmd_set;
p_cfi->cfiq->NumEraseRegions = jedec_table[index].nr_regions;
p_cfi->cfiq->DevSize = jedec_table[index].dev_size;
p_cfi->cfi_mode = CFI_MODE_JEDEC;
for (i=0; i<num_erase_regions; i++){
p_cfi->cfiq->EraseRegionInfo[i] = jedec_table[index].regions[i];
}
p_cfi->cmdset_priv = NULL;
/* This may be redundant for some cases, but it doesn't hurt */
p_cfi->mfr = jedec_table[index].mfr_id;
p_cfi->id = jedec_table[index].dev_id;
uaddr = jedec_table[index].uaddr;
/* The table has unlock addresses in _bytes_, and we try not to let
our brains explode when we see the datasheets talking about address
lines numbered from A-1 to A18. The CFI table has unlock addresses
in device-words according to the mode the device is connected in */
p_cfi->addr_unlock1 = unlock_addrs[uaddr].addr1 / p_cfi->device_type;
p_cfi->addr_unlock2 = unlock_addrs[uaddr].addr2 / p_cfi->device_type;
return 1; /* ok */
}
/*
* There is a BIG problem properly ID'ing the JEDEC device and guaranteeing
* the mapped address, unlock addresses, and proper chip ID. This function
* attempts to minimize errors. It is doubtfull that this probe will ever
* be perfect - consequently there should be some module parameters that
* could be manually specified to force the chip info.
*/
static inline int jedec_match( uint32_t base,
struct map_info *map,
struct cfi_private *cfi,
const struct amd_flash_info *finfo )
{
int rc = 0; /* failure until all tests pass */
u32 mfr, id;
uint8_t uaddr;
/*
* The IDs must match. For X16 and X32 devices operating in
* a lower width ( X8 or X16 ), the device ID's are usually just
* the lower byte(s) of the larger device ID for wider mode. If
* a part is found that doesn't fit this assumption (device id for
* smaller width mode is completely unrealated to full-width mode)
* then the jedec_table[] will have to be augmented with the IDs
* for different widths.
*/
switch (cfi->device_type) {
case CFI_DEVICETYPE_X8:
mfr = (uint8_t)finfo->mfr_id;
id = (uint8_t)finfo->dev_id;
/* bjd: it seems that if we do this, we can end up
* detecting 16bit flashes as an 8bit device, even though
* there aren't.
*/
if (finfo->dev_id > 0xff) {
DEBUG( MTD_DEBUG_LEVEL3, "%s(): ID is not 8bit\n",
__func__);
goto match_done;
}
break;
case CFI_DEVICETYPE_X16:
mfr = (uint16_t)finfo->mfr_id;
id = (uint16_t)finfo->dev_id;
break;
case CFI_DEVICETYPE_X32:
mfr = (uint16_t)finfo->mfr_id;
id = (uint32_t)finfo->dev_id;
break;
default:
printk(KERN_WARNING
"MTD %s(): Unsupported device type %d\n",
__func__, cfi->device_type);
goto match_done;
}
if ( cfi->mfr != mfr || cfi->id != id ) {
goto match_done;
}
/* the part size must fit in the memory window */
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): Check fit 0x%.8x + 0x%.8x = 0x%.8x\n",
__func__, base, 1 << finfo->dev_size, base + (1 << finfo->dev_size) );
if ( base + cfi_interleave(cfi) * ( 1 << finfo->dev_size ) > map->size ) {
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): 0x%.4x 0x%.4x %dKiB doesn't fit\n",
__func__, finfo->mfr_id, finfo->dev_id,
1 << finfo->dev_size );
goto match_done;
}
if (! (finfo->devtypes & cfi->device_type))
goto match_done;
uaddr = finfo->uaddr;
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): check unlock addrs 0x%.4x 0x%.4x\n",
__func__, cfi->addr_unlock1, cfi->addr_unlock2 );
if ( MTD_UADDR_UNNECESSARY != uaddr && MTD_UADDR_DONT_CARE != uaddr
&& ( unlock_addrs[uaddr].addr1 / cfi->device_type != cfi->addr_unlock1 ||
unlock_addrs[uaddr].addr2 / cfi->device_type != cfi->addr_unlock2 ) ) {
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): 0x%.4x 0x%.4x did not match\n",
__func__,
unlock_addrs[uaddr].addr1,
unlock_addrs[uaddr].addr2);
goto match_done;
}
/*
* Make sure the ID's dissappear when the device is taken out of
* ID mode. The only time this should fail when it should succeed
* is when the ID's are written as data to the same
* addresses. For this rare and unfortunate case the chip
* cannot be probed correctly.
* FIXME - write a driver that takes all of the chip info as
* module parameters, doesn't probe but forces a load.
*/
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): check ID's disappear when not in ID mode\n",
__func__ );
jedec_reset( base, map, cfi );
mfr = jedec_read_mfr( map, base, cfi );
id = jedec_read_id( map, base, cfi );
if ( mfr == cfi->mfr && id == cfi->id ) {
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): ID 0x%.2x:0x%.2x did not change after reset:\n"
"You might need to manually specify JEDEC parameters.\n",
__func__, cfi->mfr, cfi->id );
goto match_done;
}
/* all tests passed - mark as success */
rc = 1;
/*
* Put the device back in ID mode - only need to do this if we
* were truly frobbing a real device.
*/
DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): return to ID mode\n", __func__ );
if (cfi->addr_unlock1) {
cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL);
}
cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
/* FIXME - should have a delay before continuing */
match_done:
return rc;
}
static int jedec_probe_chip(struct map_info *map, __u32 base,
unsigned long *chip_map, struct cfi_private *cfi)
{
int i;
enum uaddr uaddr_idx = MTD_UADDR_NOT_SUPPORTED;
u32 probe_offset1, probe_offset2;
retry:
if (!cfi->numchips) {
uaddr_idx++;
if (MTD_UADDR_UNNECESSARY == uaddr_idx)
return 0;
cfi->addr_unlock1 = unlock_addrs[uaddr_idx].addr1 / cfi->device_type;
cfi->addr_unlock2 = unlock_addrs[uaddr_idx].addr2 / cfi->device_type;
}
/* Make certain we aren't probing past the end of map */
if (base >= map->size) {
printk(KERN_NOTICE
"Probe at base(0x%08x) past the end of the map(0x%08lx)\n",
base, map->size -1);
return 0;
}
/* Ensure the unlock addresses we try stay inside the map */
probe_offset1 = cfi_build_cmd_addr(cfi->addr_unlock1, map, cfi);
probe_offset2 = cfi_build_cmd_addr(cfi->addr_unlock2, map, cfi);
if ( ((base + probe_offset1 + map_bankwidth(map)) >= map->size) ||
((base + probe_offset2 + map_bankwidth(map)) >= map->size))
goto retry;
/* Reset */
jedec_reset(base, map, cfi);
/* Autoselect Mode */
if(cfi->addr_unlock1) {
cfi_send_gen_cmd(0xaa, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, base, map, cfi, cfi->device_type, NULL);
}
cfi_send_gen_cmd(0x90, cfi->addr_unlock1, base, map, cfi, cfi->device_type, NULL);
/* FIXME - should have a delay before continuing */
if (!cfi->numchips) {
/* This is the first time we're called. Set up the CFI
stuff accordingly and return */
cfi->mfr = jedec_read_mfr(map, base, cfi);
cfi->id = jedec_read_id(map, base, cfi);
DEBUG(MTD_DEBUG_LEVEL3,
"Search for id:(%02x %02x) interleave(%d) type(%d)\n",
cfi->mfr, cfi->id, cfi_interleave(cfi), cfi->device_type);
for (i = 0; i < ARRAY_SIZE(jedec_table); i++) {
if ( jedec_match( base, map, cfi, &jedec_table[i] ) ) {
DEBUG( MTD_DEBUG_LEVEL3,
"MTD %s(): matched device 0x%x,0x%x unlock_addrs: 0x%.4x 0x%.4x\n",
__func__, cfi->mfr, cfi->id,
cfi->addr_unlock1, cfi->addr_unlock2 );
if (!cfi_jedec_setup(cfi, i))
return 0;
goto ok_out;
}
}
goto retry;
} else {
uint16_t mfr;
uint16_t id;
/* Make sure it is a chip of the same manufacturer and id */
mfr = jedec_read_mfr(map, base, cfi);
id = jedec_read_id(map, base, cfi);
if ((mfr != cfi->mfr) || (id != cfi->id)) {
printk(KERN_DEBUG "%s: Found different chip or no chip at all (mfr 0x%x, id 0x%x) at 0x%x\n",
map->name, mfr, id, base);
jedec_reset(base, map, cfi);
return 0;
}
}
/* Check each previous chip locations to see if it's an alias */
for (i=0; i < (base >> cfi->chipshift); i++) {
unsigned long start;
if(!test_bit(i, chip_map)) {
continue; /* Skip location; no valid chip at this address */
}
start = i << cfi->chipshift;
if (jedec_read_mfr(map, start, cfi) == cfi->mfr &&
jedec_read_id(map, start, cfi) == cfi->id) {
/* Eep. This chip also looks like it's in autoselect mode.
Is it an alias for the new one? */
jedec_reset(start, map, cfi);
/* If the device IDs go away, it's an alias */
if (jedec_read_mfr(map, base, cfi) != cfi->mfr ||
jedec_read_id(map, base, cfi) != cfi->id) {
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
map->name, base, start);
return 0;
}
/* Yes, it's actually got the device IDs as data. Most
* unfortunate. Stick the new chip in read mode
* too and if it's the same, assume it's an alias. */
/* FIXME: Use other modes to do a proper check */
jedec_reset(base, map, cfi);
if (jedec_read_mfr(map, base, cfi) == cfi->mfr &&
jedec_read_id(map, base, cfi) == cfi->id) {
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
map->name, base, start);
return 0;
}
}
}
/* OK, if we got to here, then none of the previous chips appear to
be aliases for the current one. */
set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */
cfi->numchips++;
ok_out:
/* Put it back into Read Mode */
jedec_reset(base, map, cfi);
printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n",
map->name, cfi_interleave(cfi), cfi->device_type*8, base,
map->bankwidth*8);
return 1;
}
static struct chip_probe jedec_chip_probe = {
.name = "JEDEC",
.probe_chip = jedec_probe_chip
};
static struct mtd_info *jedec_probe(struct map_info *map)
{
/*
* Just use the generic probe stuff to call our CFI-specific
* chip_probe routine in all the possible permutations, etc.
*/
return mtd_do_chip_probe(map, &jedec_chip_probe);
}
static struct mtd_chip_driver jedec_chipdrv = {
.probe = jedec_probe,
.name = "jedec_probe",
.module = THIS_MODULE
};
static int __init jedec_probe_init(void)
{
register_mtd_chip_driver(&jedec_chipdrv);
return 0;
}
static void __exit jedec_probe_exit(void)
{
unregister_mtd_chip_driver(&jedec_chipdrv);
}
module_init(jedec_probe_init);
module_exit(jedec_probe_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Erwin Authried <eauth@softsys.co.at> et al.");
MODULE_DESCRIPTION("Probe code for JEDEC-compliant flash chips");