kernel-ark/arch/cris/arch-v10/drivers/axisflashmap.c
Tim Schmielau 4e57b68178 [PATCH] fix missing includes
I recently picked up my older work to remove unnecessary #includes of
sched.h, starting from a patch by Dave Jones to not include sched.h
from module.h. This reduces the number of indirect includes of sched.h
by ~300. Another ~400 pointless direct includes can be removed after
this disentangling (patch to follow later).
However, quite a few indirect includes need to be fixed up for this.

In order to feed the patches through -mm with as little disturbance as
possible, I've split out the fixes I accumulated up to now (complete for
i386 and x86_64, more archs to follow later) and post them before the real
patch.  This way this large part of the patch is kept simple with only
adding #includes, and all hunks are independent of each other.  So if any
hunk rejects or gets in the way of other patches, just drop it.  My scripts
will pick it up again in the next round.

Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 17:37:32 -08:00

546 lines
15 KiB
C

/*
* Physical mapping layer for MTD using the Axis partitiontable format
*
* Copyright (c) 2001, 2002 Axis Communications AB
*
* This file is under the GPL.
*
* First partition is always sector 0 regardless of if we find a partitiontable
* or not. In the start of the next sector, there can be a partitiontable that
* tells us what other partitions to define. If there isn't, we use a default
* partition split defined below.
*
* $Log: axisflashmap.c,v $
* Revision 1.11 2004/11/15 10:27:14 starvik
* Corrected typo (Thanks to Milton Miller <miltonm@bga.com>).
*
* Revision 1.10 2004/08/16 12:37:22 starvik
* Merge of Linux 2.6.8
*
* Revision 1.8 2004/05/14 07:58:03 starvik
* Merge of changes from 2.4
*
* Revision 1.6 2003/07/04 08:27:37 starvik
* Merge of Linux 2.5.74
*
* Revision 1.5 2002/12/11 13:13:57 starvik
* Added arch/ to v10 specific includes
* Added fix from Linux 2.4 in serial.c (flush_to_flip_buffer)
*
* Revision 1.4 2002/11/20 11:56:10 starvik
* Merge of Linux 2.5.48
*
* Revision 1.3 2002/11/13 14:54:13 starvik
* Copied from linux 2.4
*
* Revision 1.28 2002/10/01 08:08:43 jonashg
* The first partition ends at the start of the partition table.
*
* Revision 1.27 2002/08/21 09:23:13 jonashg
* Speling.
*
* Revision 1.26 2002/08/21 08:35:20 jonashg
* Cosmetic change to printouts.
*
* Revision 1.25 2002/08/21 08:15:42 jonashg
* Made it compile even without CONFIG_MTD_CONCAT defined.
*
* Revision 1.24 2002/08/20 13:12:35 jonashg
* * New approach to probing. Probe cse0 and cse1 separately and (mtd)concat
* the results.
* * Removed compile time tests concerning how the mtdram driver has been
* configured. The user will know about the misconfiguration at runtime
* instead. (The old approach made it impossible to use mtdram for anything
* else than RAM boot).
*
* Revision 1.23 2002/05/13 12:12:28 johana
* Allow compile without CONFIG_MTD_MTDRAM but warn at compiletime and
* be informative at runtime.
*
* Revision 1.22 2002/05/13 10:24:44 johana
* Added #if checks on MTDRAM CONFIG
*
* Revision 1.21 2002/05/06 16:05:20 johana
* Removed debug printout.
*
* Revision 1.20 2002/05/06 16:03:00 johana
* No more cramfs as root hack in generic code.
* It's handled by axisflashmap using mtdram.
*
* Revision 1.19 2002/03/15 17:10:28 bjornw
* Changed comment about cached access since we changed this before
*
* Revision 1.18 2002/03/05 17:06:15 jonashg
* Try amd_flash probe before cfi_probe since amd_flash driver can handle two
* (or more) flash chips of different model and the cfi driver cannot.
*
* Revision 1.17 2001/11/12 19:42:38 pkj
* Fixed compiler warnings.
*
* Revision 1.16 2001/11/08 11:18:58 jonashg
* Always read from uncached address to avoid problems with flushing
* cachelines after write and MTD-erase. No performance loss have been
* seen yet.
*
* Revision 1.15 2001/10/19 12:41:04 jonashg
* Name of probe has changed in MTD.
*
* Revision 1.14 2001/09/21 07:14:10 jonashg
* Made root filesystem (cramfs) use mtdblock driver when booting from flash.
*
* Revision 1.13 2001/08/15 13:57:35 jonashg
* Entire MTD updated to the linux 2.4.7 version.
*
* Revision 1.12 2001/06/11 09:50:30 jonashg
* Oops, 2MB is 0x200000 bytes.
*
* Revision 1.11 2001/06/08 11:39:44 jonashg
* Changed sizes and offsets in axis_default_partitions to use
* CONFIG_ETRAX_PTABLE_SECTOR.
*
* Revision 1.10 2001/05/29 09:42:03 jonashg
* Use macro for end marker length instead of sizeof.
*
* Revision 1.9 2001/05/29 08:52:52 jonashg
* Gave names to the magic fours (size of the ptable end marker).
*
* Revision 1.8 2001/05/28 15:36:20 jonashg
* * Removed old comment about ptable location in flash (it's a CONFIG_ option).
* * Variable ptable was initialized twice to the same value.
*
* Revision 1.7 2001/04/05 13:41:46 markusl
* Updated according to review remarks
*
* Revision 1.6 2001/03/07 09:21:21 bjornw
* No need to waste .data
*
* Revision 1.5 2001/03/06 16:27:01 jonashg
* Probe the entire flash area for flash devices.
*
* Revision 1.4 2001/02/23 12:47:15 bjornw
* Uncached flash in LOW_MAP moved from 0xe to 0x8
*
* Revision 1.3 2001/02/16 12:11:45 jonashg
* MTD driver amd_flash is now included in MTD CVS repository.
* (It's now in drivers/mtd).
*
* Revision 1.2 2001/02/09 11:12:22 jonashg
* Support for AMD compatible non-CFI flash chips.
* Only tested with Toshiba TC58FVT160 so far.
*
* Revision 1.1 2001/01/12 17:01:18 bjornw
* * Added axisflashmap.c, a physical mapping for MTD that reads and understands
* Axis partition-table format.
*
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/config.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/mtd/concat.h>
#include <linux/mtd/map.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/mtdram.h>
#include <linux/mtd/partitions.h>
#include <asm/axisflashmap.h>
#include <asm/mmu.h>
#include <asm/arch/sv_addr_ag.h>
#ifdef CONFIG_CRIS_LOW_MAP
#define FLASH_UNCACHED_ADDR KSEG_8
#define FLASH_CACHED_ADDR KSEG_5
#else
#define FLASH_UNCACHED_ADDR KSEG_E
#define FLASH_CACHED_ADDR KSEG_F
#endif
#if CONFIG_ETRAX_FLASH_BUSWIDTH==1
#define flash_data __u8
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==2
#define flash_data __u16
#elif CONFIG_ETRAX_FLASH_BUSWIDTH==4
#define flash_data __u32
#endif
/* From head.S */
extern unsigned long romfs_start, romfs_length, romfs_in_flash;
/* The master mtd for the entire flash. */
struct mtd_info* axisflash_mtd = NULL;
/* Map driver functions. */
static map_word flash_read(struct map_info *map, unsigned long ofs)
{
map_word tmp;
tmp.x[0] = *(flash_data *)(map->map_priv_1 + ofs);
return tmp;
}
static void flash_copy_from(struct map_info *map, void *to,
unsigned long from, ssize_t len)
{
memcpy(to, (void *)(map->map_priv_1 + from), len);
}
static void flash_write(struct map_info *map, map_word d, unsigned long adr)
{
*(flash_data *)(map->map_priv_1 + adr) = (flash_data)d.x[0];
}
/*
* The map for chip select e0.
*
* We run into tricky coherence situations if we mix cached with uncached
* accesses to we only use the uncached version here.
*
* The size field is the total size where the flash chips may be mapped on the
* chip select. MTD probes should find all devices there and it does not matter
* if there are unmapped gaps or aliases (mirrors of flash devices). The MTD
* probes will ignore them.
*
* The start address in map_priv_1 is in virtual memory so we cannot use
* MEM_CSE0_START but must rely on that FLASH_UNCACHED_ADDR is the start
* address of cse0.
*/
static struct map_info map_cse0 = {
.name = "cse0",
.size = MEM_CSE0_SIZE,
.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
.read = flash_read,
.copy_from = flash_copy_from,
.write = flash_write,
.map_priv_1 = FLASH_UNCACHED_ADDR
};
/*
* The map for chip select e1.
*
* If there was a gap between cse0 and cse1, map_priv_1 would get the wrong
* address, but there isn't.
*/
static struct map_info map_cse1 = {
.name = "cse1",
.size = MEM_CSE1_SIZE,
.bankwidth = CONFIG_ETRAX_FLASH_BUSWIDTH,
.read = flash_read,
.copy_from = flash_copy_from,
.write = flash_write,
.map_priv_1 = FLASH_UNCACHED_ADDR + MEM_CSE0_SIZE
};
/* If no partition-table was found, we use this default-set. */
#define MAX_PARTITIONS 7
#define NUM_DEFAULT_PARTITIONS 3
/*
* Default flash size is 2MB. CONFIG_ETRAX_PTABLE_SECTOR is most likely the
* size of one flash block and "filesystem"-partition needs 5 blocks to be able
* to use JFFS.
*/
static struct mtd_partition axis_default_partitions[NUM_DEFAULT_PARTITIONS] = {
{
.name = "boot firmware",
.size = CONFIG_ETRAX_PTABLE_SECTOR,
.offset = 0
},
{
.name = "kernel",
.size = 0x200000 - (6 * CONFIG_ETRAX_PTABLE_SECTOR),
.offset = CONFIG_ETRAX_PTABLE_SECTOR
},
{
.name = "filesystem",
.size = 5 * CONFIG_ETRAX_PTABLE_SECTOR,
.offset = 0x200000 - (5 * CONFIG_ETRAX_PTABLE_SECTOR)
}
};
/* Initialize the ones normally used. */
static struct mtd_partition axis_partitions[MAX_PARTITIONS] = {
{
.name = "part0",
.size = CONFIG_ETRAX_PTABLE_SECTOR,
.offset = 0
},
{
.name = "part1",
.size = 0,
.offset = 0
},
{
.name = "part2",
.size = 0,
.offset = 0
},
{
.name = "part3",
.size = 0,
.offset = 0
},
{
.name = "part4",
.size = 0,
.offset = 0
},
{
.name = "part5",
.size = 0,
.offset = 0
},
{
.name = "part6",
.size = 0,
.offset = 0
},
};
/*
* Probe a chip select for AMD-compatible (JEDEC) or CFI-compatible flash
* chips in that order (because the amd_flash-driver is faster).
*/
static struct mtd_info *probe_cs(struct map_info *map_cs)
{
struct mtd_info *mtd_cs = NULL;
printk(KERN_INFO
"%s: Probing a 0x%08lx bytes large window at 0x%08lx.\n",
map_cs->name, map_cs->size, map_cs->map_priv_1);
#ifdef CONFIG_MTD_AMDSTD
mtd_cs = do_map_probe("amd_flash", map_cs);
#endif
#ifdef CONFIG_MTD_CFI
if (!mtd_cs) {
mtd_cs = do_map_probe("cfi_probe", map_cs);
}
#endif
return mtd_cs;
}
/*
* Probe each chip select individually for flash chips. If there are chips on
* both cse0 and cse1, the mtd_info structs will be concatenated to one struct
* so that MTD partitions can cross chip boundries.
*
* The only known restriction to how you can mount your chips is that each
* chip select must hold similar flash chips. But you need external hardware
* to do that anyway and you can put totally different chips on cse0 and cse1
* so it isn't really much of a restriction.
*/
static struct mtd_info *flash_probe(void)
{
struct mtd_info *mtd_cse0;
struct mtd_info *mtd_cse1;
struct mtd_info *mtd_cse;
mtd_cse0 = probe_cs(&map_cse0);
mtd_cse1 = probe_cs(&map_cse1);
if (!mtd_cse0 && !mtd_cse1) {
/* No chip found. */
return NULL;
}
if (mtd_cse0 && mtd_cse1) {
#ifdef CONFIG_MTD_CONCAT
struct mtd_info *mtds[] = { mtd_cse0, mtd_cse1 };
/* Since the concatenation layer adds a small overhead we
* could try to figure out if the chips in cse0 and cse1 are
* identical and reprobe the whole cse0+cse1 window. But since
* flash chips are slow, the overhead is relatively small.
* So we use the MTD concatenation layer instead of further
* complicating the probing procedure.
*/
mtd_cse = mtd_concat_create(mtds,
sizeof(mtds) / sizeof(mtds[0]),
"cse0+cse1");
#else
printk(KERN_ERR "%s and %s: Cannot concatenate due to kernel "
"(mis)configuration!\n", map_cse0.name, map_cse1.name);
mtd_cse = NULL;
#endif
if (!mtd_cse) {
printk(KERN_ERR "%s and %s: Concatenation failed!\n",
map_cse0.name, map_cse1.name);
/* The best we can do now is to only use what we found
* at cse0.
*/
mtd_cse = mtd_cse0;
map_destroy(mtd_cse1);
}
} else {
mtd_cse = mtd_cse0? mtd_cse0 : mtd_cse1;
}
return mtd_cse;
}
/*
* Probe the flash chip(s) and, if it succeeds, read the partition-table
* and register the partitions with MTD.
*/
static int __init init_axis_flash(void)
{
struct mtd_info *mymtd;
int err = 0;
int pidx = 0;
struct partitiontable_head *ptable_head = NULL;
struct partitiontable_entry *ptable;
int use_default_ptable = 1; /* Until proven otherwise. */
const char *pmsg = " /dev/flash%d at 0x%08x, size 0x%08x\n";
if (!(mymtd = flash_probe())) {
/* There's no reason to use this module if no flash chip can
* be identified. Make sure that's understood.
*/
printk(KERN_INFO "axisflashmap: Found no flash chip.\n");
} else {
printk(KERN_INFO "%s: 0x%08x bytes of flash memory.\n",
mymtd->name, mymtd->size);
axisflash_mtd = mymtd;
}
if (mymtd) {
mymtd->owner = THIS_MODULE;
ptable_head = (struct partitiontable_head *)(FLASH_CACHED_ADDR +
CONFIG_ETRAX_PTABLE_SECTOR +
PARTITION_TABLE_OFFSET);
}
pidx++; /* First partition is always set to the default. */
if (ptable_head && (ptable_head->magic == PARTITION_TABLE_MAGIC)
&& (ptable_head->size <
(MAX_PARTITIONS * sizeof(struct partitiontable_entry) +
PARTITIONTABLE_END_MARKER_SIZE))
&& (*(unsigned long*)((void*)ptable_head + sizeof(*ptable_head) +
ptable_head->size -
PARTITIONTABLE_END_MARKER_SIZE)
== PARTITIONTABLE_END_MARKER)) {
/* Looks like a start, sane length and end of a
* partition table, lets check csum etc.
*/
int ptable_ok = 0;
struct partitiontable_entry *max_addr =
(struct partitiontable_entry *)
((unsigned long)ptable_head + sizeof(*ptable_head) +
ptable_head->size);
unsigned long offset = CONFIG_ETRAX_PTABLE_SECTOR;
unsigned char *p;
unsigned long csum = 0;
ptable = (struct partitiontable_entry *)
((unsigned long)ptable_head + sizeof(*ptable_head));
/* Lets be PARANOID, and check the checksum. */
p = (unsigned char*) ptable;
while (p <= (unsigned char*)max_addr) {
csum += *p++;
csum += *p++;
csum += *p++;
csum += *p++;
}
ptable_ok = (csum == ptable_head->checksum);
/* Read the entries and use/show the info. */
printk(KERN_INFO " Found a%s partition table at 0x%p-0x%p.\n",
(ptable_ok ? " valid" : "n invalid"), ptable_head,
max_addr);
/* We have found a working bootblock. Now read the
* partition table. Scan the table. It ends when
* there is 0xffffffff, that is, empty flash.
*/
while (ptable_ok
&& ptable->offset != 0xffffffff
&& ptable < max_addr
&& pidx < MAX_PARTITIONS) {
axis_partitions[pidx].offset = offset + ptable->offset;
axis_partitions[pidx].size = ptable->size;
printk(pmsg, pidx, axis_partitions[pidx].offset,
axis_partitions[pidx].size);
pidx++;
ptable++;
}
use_default_ptable = !ptable_ok;
}
if (romfs_in_flash) {
/* Add an overlapping device for the root partition (romfs). */
axis_partitions[pidx].name = "romfs";
axis_partitions[pidx].size = romfs_length;
axis_partitions[pidx].offset = romfs_start - FLASH_CACHED_ADDR;
axis_partitions[pidx].mask_flags |= MTD_WRITEABLE;
printk(KERN_INFO
" Adding readonly flash partition for romfs image:\n");
printk(pmsg, pidx, axis_partitions[pidx].offset,
axis_partitions[pidx].size);
pidx++;
}
if (mymtd) {
if (use_default_ptable) {
printk(KERN_INFO " Using default partition table.\n");
err = add_mtd_partitions(mymtd, axis_default_partitions,
NUM_DEFAULT_PARTITIONS);
} else {
err = add_mtd_partitions(mymtd, axis_partitions, pidx);
}
if (err) {
panic("axisflashmap could not add MTD partitions!\n");
}
}
if (!romfs_in_flash) {
/* Create an RAM device for the root partition (romfs). */
#if !defined(CONFIG_MTD_MTDRAM) || (CONFIG_MTDRAM_TOTAL_SIZE != 0) || (CONFIG_MTDRAM_ABS_POS != 0)
/* No use trying to boot this kernel from RAM. Panic! */
printk(KERN_EMERG "axisflashmap: Cannot create an MTD RAM "
"device due to kernel (mis)configuration!\n");
panic("This kernel cannot boot from RAM!\n");
#else
struct mtd_info *mtd_ram;
mtd_ram = (struct mtd_info *)kmalloc(sizeof(struct mtd_info),
GFP_KERNEL);
if (!mtd_ram) {
panic("axisflashmap couldn't allocate memory for "
"mtd_info!\n");
}
printk(KERN_INFO " Adding RAM partition for romfs image:\n");
printk(pmsg, pidx, romfs_start, romfs_length);
err = mtdram_init_device(mtd_ram, (void*)romfs_start,
romfs_length, "romfs");
if (err) {
panic("axisflashmap could not initialize MTD RAM "
"device!\n");
}
#endif
}
return err;
}
/* This adds the above to the kernels init-call chain. */
module_init(init_axis_flash);
EXPORT_SYMBOL(axisflash_mtd);