kernel-ark/drivers/base/class.c
Tejun Heo 5a3ceb8616 driver-core: use klist for class device list and implement iterator
Iterating over entries using callback usually isn't too fun especially
when the entry being iterated over can't be manipulated freely.  This
patch converts class->p->class_devices to klist and implements class
device iterator so that the users can freely build their own control
structure.  The users are also free to call back into class code
without worrying about locking.

class_for_each_device() and class_find_device() are converted to use
the new iterators, so their users don't have to worry about locking
anymore either.

Note: This depends on klist-dont-iterate-over-deleted-entries patch
because class_intf->add/remove_dev() depends on proper synchronization
with device removal.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2008-10-09 08:56:04 +02:00

506 lines
12 KiB
C

/*
* class.c - basic device class management
*
* Copyright (c) 2002-3 Patrick Mochel
* Copyright (c) 2002-3 Open Source Development Labs
* Copyright (c) 2003-2004 Greg Kroah-Hartman
* Copyright (c) 2003-2004 IBM Corp.
*
* This file is released under the GPLv2
*
*/
#include <linux/device.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/kdev_t.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/genhd.h>
#include <linux/mutex.h>
#include "base.h"
#define to_class_attr(_attr) container_of(_attr, struct class_attribute, attr)
static ssize_t class_attr_show(struct kobject *kobj, struct attribute *attr,
char *buf)
{
struct class_attribute *class_attr = to_class_attr(attr);
struct class_private *cp = to_class(kobj);
ssize_t ret = -EIO;
if (class_attr->show)
ret = class_attr->show(cp->class, buf);
return ret;
}
static ssize_t class_attr_store(struct kobject *kobj, struct attribute *attr,
const char *buf, size_t count)
{
struct class_attribute *class_attr = to_class_attr(attr);
struct class_private *cp = to_class(kobj);
ssize_t ret = -EIO;
if (class_attr->store)
ret = class_attr->store(cp->class, buf, count);
return ret;
}
static void class_release(struct kobject *kobj)
{
struct class_private *cp = to_class(kobj);
struct class *class = cp->class;
pr_debug("class '%s': release.\n", class->name);
if (class->class_release)
class->class_release(class);
else
pr_debug("class '%s' does not have a release() function, "
"be careful\n", class->name);
}
static struct sysfs_ops class_sysfs_ops = {
.show = class_attr_show,
.store = class_attr_store,
};
static struct kobj_type class_ktype = {
.sysfs_ops = &class_sysfs_ops,
.release = class_release,
};
/* Hotplug events for classes go to the class class_subsys */
static struct kset *class_kset;
int class_create_file(struct class *cls, const struct class_attribute *attr)
{
int error;
if (cls)
error = sysfs_create_file(&cls->p->class_subsys.kobj,
&attr->attr);
else
error = -EINVAL;
return error;
}
void class_remove_file(struct class *cls, const struct class_attribute *attr)
{
if (cls)
sysfs_remove_file(&cls->p->class_subsys.kobj, &attr->attr);
}
static struct class *class_get(struct class *cls)
{
if (cls)
kset_get(&cls->p->class_subsys);
return cls;
}
static void class_put(struct class *cls)
{
if (cls)
kset_put(&cls->p->class_subsys);
}
static int add_class_attrs(struct class *cls)
{
int i;
int error = 0;
if (cls->class_attrs) {
for (i = 0; attr_name(cls->class_attrs[i]); i++) {
error = class_create_file(cls, &cls->class_attrs[i]);
if (error)
goto error;
}
}
done:
return error;
error:
while (--i >= 0)
class_remove_file(cls, &cls->class_attrs[i]);
goto done;
}
static void remove_class_attrs(struct class *cls)
{
int i;
if (cls->class_attrs) {
for (i = 0; attr_name(cls->class_attrs[i]); i++)
class_remove_file(cls, &cls->class_attrs[i]);
}
}
static void klist_class_dev_get(struct klist_node *n)
{
struct device *dev = container_of(n, struct device, knode_class);
get_device(dev);
}
static void klist_class_dev_put(struct klist_node *n)
{
struct device *dev = container_of(n, struct device, knode_class);
put_device(dev);
}
int __class_register(struct class *cls, struct lock_class_key *key)
{
struct class_private *cp;
int error;
pr_debug("device class '%s': registering\n", cls->name);
cp = kzalloc(sizeof(*cp), GFP_KERNEL);
if (!cp)
return -ENOMEM;
klist_init(&cp->class_devices, klist_class_dev_get, klist_class_dev_put);
INIT_LIST_HEAD(&cp->class_interfaces);
kset_init(&cp->class_dirs);
__mutex_init(&cp->class_mutex, "struct class mutex", key);
error = kobject_set_name(&cp->class_subsys.kobj, "%s", cls->name);
if (error) {
kfree(cp);
return error;
}
/* set the default /sys/dev directory for devices of this class */
if (!cls->dev_kobj)
cls->dev_kobj = sysfs_dev_char_kobj;
#if defined(CONFIG_SYSFS_DEPRECATED) && defined(CONFIG_BLOCK)
/* let the block class directory show up in the root of sysfs */
if (cls != &block_class)
cp->class_subsys.kobj.kset = class_kset;
#else
cp->class_subsys.kobj.kset = class_kset;
#endif
cp->class_subsys.kobj.ktype = &class_ktype;
cp->class = cls;
cls->p = cp;
error = kset_register(&cp->class_subsys);
if (error) {
kfree(cp);
return error;
}
error = add_class_attrs(class_get(cls));
class_put(cls);
return error;
}
EXPORT_SYMBOL_GPL(__class_register);
void class_unregister(struct class *cls)
{
pr_debug("device class '%s': unregistering\n", cls->name);
remove_class_attrs(cls);
kset_unregister(&cls->p->class_subsys);
}
static void class_create_release(struct class *cls)
{
pr_debug("%s called for %s\n", __func__, cls->name);
kfree(cls);
}
/**
* class_create - create a struct class structure
* @owner: pointer to the module that is to "own" this struct class
* @name: pointer to a string for the name of this class.
* @key: the lock_class_key for this class; used by mutex lock debugging
*
* This is used to create a struct class pointer that can then be used
* in calls to device_create().
*
* Note, the pointer created here is to be destroyed when finished by
* making a call to class_destroy().
*/
struct class *__class_create(struct module *owner, const char *name,
struct lock_class_key *key)
{
struct class *cls;
int retval;
cls = kzalloc(sizeof(*cls), GFP_KERNEL);
if (!cls) {
retval = -ENOMEM;
goto error;
}
cls->name = name;
cls->owner = owner;
cls->class_release = class_create_release;
retval = __class_register(cls, key);
if (retval)
goto error;
return cls;
error:
kfree(cls);
return ERR_PTR(retval);
}
EXPORT_SYMBOL_GPL(__class_create);
/**
* class_destroy - destroys a struct class structure
* @cls: pointer to the struct class that is to be destroyed
*
* Note, the pointer to be destroyed must have been created with a call
* to class_create().
*/
void class_destroy(struct class *cls)
{
if ((cls == NULL) || (IS_ERR(cls)))
return;
class_unregister(cls);
}
#ifdef CONFIG_SYSFS_DEPRECATED
char *make_class_name(const char *name, struct kobject *kobj)
{
char *class_name;
int size;
size = strlen(name) + strlen(kobject_name(kobj)) + 2;
class_name = kmalloc(size, GFP_KERNEL);
if (!class_name)
return NULL;
strcpy(class_name, name);
strcat(class_name, ":");
strcat(class_name, kobject_name(kobj));
return class_name;
}
#endif
/**
* class_dev_iter_init - initialize class device iterator
* @iter: class iterator to initialize
* @class: the class we wanna iterate over
* @start: the device to start iterating from, if any
* @type: device_type of the devices to iterate over, NULL for all
*
* Initialize class iterator @iter such that it iterates over devices
* of @class. If @start is set, the list iteration will start there,
* otherwise if it is NULL, the iteration starts at the beginning of
* the list.
*/
void class_dev_iter_init(struct class_dev_iter *iter, struct class *class,
struct device *start, const struct device_type *type)
{
struct klist_node *start_knode = NULL;
if (start)
start_knode = &start->knode_class;
klist_iter_init_node(&class->p->class_devices, &iter->ki, start_knode);
iter->type = type;
}
EXPORT_SYMBOL_GPL(class_dev_iter_init);
/**
* class_dev_iter_next - iterate to the next device
* @iter: class iterator to proceed
*
* Proceed @iter to the next device and return it. Returns NULL if
* iteration is complete.
*
* The returned device is referenced and won't be released till
* iterator is proceed to the next device or exited. The caller is
* free to do whatever it wants to do with the device including
* calling back into class code.
*/
struct device *class_dev_iter_next(struct class_dev_iter *iter)
{
struct klist_node *knode;
struct device *dev;
while (1) {
knode = klist_next(&iter->ki);
if (!knode)
return NULL;
dev = container_of(knode, struct device, knode_class);
if (!iter->type || iter->type == dev->type)
return dev;
}
}
EXPORT_SYMBOL_GPL(class_dev_iter_next);
/**
* class_dev_iter_exit - finish iteration
* @iter: class iterator to finish
*
* Finish an iteration. Always call this function after iteration is
* complete whether the iteration ran till the end or not.
*/
void class_dev_iter_exit(struct class_dev_iter *iter)
{
klist_iter_exit(&iter->ki);
}
EXPORT_SYMBOL_GPL(class_dev_iter_exit);
/**
* class_for_each_device - device iterator
* @class: the class we're iterating
* @start: the device to start with in the list, if any.
* @data: data for the callback
* @fn: function to be called for each device
*
* Iterate over @class's list of devices, and call @fn for each,
* passing it @data. If @start is set, the list iteration will start
* there, otherwise if it is NULL, the iteration starts at the
* beginning of the list.
*
* We check the return of @fn each time. If it returns anything
* other than 0, we break out and return that value.
*
* @fn is allowed to do anything including calling back into class
* code. There's no locking restriction.
*/
int class_for_each_device(struct class *class, struct device *start,
void *data, int (*fn)(struct device *, void *))
{
struct class_dev_iter iter;
struct device *dev;
int error = 0;
if (!class)
return -EINVAL;
if (!class->p) {
WARN(1, "%s called for class '%s' before it was initialized",
__func__, class->name);
return -EINVAL;
}
class_dev_iter_init(&iter, class, start, NULL);
while ((dev = class_dev_iter_next(&iter))) {
error = fn(dev, data);
if (error)
break;
}
class_dev_iter_exit(&iter);
return error;
}
EXPORT_SYMBOL_GPL(class_for_each_device);
/**
* class_find_device - device iterator for locating a particular device
* @class: the class we're iterating
* @start: Device to begin with
* @data: data for the match function
* @match: function to check device
*
* This is similar to the class_for_each_dev() function above, but it
* returns a reference to a device that is 'found' for later use, as
* determined by the @match callback.
*
* The callback should return 0 if the device doesn't match and non-zero
* if it does. If the callback returns non-zero, this function will
* return to the caller and not iterate over any more devices.
*
* Note, you will need to drop the reference with put_device() after use.
*
* @fn is allowed to do anything including calling back into class
* code. There's no locking restriction.
*/
struct device *class_find_device(struct class *class, struct device *start,
void *data,
int (*match)(struct device *, void *))
{
struct class_dev_iter iter;
struct device *dev;
if (!class)
return NULL;
if (!class->p) {
WARN(1, "%s called for class '%s' before it was initialized",
__func__, class->name);
return NULL;
}
class_dev_iter_init(&iter, class, start, NULL);
while ((dev = class_dev_iter_next(&iter))) {
if (match(dev, data)) {
get_device(dev);
break;
}
}
class_dev_iter_exit(&iter);
return dev;
}
EXPORT_SYMBOL_GPL(class_find_device);
int class_interface_register(struct class_interface *class_intf)
{
struct class *parent;
struct class_dev_iter iter;
struct device *dev;
if (!class_intf || !class_intf->class)
return -ENODEV;
parent = class_get(class_intf->class);
if (!parent)
return -EINVAL;
mutex_lock(&parent->p->class_mutex);
list_add_tail(&class_intf->node, &parent->p->class_interfaces);
if (class_intf->add_dev) {
class_dev_iter_init(&iter, parent, NULL, NULL);
while ((dev = class_dev_iter_next(&iter)))
class_intf->add_dev(dev, class_intf);
class_dev_iter_exit(&iter);
}
mutex_unlock(&parent->p->class_mutex);
return 0;
}
void class_interface_unregister(struct class_interface *class_intf)
{
struct class *parent = class_intf->class;
struct class_dev_iter iter;
struct device *dev;
if (!parent)
return;
mutex_lock(&parent->p->class_mutex);
list_del_init(&class_intf->node);
if (class_intf->remove_dev) {
class_dev_iter_init(&iter, parent, NULL, NULL);
while ((dev = class_dev_iter_next(&iter)))
class_intf->remove_dev(dev, class_intf);
class_dev_iter_exit(&iter);
}
mutex_unlock(&parent->p->class_mutex);
class_put(parent);
}
int __init classes_init(void)
{
class_kset = kset_create_and_add("class", NULL, NULL);
if (!class_kset)
return -ENOMEM;
return 0;
}
EXPORT_SYMBOL_GPL(class_create_file);
EXPORT_SYMBOL_GPL(class_remove_file);
EXPORT_SYMBOL_GPL(class_unregister);
EXPORT_SYMBOL_GPL(class_destroy);
EXPORT_SYMBOL_GPL(class_interface_register);
EXPORT_SYMBOL_GPL(class_interface_unregister);