kernel-ark/sound/usb/usx2y/usbusx2yaudio.c
Takashi Iwai 561b220a4d [ALSA] Replace with kzalloc() - others
Documentation,SA11xx UDA1341 driver,Generic drivers,MPU401 UART,OPL3
OPL4,Digigram VX core,I2C cs8427,I2C lib core,I2C tea6330t,L3 drivers
AK4114 receiver,AK4117 receiver,PDAudioCF driver,PPC PMAC driver
SPARC AMD7930 driver,SPARC cs4231 driver,Synth,Common EMU synth
USB generic driver,USB USX2Y
Replace kcalloc(1,..) with kzalloc().

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2005-09-12 10:48:22 +02:00

1025 lines
29 KiB
C

/*
* US-X2Y AUDIO
* Copyright (c) 2002-2004 by Karsten Wiese
*
* based on
*
* (Tentative) USB Audio Driver for ALSA
*
* Main and PCM part
*
* Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
*
* Many codes borrowed from audio.c by
* Alan Cox (alan@lxorguk.ukuu.org.uk)
* Thomas Sailer (sailer@ife.ee.ethz.ch)
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <linux/interrupt.h>
#include <linux/usb.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "usx2y.h"
#include "usbusx2y.h"
#define USX2Y_NRPACKS 4 /* Default value used for nr of packs per urb.
1 to 4 have been tested ok on uhci.
To use 3 on ohci, you'd need a patch:
look for "0000425-linux-2.6.9-rc4-mm1_ohci-hcd.patch.gz" on
"https://bugtrack.alsa-project.org/alsa-bug/bug_view_page.php?bug_id=0000425"
.
1, 2 and 4 work out of the box on ohci, if I recall correctly.
Bigger is safer operation,
smaller gives lower latencies.
*/
#define USX2Y_NRPACKS_VARIABLE y /* If your system works ok with this module's parameter
nrpacks set to 1, you might as well comment
this #define out, and thereby produce smaller, faster code.
You'd also set USX2Y_NRPACKS to 1 then.
*/
#ifdef USX2Y_NRPACKS_VARIABLE
static int nrpacks = USX2Y_NRPACKS; /* number of packets per urb */
#define nr_of_packs() nrpacks
module_param(nrpacks, int, 0444);
MODULE_PARM_DESC(nrpacks, "Number of packets per URB.");
#else
#define nr_of_packs() USX2Y_NRPACKS
#endif
static int usX2Y_urb_capt_retire(snd_usX2Y_substream_t *subs)
{
struct urb *urb = subs->completed_urb;
snd_pcm_runtime_t *runtime = subs->pcm_substream->runtime;
unsigned char *cp;
int i, len, lens = 0, hwptr_done = subs->hwptr_done;
usX2Ydev_t *usX2Y = subs->usX2Y;
for (i = 0; i < nr_of_packs(); i++) {
cp = (unsigned char*)urb->transfer_buffer + urb->iso_frame_desc[i].offset;
if (urb->iso_frame_desc[i].status) { /* active? hmm, skip this */
snd_printk("activ frame status %i. Most propably some hardware problem.\n", urb->iso_frame_desc[i].status);
return urb->iso_frame_desc[i].status;
}
len = urb->iso_frame_desc[i].actual_length / usX2Y->stride;
if (! len) {
snd_printd("0 == len ERROR!\n");
continue;
}
/* copy a data chunk */
if ((hwptr_done + len) > runtime->buffer_size) {
int cnt = runtime->buffer_size - hwptr_done;
int blen = cnt * usX2Y->stride;
memcpy(runtime->dma_area + hwptr_done * usX2Y->stride, cp, blen);
memcpy(runtime->dma_area, cp + blen, len * usX2Y->stride - blen);
} else {
memcpy(runtime->dma_area + hwptr_done * usX2Y->stride, cp, len * usX2Y->stride);
}
lens += len;
if ((hwptr_done += len) >= runtime->buffer_size)
hwptr_done -= runtime->buffer_size;
}
subs->hwptr_done = hwptr_done;
subs->transfer_done += lens;
/* update the pointer, call callback if necessary */
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
snd_pcm_period_elapsed(subs->pcm_substream);
}
return 0;
}
/*
* prepare urb for playback data pipe
*
* we copy the data directly from the pcm buffer.
* the current position to be copied is held in hwptr field.
* since a urb can handle only a single linear buffer, if the total
* transferred area overflows the buffer boundary, we cannot send
* it directly from the buffer. thus the data is once copied to
* a temporary buffer and urb points to that.
*/
static int usX2Y_urb_play_prepare(snd_usX2Y_substream_t *subs,
struct urb *cap_urb,
struct urb *urb)
{
int count, counts, pack;
usX2Ydev_t* usX2Y = subs->usX2Y;
snd_pcm_runtime_t *runtime = subs->pcm_substream->runtime;
count = 0;
for (pack = 0; pack < nr_of_packs(); pack++) {
/* calculate the size of a packet */
counts = cap_urb->iso_frame_desc[pack].actual_length / usX2Y->stride;
count += counts;
if (counts < 43 || counts > 50) {
snd_printk("should not be here with counts=%i\n", counts);
return -EPIPE;
}
/* set up descriptor */
urb->iso_frame_desc[pack].offset = pack ?
urb->iso_frame_desc[pack - 1].offset + urb->iso_frame_desc[pack - 1].length :
0;
urb->iso_frame_desc[pack].length = cap_urb->iso_frame_desc[pack].actual_length;
}
if (atomic_read(&subs->state) >= state_PRERUNNING)
if (subs->hwptr + count > runtime->buffer_size) {
/* err, the transferred area goes over buffer boundary.
* copy the data to the temp buffer.
*/
int len;
len = runtime->buffer_size - subs->hwptr;
urb->transfer_buffer = subs->tmpbuf;
memcpy(subs->tmpbuf, runtime->dma_area + subs->hwptr * usX2Y->stride, len * usX2Y->stride);
memcpy(subs->tmpbuf + len * usX2Y->stride, runtime->dma_area, (count - len) * usX2Y->stride);
subs->hwptr += count;
subs->hwptr -= runtime->buffer_size;
} else {
/* set the buffer pointer */
urb->transfer_buffer = runtime->dma_area + subs->hwptr * usX2Y->stride;
if ((subs->hwptr += count) >= runtime->buffer_size)
subs->hwptr -= runtime->buffer_size;
}
else
urb->transfer_buffer = subs->tmpbuf;
urb->transfer_buffer_length = count * usX2Y->stride;
return 0;
}
/*
* process after playback data complete
*
* update the current position and call callback if a period is processed.
*/
static void usX2Y_urb_play_retire(snd_usX2Y_substream_t *subs, struct urb *urb)
{
snd_pcm_runtime_t *runtime = subs->pcm_substream->runtime;
int len = urb->actual_length / subs->usX2Y->stride;
subs->transfer_done += len;
subs->hwptr_done += len;
if (subs->hwptr_done >= runtime->buffer_size)
subs->hwptr_done -= runtime->buffer_size;
if (subs->transfer_done >= runtime->period_size) {
subs->transfer_done -= runtime->period_size;
snd_pcm_period_elapsed(subs->pcm_substream);
}
}
static int usX2Y_urb_submit(snd_usX2Y_substream_t *subs, struct urb *urb, int frame)
{
int err;
if (!urb)
return -ENODEV;
urb->start_frame = (frame + NRURBS * nr_of_packs()); // let hcd do rollover sanity checks
urb->hcpriv = NULL;
urb->dev = subs->usX2Y->chip.dev; /* we need to set this at each time */
if ((err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
snd_printk("usb_submit_urb() returned %i\n", err);
return err;
}
return 0;
}
static inline int usX2Y_usbframe_complete(snd_usX2Y_substream_t *capsubs, snd_usX2Y_substream_t *playbacksubs, int frame)
{
int err, state;
{
struct urb *urb = playbacksubs->completed_urb;
state = atomic_read(&playbacksubs->state);
if (NULL != urb) {
if (state == state_RUNNING)
usX2Y_urb_play_retire(playbacksubs, urb);
else
if (state >= state_PRERUNNING) {
atomic_inc(&playbacksubs->state);
}
} else {
switch (state) {
case state_STARTING1:
urb = playbacksubs->urb[0];
atomic_inc(&playbacksubs->state);
break;
case state_STARTING2:
urb = playbacksubs->urb[1];
atomic_inc(&playbacksubs->state);
break;
}
}
if (urb) {
if ((err = usX2Y_urb_play_prepare(playbacksubs, capsubs->completed_urb, urb)) ||
(err = usX2Y_urb_submit(playbacksubs, urb, frame))) {
return err;
}
}
playbacksubs->completed_urb = NULL;
}
state = atomic_read(&capsubs->state);
if (state >= state_PREPARED) {
if (state == state_RUNNING) {
if ((err = usX2Y_urb_capt_retire(capsubs)))
return err;
} else
if (state >= state_PRERUNNING) {
atomic_inc(&capsubs->state);
}
if ((err = usX2Y_urb_submit(capsubs, capsubs->completed_urb, frame)))
return err;
}
capsubs->completed_urb = NULL;
return 0;
}
static void usX2Y_clients_stop(usX2Ydev_t *usX2Y)
{
int s, u;
for (s = 0; s < 4; s++) {
snd_usX2Y_substream_t *subs = usX2Y->subs[s];
if (subs) {
snd_printdd("%i %p state=%i\n", s, subs, atomic_read(&subs->state));
atomic_set(&subs->state, state_STOPPED);
}
}
for (s = 0; s < 4; s++) {
snd_usX2Y_substream_t *subs = usX2Y->subs[s];
if (subs) {
if (atomic_read(&subs->state) >= state_PRERUNNING) {
snd_pcm_stop(subs->pcm_substream, SNDRV_PCM_STATE_XRUN);
}
for (u = 0; u < NRURBS; u++) {
struct urb *urb = subs->urb[u];
if (NULL != urb)
snd_printdd("%i status=%i start_frame=%i\n", u, urb->status, urb->start_frame);
}
}
}
usX2Y->prepare_subs = NULL;
wake_up(&usX2Y->prepare_wait_queue);
}
static void usX2Y_error_urb_status(usX2Ydev_t *usX2Y, snd_usX2Y_substream_t *subs, struct urb *urb)
{
snd_printk("ep=%i stalled with status=%i\n", subs->endpoint, urb->status);
urb->status = 0;
usX2Y_clients_stop(usX2Y);
}
static void usX2Y_error_sequence(usX2Ydev_t *usX2Y, snd_usX2Y_substream_t *subs, struct urb *urb)
{
snd_printk("Sequence Error!(hcd_frame=%i ep=%i%s;wait=%i,frame=%i).\n"
"Most propably some urb of usb-frame %i is still missing.\n"
"Cause could be too long delays in usb-hcd interrupt handling.\n",
usb_get_current_frame_number(usX2Y->chip.dev),
subs->endpoint, usb_pipein(urb->pipe) ? "in" : "out", usX2Y->wait_iso_frame, urb->start_frame, usX2Y->wait_iso_frame);
usX2Y_clients_stop(usX2Y);
}
static void i_usX2Y_urb_complete(struct urb *urb, struct pt_regs *regs)
{
snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t*)urb->context;
usX2Ydev_t *usX2Y = subs->usX2Y;
if (unlikely(atomic_read(&subs->state) < state_PREPARED)) {
snd_printdd("hcd_frame=%i ep=%i%s status=%i start_frame=%i\n", usb_get_current_frame_number(usX2Y->chip.dev), subs->endpoint, usb_pipein(urb->pipe) ? "in" : "out", urb->status, urb->start_frame);
return;
}
if (unlikely(urb->status)) {
usX2Y_error_urb_status(usX2Y, subs, urb);
return;
}
if (likely((0xFFFF & urb->start_frame) == usX2Y->wait_iso_frame))
subs->completed_urb = urb;
else {
usX2Y_error_sequence(usX2Y, subs, urb);
return;
}
{
snd_usX2Y_substream_t *capsubs = usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE],
*playbacksubs = usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK];
if (capsubs->completed_urb && atomic_read(&capsubs->state) >= state_PREPARED &&
(playbacksubs->completed_urb || atomic_read(&playbacksubs->state) < state_PREPARED)) {
if (!usX2Y_usbframe_complete(capsubs, playbacksubs, urb->start_frame)) {
if (nr_of_packs() <= urb->start_frame &&
urb->start_frame <= (2 * nr_of_packs() - 1)) // uhci and ohci
usX2Y->wait_iso_frame = urb->start_frame - nr_of_packs();
else
usX2Y->wait_iso_frame += nr_of_packs();
} else {
snd_printdd("\n");
usX2Y_clients_stop(usX2Y);
}
}
}
}
static void usX2Y_urbs_set_complete(usX2Ydev_t * usX2Y, void (*complete)(struct urb *, struct pt_regs *))
{
int s, u;
for (s = 0; s < 4; s++) {
snd_usX2Y_substream_t *subs = usX2Y->subs[s];
if (NULL != subs)
for (u = 0; u < NRURBS; u++) {
struct urb * urb = subs->urb[u];
if (NULL != urb)
urb->complete = complete;
}
}
}
static void usX2Y_subs_startup_finish(usX2Ydev_t * usX2Y)
{
usX2Y_urbs_set_complete(usX2Y, i_usX2Y_urb_complete);
usX2Y->prepare_subs = NULL;
}
static void i_usX2Y_subs_startup(struct urb *urb, struct pt_regs *regs)
{
snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t*)urb->context;
usX2Ydev_t *usX2Y = subs->usX2Y;
snd_usX2Y_substream_t *prepare_subs = usX2Y->prepare_subs;
if (NULL != prepare_subs)
if (urb->start_frame == prepare_subs->urb[0]->start_frame) {
usX2Y_subs_startup_finish(usX2Y);
atomic_inc(&prepare_subs->state);
wake_up(&usX2Y->prepare_wait_queue);
}
i_usX2Y_urb_complete(urb, regs);
}
static void usX2Y_subs_prepare(snd_usX2Y_substream_t *subs)
{
snd_printdd("usX2Y_substream_prepare(%p) ep=%i urb0=%p urb1=%p\n", subs, subs->endpoint, subs->urb[0], subs->urb[1]);
/* reset the pointer */
subs->hwptr = 0;
subs->hwptr_done = 0;
subs->transfer_done = 0;
}
static void usX2Y_urb_release(struct urb** urb, int free_tb)
{
if (*urb) {
usb_kill_urb(*urb);
if (free_tb)
kfree((*urb)->transfer_buffer);
usb_free_urb(*urb);
*urb = NULL;
}
}
/*
* release a substreams urbs
*/
static void usX2Y_urbs_release(snd_usX2Y_substream_t *subs)
{
int i;
snd_printdd("usX2Y_urbs_release() %i\n", subs->endpoint);
for (i = 0; i < NRURBS; i++)
usX2Y_urb_release(subs->urb + i, subs != subs->usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK]);
kfree(subs->tmpbuf);
subs->tmpbuf = NULL;
}
/*
* initialize a substream's urbs
*/
static int usX2Y_urbs_allocate(snd_usX2Y_substream_t *subs)
{
int i;
unsigned int pipe;
int is_playback = subs == subs->usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK];
struct usb_device *dev = subs->usX2Y->chip.dev;
pipe = is_playback ? usb_sndisocpipe(dev, subs->endpoint) :
usb_rcvisocpipe(dev, subs->endpoint);
subs->maxpacksize = usb_maxpacket(dev, pipe, is_playback);
if (!subs->maxpacksize)
return -EINVAL;
if (is_playback && NULL == subs->tmpbuf) { /* allocate a temporary buffer for playback */
subs->tmpbuf = kcalloc(nr_of_packs(), subs->maxpacksize, GFP_KERNEL);
if (NULL == subs->tmpbuf) {
snd_printk(KERN_ERR "cannot malloc tmpbuf\n");
return -ENOMEM;
}
}
/* allocate and initialize data urbs */
for (i = 0; i < NRURBS; i++) {
struct urb** purb = subs->urb + i;
if (*purb) {
usb_kill_urb(*purb);
continue;
}
*purb = usb_alloc_urb(nr_of_packs(), GFP_KERNEL);
if (NULL == *purb) {
usX2Y_urbs_release(subs);
return -ENOMEM;
}
if (!is_playback && !(*purb)->transfer_buffer) {
/* allocate a capture buffer per urb */
(*purb)->transfer_buffer = kmalloc(subs->maxpacksize * nr_of_packs(), GFP_KERNEL);
if (NULL == (*purb)->transfer_buffer) {
usX2Y_urbs_release(subs);
return -ENOMEM;
}
}
(*purb)->dev = dev;
(*purb)->pipe = pipe;
(*purb)->number_of_packets = nr_of_packs();
(*purb)->context = subs;
(*purb)->interval = 1;
(*purb)->complete = i_usX2Y_subs_startup;
}
return 0;
}
static void usX2Y_subs_startup(snd_usX2Y_substream_t *subs)
{
usX2Ydev_t *usX2Y = subs->usX2Y;
usX2Y->prepare_subs = subs;
subs->urb[0]->start_frame = -1;
wmb();
usX2Y_urbs_set_complete(usX2Y, i_usX2Y_subs_startup);
}
static int usX2Y_urbs_start(snd_usX2Y_substream_t *subs)
{
int i, err;
usX2Ydev_t *usX2Y = subs->usX2Y;
if ((err = usX2Y_urbs_allocate(subs)) < 0)
return err;
subs->completed_urb = NULL;
for (i = 0; i < 4; i++) {
snd_usX2Y_substream_t *subs = usX2Y->subs[i];
if (subs != NULL && atomic_read(&subs->state) >= state_PREPARED)
goto start;
}
usX2Y->wait_iso_frame = -1;
start:
{
usX2Y_subs_startup(subs);
for (i = 0; i < NRURBS; i++) {
struct urb *urb = subs->urb[i];
if (usb_pipein(urb->pipe)) {
unsigned long pack;
if (0 == i)
atomic_set(&subs->state, state_STARTING3);
urb->dev = usX2Y->chip.dev;
urb->transfer_flags = URB_ISO_ASAP;
for (pack = 0; pack < nr_of_packs(); pack++) {
urb->iso_frame_desc[pack].offset = subs->maxpacksize * pack;
urb->iso_frame_desc[pack].length = subs->maxpacksize;
}
urb->transfer_buffer_length = subs->maxpacksize * nr_of_packs();
if ((err = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
snd_printk (KERN_ERR "cannot submit datapipe for urb %d, err = %d\n", i, err);
err = -EPIPE;
goto cleanup;
} else {
if (0 > usX2Y->wait_iso_frame)
usX2Y->wait_iso_frame = urb->start_frame;
}
urb->transfer_flags = 0;
} else {
atomic_set(&subs->state, state_STARTING1);
break;
}
}
err = 0;
wait_event(usX2Y->prepare_wait_queue, NULL == usX2Y->prepare_subs);
if (atomic_read(&subs->state) != state_PREPARED) {
err = -EPIPE;
}
cleanup:
if (err) {
usX2Y_subs_startup_finish(usX2Y);
usX2Y_clients_stop(usX2Y); // something is completely wroong > stop evrything
}
}
return err;
}
/*
* return the current pcm pointer. just return the hwptr_done value.
*/
static snd_pcm_uframes_t snd_usX2Y_pcm_pointer(snd_pcm_substream_t *substream)
{
snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t *)substream->runtime->private_data;
return subs->hwptr_done;
}
/*
* start/stop substream
*/
static int snd_usX2Y_pcm_trigger(snd_pcm_substream_t *substream, int cmd)
{
snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t *)substream->runtime->private_data;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
snd_printdd("snd_usX2Y_pcm_trigger(START)\n");
if (atomic_read(&subs->state) == state_PREPARED &&
atomic_read(&subs->usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE]->state) >= state_PREPARED) {
atomic_set(&subs->state, state_PRERUNNING);
} else {
snd_printdd("\n");
return -EPIPE;
}
break;
case SNDRV_PCM_TRIGGER_STOP:
snd_printdd("snd_usX2Y_pcm_trigger(STOP)\n");
if (atomic_read(&subs->state) >= state_PRERUNNING)
atomic_set(&subs->state, state_PREPARED);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* allocate a buffer, setup samplerate
*
* so far we use a physically linear buffer although packetize transfer
* doesn't need a continuous area.
* if sg buffer is supported on the later version of alsa, we'll follow
* that.
*/
static struct s_c2
{
char c1, c2;
}
SetRate44100[] =
{
{ 0x14, 0x08}, // this line sets 44100, well actually a little less
{ 0x18, 0x40}, // only tascam / frontier design knows the further lines .......
{ 0x18, 0x42},
{ 0x18, 0x45},
{ 0x18, 0x46},
{ 0x18, 0x48},
{ 0x18, 0x4A},
{ 0x18, 0x4C},
{ 0x18, 0x4E},
{ 0x18, 0x50},
{ 0x18, 0x52},
{ 0x18, 0x54},
{ 0x18, 0x56},
{ 0x18, 0x58},
{ 0x18, 0x5A},
{ 0x18, 0x5C},
{ 0x18, 0x5E},
{ 0x18, 0x60},
{ 0x18, 0x62},
{ 0x18, 0x64},
{ 0x18, 0x66},
{ 0x18, 0x68},
{ 0x18, 0x6A},
{ 0x18, 0x6C},
{ 0x18, 0x6E},
{ 0x18, 0x70},
{ 0x18, 0x72},
{ 0x18, 0x74},
{ 0x18, 0x76},
{ 0x18, 0x78},
{ 0x18, 0x7A},
{ 0x18, 0x7C},
{ 0x18, 0x7E}
};
static struct s_c2 SetRate48000[] =
{
{ 0x14, 0x09}, // this line sets 48000, well actually a little less
{ 0x18, 0x40}, // only tascam / frontier design knows the further lines .......
{ 0x18, 0x42},
{ 0x18, 0x45},
{ 0x18, 0x46},
{ 0x18, 0x48},
{ 0x18, 0x4A},
{ 0x18, 0x4C},
{ 0x18, 0x4E},
{ 0x18, 0x50},
{ 0x18, 0x52},
{ 0x18, 0x54},
{ 0x18, 0x56},
{ 0x18, 0x58},
{ 0x18, 0x5A},
{ 0x18, 0x5C},
{ 0x18, 0x5E},
{ 0x18, 0x60},
{ 0x18, 0x62},
{ 0x18, 0x64},
{ 0x18, 0x66},
{ 0x18, 0x68},
{ 0x18, 0x6A},
{ 0x18, 0x6C},
{ 0x18, 0x6E},
{ 0x18, 0x70},
{ 0x18, 0x73},
{ 0x18, 0x74},
{ 0x18, 0x76},
{ 0x18, 0x78},
{ 0x18, 0x7A},
{ 0x18, 0x7C},
{ 0x18, 0x7E}
};
#define NOOF_SETRATE_URBS ARRAY_SIZE(SetRate48000)
static void i_usX2Y_04Int(struct urb* urb, struct pt_regs *regs)
{
usX2Ydev_t* usX2Y = urb->context;
if (urb->status) {
snd_printk("snd_usX2Y_04Int() urb->status=%i\n", urb->status);
}
if (0 == --usX2Y->US04->len)
wake_up(&usX2Y->In04WaitQueue);
}
static int usX2Y_rate_set(usX2Ydev_t *usX2Y, int rate)
{
int err = 0, i;
snd_usX2Y_urbSeq_t *us = NULL;
int *usbdata = NULL;
struct s_c2 *ra = rate == 48000 ? SetRate48000 : SetRate44100;
if (usX2Y->rate != rate) {
us = kmalloc(sizeof(*us) + sizeof(struct urb*) * NOOF_SETRATE_URBS, GFP_KERNEL);
if (NULL == us) {
err = -ENOMEM;
goto cleanup;
}
memset(us, 0, sizeof(*us) + sizeof(struct urb*) * NOOF_SETRATE_URBS);
usbdata = kmalloc(sizeof(int)*NOOF_SETRATE_URBS, GFP_KERNEL);
if (NULL == usbdata) {
err = -ENOMEM;
goto cleanup;
}
for (i = 0; i < NOOF_SETRATE_URBS; ++i) {
if (NULL == (us->urb[i] = usb_alloc_urb(0, GFP_KERNEL))) {
err = -ENOMEM;
goto cleanup;
}
((char*)(usbdata + i))[0] = ra[i].c1;
((char*)(usbdata + i))[1] = ra[i].c2;
usb_fill_bulk_urb(us->urb[i], usX2Y->chip.dev, usb_sndbulkpipe(usX2Y->chip.dev, 4),
usbdata + i, 2, i_usX2Y_04Int, usX2Y);
#ifdef OLD_USB
us->urb[i]->transfer_flags = USB_QUEUE_BULK;
#endif
}
us->submitted = 0;
us->len = NOOF_SETRATE_URBS;
usX2Y->US04 = us;
wait_event_timeout(usX2Y->In04WaitQueue, 0 == us->len, HZ);
usX2Y->US04 = NULL;
if (us->len)
err = -ENODEV;
cleanup:
if (us) {
us->submitted = 2*NOOF_SETRATE_URBS;
for (i = 0; i < NOOF_SETRATE_URBS; ++i) {
struct urb *urb = us->urb[i];
if (urb->status) {
if (!err)
err = -ENODEV;
usb_kill_urb(urb);
}
usb_free_urb(urb);
}
usX2Y->US04 = NULL;
kfree(usbdata);
kfree(us);
if (!err) {
usX2Y->rate = rate;
}
}
}
return err;
}
static int usX2Y_format_set(usX2Ydev_t *usX2Y, snd_pcm_format_t format)
{
int alternate, err;
struct list_head* p;
if (format == SNDRV_PCM_FORMAT_S24_3LE) {
alternate = 2;
usX2Y->stride = 6;
} else {
alternate = 1;
usX2Y->stride = 4;
}
list_for_each(p, &usX2Y->chip.midi_list) {
snd_usbmidi_input_stop(p);
}
usb_kill_urb(usX2Y->In04urb);
if ((err = usb_set_interface(usX2Y->chip.dev, 0, alternate))) {
snd_printk("usb_set_interface error \n");
return err;
}
usX2Y->In04urb->dev = usX2Y->chip.dev;
err = usb_submit_urb(usX2Y->In04urb, GFP_KERNEL);
list_for_each(p, &usX2Y->chip.midi_list) {
snd_usbmidi_input_start(p);
}
usX2Y->format = format;
usX2Y->rate = 0;
return err;
}
static int snd_usX2Y_pcm_hw_params(snd_pcm_substream_t *substream,
snd_pcm_hw_params_t *hw_params)
{
int err = 0;
unsigned int rate = params_rate(hw_params);
snd_pcm_format_t format = params_format(hw_params);
snd_printdd("snd_usX2Y_hw_params(%p, %p)\n", substream, hw_params);
{ // all pcm substreams off one usX2Y have to operate at the same rate & format
snd_card_t *card = substream->pstr->pcm->card;
struct list_head *list;
list_for_each(list, &card->devices) {
snd_device_t *dev;
snd_pcm_t *pcm;
int s;
dev = snd_device(list);
if (dev->type != SNDRV_DEV_PCM)
continue;
pcm = dev->device_data;
for (s = 0; s < 2; ++s) {
snd_pcm_substream_t *test_substream;
test_substream = pcm->streams[s].substream;
if (test_substream && test_substream != substream &&
test_substream->runtime &&
((test_substream->runtime->format &&
test_substream->runtime->format != format) ||
(test_substream->runtime->rate &&
test_substream->runtime->rate != rate)))
return -EINVAL;
}
}
}
if (0 > (err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)))) {
snd_printk("snd_pcm_lib_malloc_pages(%p, %i) returned %i\n", substream, params_buffer_bytes(hw_params), err);
return err;
}
return 0;
}
/*
* free the buffer
*/
static int snd_usX2Y_pcm_hw_free(snd_pcm_substream_t *substream)
{
snd_pcm_runtime_t *runtime = substream->runtime;
snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t *)runtime->private_data;
down(&subs->usX2Y->prepare_mutex);
snd_printdd("snd_usX2Y_hw_free(%p)\n", substream);
if (SNDRV_PCM_STREAM_PLAYBACK == substream->stream) {
snd_usX2Y_substream_t *cap_subs = subs->usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE];
atomic_set(&subs->state, state_STOPPED);
usX2Y_urbs_release(subs);
if (!cap_subs->pcm_substream ||
!cap_subs->pcm_substream->runtime ||
!cap_subs->pcm_substream->runtime->status ||
cap_subs->pcm_substream->runtime->status->state < SNDRV_PCM_STATE_PREPARED) {
atomic_set(&cap_subs->state, state_STOPPED);
usX2Y_urbs_release(cap_subs);
}
} else {
snd_usX2Y_substream_t *playback_subs = subs->usX2Y->subs[SNDRV_PCM_STREAM_PLAYBACK];
if (atomic_read(&playback_subs->state) < state_PREPARED) {
atomic_set(&subs->state, state_STOPPED);
usX2Y_urbs_release(subs);
}
}
up(&subs->usX2Y->prepare_mutex);
return snd_pcm_lib_free_pages(substream);
}
/*
* prepare callback
*
* set format and initialize urbs
*/
static int snd_usX2Y_pcm_prepare(snd_pcm_substream_t *substream)
{
snd_pcm_runtime_t *runtime = substream->runtime;
snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t *)runtime->private_data;
usX2Ydev_t *usX2Y = subs->usX2Y;
snd_usX2Y_substream_t *capsubs = subs->usX2Y->subs[SNDRV_PCM_STREAM_CAPTURE];
int err = 0;
snd_printdd("snd_usX2Y_pcm_prepare(%p)\n", substream);
down(&usX2Y->prepare_mutex);
usX2Y_subs_prepare(subs);
// Start hardware streams
// SyncStream first....
if (atomic_read(&capsubs->state) < state_PREPARED) {
if (usX2Y->format != runtime->format)
if ((err = usX2Y_format_set(usX2Y, runtime->format)) < 0)
goto up_prepare_mutex;
if (usX2Y->rate != runtime->rate)
if ((err = usX2Y_rate_set(usX2Y, runtime->rate)) < 0)
goto up_prepare_mutex;
snd_printdd("starting capture pipe for %s\n", subs == capsubs ? "self" : "playpipe");
if (0 > (err = usX2Y_urbs_start(capsubs)))
goto up_prepare_mutex;
}
if (subs != capsubs && atomic_read(&subs->state) < state_PREPARED)
err = usX2Y_urbs_start(subs);
up_prepare_mutex:
up(&usX2Y->prepare_mutex);
return err;
}
static snd_pcm_hardware_t snd_usX2Y_2c =
{
.info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID),
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_3LE,
.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.rate_min = 44100,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = (2*128*1024),
.period_bytes_min = 64,
.period_bytes_max = (128*1024),
.periods_min = 2,
.periods_max = 1024,
.fifo_size = 0
};
static int snd_usX2Y_pcm_open(snd_pcm_substream_t *substream)
{
snd_usX2Y_substream_t *subs = ((snd_usX2Y_substream_t **)
snd_pcm_substream_chip(substream))[substream->stream];
snd_pcm_runtime_t *runtime = substream->runtime;
if (subs->usX2Y->chip_status & USX2Y_STAT_CHIP_MMAP_PCM_URBS)
return -EBUSY;
runtime->hw = snd_usX2Y_2c;
runtime->private_data = subs;
subs->pcm_substream = substream;
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 1000, 200000);
return 0;
}
static int snd_usX2Y_pcm_close(snd_pcm_substream_t *substream)
{
snd_pcm_runtime_t *runtime = substream->runtime;
snd_usX2Y_substream_t *subs = (snd_usX2Y_substream_t *)runtime->private_data;
int err = 0;
subs->pcm_substream = NULL;
return err;
}
static snd_pcm_ops_t snd_usX2Y_pcm_ops =
{
.open = snd_usX2Y_pcm_open,
.close = snd_usX2Y_pcm_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_usX2Y_pcm_hw_params,
.hw_free = snd_usX2Y_pcm_hw_free,
.prepare = snd_usX2Y_pcm_prepare,
.trigger = snd_usX2Y_pcm_trigger,
.pointer = snd_usX2Y_pcm_pointer,
};
/*
* free a usb stream instance
*/
static void usX2Y_audio_stream_free(snd_usX2Y_substream_t **usX2Y_substream)
{
if (NULL != usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK]) {
kfree(usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK]);
usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK] = NULL;
}
kfree(usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE]);
usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE] = NULL;
}
static void snd_usX2Y_pcm_private_free(snd_pcm_t *pcm)
{
snd_usX2Y_substream_t **usX2Y_stream = pcm->private_data;
if (usX2Y_stream) {
snd_pcm_lib_preallocate_free_for_all(pcm);
usX2Y_audio_stream_free(usX2Y_stream);
}
}
static int usX2Y_audio_stream_new(snd_card_t *card, int playback_endpoint, int capture_endpoint)
{
snd_pcm_t *pcm;
int err, i;
snd_usX2Y_substream_t **usX2Y_substream =
usX2Y(card)->subs + 2 * usX2Y(card)->chip.pcm_devs;
for (i = playback_endpoint ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
i <= SNDRV_PCM_STREAM_CAPTURE; ++i) {
usX2Y_substream[i] = kzalloc(sizeof(snd_usX2Y_substream_t), GFP_KERNEL);
if (NULL == usX2Y_substream[i]) {
snd_printk(KERN_ERR "cannot malloc\n");
return -ENOMEM;
}
usX2Y_substream[i]->usX2Y = usX2Y(card);
}
if (playback_endpoint)
usX2Y_substream[SNDRV_PCM_STREAM_PLAYBACK]->endpoint = playback_endpoint;
usX2Y_substream[SNDRV_PCM_STREAM_CAPTURE]->endpoint = capture_endpoint;
err = snd_pcm_new(card, NAME_ALLCAPS" Audio", usX2Y(card)->chip.pcm_devs,
playback_endpoint ? 1 : 0, 1,
&pcm);
if (err < 0) {
usX2Y_audio_stream_free(usX2Y_substream);
return err;
}
if (playback_endpoint)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_usX2Y_pcm_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_usX2Y_pcm_ops);
pcm->private_data = usX2Y_substream;
pcm->private_free = snd_usX2Y_pcm_private_free;
pcm->info_flags = 0;
sprintf(pcm->name, NAME_ALLCAPS" Audio #%d", usX2Y(card)->chip.pcm_devs);
if ((playback_endpoint &&
0 > (err = snd_pcm_lib_preallocate_pages(pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream,
SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
64*1024, 128*1024))) ||
0 > (err = snd_pcm_lib_preallocate_pages(pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream,
SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
64*1024, 128*1024))) {
snd_usX2Y_pcm_private_free(pcm);
return err;
}
usX2Y(card)->chip.pcm_devs++;
return 0;
}
/*
* create a chip instance and set its names.
*/
int usX2Y_audio_create(snd_card_t* card)
{
int err = 0;
INIT_LIST_HEAD(&usX2Y(card)->chip.pcm_list);
if (0 > (err = usX2Y_audio_stream_new(card, 0xA, 0x8)))
return err;
if (le16_to_cpu(usX2Y(card)->chip.dev->descriptor.idProduct) == USB_ID_US428)
if (0 > (err = usX2Y_audio_stream_new(card, 0, 0xA)))
return err;
if (le16_to_cpu(usX2Y(card)->chip.dev->descriptor.idProduct) != USB_ID_US122)
err = usX2Y_rate_set(usX2Y(card), 44100); // Lets us428 recognize output-volume settings, disturbs us122.
return err;
}