1da177e4c3
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
797 lines
21 KiB
C
797 lines
21 KiB
C
/*
|
||
* arch/v850/kernel/mb_a_pci.c -- PCI support for Midas lab RTE-MOTHER-A board
|
||
*
|
||
* Copyright (C) 2001,02,03 NEC Electronics Corporation
|
||
* Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org>
|
||
*
|
||
* This file is subject to the terms and conditions of the GNU General
|
||
* Public License. See the file COPYING in the main directory of this
|
||
* archive for more details.
|
||
*
|
||
* Written by Miles Bader <miles@gnu.org>
|
||
*/
|
||
|
||
#include <linux/config.h>
|
||
#include <linux/kernel.h>
|
||
#include <linux/module.h>
|
||
#include <linux/init.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/spinlock.h>
|
||
#include <linux/pci.h>
|
||
|
||
#include <asm/machdep.h>
|
||
|
||
/* __nomods_init is like __devinit, but is a no-op when modules are enabled.
|
||
This is used by some routines that can be called either during boot
|
||
or by a module. */
|
||
#ifdef CONFIG_MODULES
|
||
#define __nomods_init /*nothing*/
|
||
#else
|
||
#define __nomods_init __devinit
|
||
#endif
|
||
|
||
/* PCI devices on the Mother-A board can only do DMA to/from the MB SRAM
|
||
(the RTE-V850E/MA1-CB cpu board doesn't support PCI access to
|
||
CPU-board memory), and since linux DMA buffers are allocated in
|
||
normal kernel memory, we basically have to copy DMA blocks around
|
||
(this is like a `bounce buffer'). When a DMA block is `mapped', we
|
||
allocate an identically sized block in MB SRAM, and if we're doing
|
||
output to the device, copy the CPU-memory block to the MB-SRAM block.
|
||
When an active block is `unmapped', we will copy the block back to
|
||
CPU memory if necessary, and then deallocate the MB SRAM block.
|
||
Ack. */
|
||
|
||
/* Where the motherboard SRAM is in the PCI-bus address space (the
|
||
first 512K of it is also mapped at PCI address 0). */
|
||
#define PCI_MB_SRAM_ADDR 0x800000
|
||
|
||
/* Convert CPU-view MB SRAM address to/from PCI-view addresses of the
|
||
same memory. */
|
||
#define MB_SRAM_TO_PCI(mb_sram_addr) \
|
||
((dma_addr_t)mb_sram_addr - MB_A_SRAM_ADDR + PCI_MB_SRAM_ADDR)
|
||
#define PCI_TO_MB_SRAM(pci_addr) \
|
||
(void *)(pci_addr - PCI_MB_SRAM_ADDR + MB_A_SRAM_ADDR)
|
||
|
||
static void pcibios_assign_resources (void);
|
||
|
||
struct mb_pci_dev_irq {
|
||
unsigned dev; /* PCI device number */
|
||
unsigned irq_base; /* First IRQ */
|
||
unsigned query_pin; /* True if we should read the device's
|
||
Interrupt Pin info, and allocate
|
||
interrupt IRQ_BASE + PIN. */
|
||
};
|
||
|
||
/* PCI interrupts are mapped statically to GBUS interrupts. */
|
||
static struct mb_pci_dev_irq mb_pci_dev_irqs[] = {
|
||
/* Motherboard SB82558 ethernet controller */
|
||
{ 10, IRQ_MB_A_LAN, 0 },
|
||
/* PCI slot 1 */
|
||
{ 8, IRQ_MB_A_PCI1(0), 1 },
|
||
/* PCI slot 2 */
|
||
{ 9, IRQ_MB_A_PCI2(0), 1 }
|
||
};
|
||
#define NUM_MB_PCI_DEV_IRQS \
|
||
(sizeof mb_pci_dev_irqs / sizeof mb_pci_dev_irqs[0])
|
||
|
||
|
||
/* PCI configuration primitives. */
|
||
|
||
#define CONFIG_DMCFGA(bus, devfn, offs) \
|
||
(0x80000000 \
|
||
| ((offs) & ~0x3) \
|
||
| ((devfn) << 8) \
|
||
| ((bus)->number << 16))
|
||
|
||
static int
|
||
mb_pci_read (struct pci_bus *bus, unsigned devfn, int offs, int size, u32 *rval)
|
||
{
|
||
u32 addr;
|
||
int flags;
|
||
|
||
local_irq_save (flags);
|
||
|
||
MB_A_PCI_PCICR = 0x7;
|
||
MB_A_PCI_DMCFGA = CONFIG_DMCFGA (bus, devfn, offs);
|
||
|
||
addr = MB_A_PCI_IO_ADDR + (offs & 0x3);
|
||
|
||
switch (size) {
|
||
case 1: *rval = *(volatile u8 *)addr; break;
|
||
case 2: *rval = *(volatile u16 *)addr; break;
|
||
case 4: *rval = *(volatile u32 *)addr; break;
|
||
}
|
||
|
||
if (MB_A_PCI_PCISR & 0x2000) {
|
||
MB_A_PCI_PCISR = 0x2000;
|
||
*rval = ~0;
|
||
}
|
||
|
||
MB_A_PCI_DMCFGA = 0;
|
||
|
||
local_irq_restore (flags);
|
||
|
||
return PCIBIOS_SUCCESSFUL;
|
||
}
|
||
|
||
static int
|
||
mb_pci_write (struct pci_bus *bus, unsigned devfn, int offs, int size, u32 val)
|
||
{
|
||
u32 addr;
|
||
int flags;
|
||
|
||
local_irq_save (flags);
|
||
|
||
MB_A_PCI_PCICR = 0x7;
|
||
MB_A_PCI_DMCFGA = CONFIG_DMCFGA (bus, devfn, offs);
|
||
|
||
addr = MB_A_PCI_IO_ADDR + (offs & 0x3);
|
||
|
||
switch (size) {
|
||
case 1: *(volatile u8 *)addr = val; break;
|
||
case 2: *(volatile u16 *)addr = val; break;
|
||
case 4: *(volatile u32 *)addr = val; break;
|
||
}
|
||
|
||
if (MB_A_PCI_PCISR & 0x2000)
|
||
MB_A_PCI_PCISR = 0x2000;
|
||
|
||
MB_A_PCI_DMCFGA = 0;
|
||
|
||
local_irq_restore (flags);
|
||
|
||
return PCIBIOS_SUCCESSFUL;
|
||
}
|
||
|
||
static struct pci_ops mb_pci_config_ops = {
|
||
.read = mb_pci_read,
|
||
.write = mb_pci_write,
|
||
};
|
||
|
||
|
||
/* PCI Initialization. */
|
||
|
||
static struct pci_bus *mb_pci_bus = 0;
|
||
|
||
/* Do initial PCI setup. */
|
||
static int __devinit pcibios_init (void)
|
||
{
|
||
u32 id = MB_A_PCI_PCIHIDR;
|
||
u16 vendor = id & 0xFFFF;
|
||
u16 device = (id >> 16) & 0xFFFF;
|
||
|
||
if (vendor == PCI_VENDOR_ID_PLX && device == PCI_DEVICE_ID_PLX_9080) {
|
||
printk (KERN_INFO
|
||
"PCI: PLX Technology PCI9080 HOST/PCI bridge\n");
|
||
|
||
MB_A_PCI_PCICR = 0x147;
|
||
|
||
MB_A_PCI_PCIBAR0 = 0x007FFF00;
|
||
MB_A_PCI_PCIBAR1 = 0x0000FF00;
|
||
MB_A_PCI_PCIBAR2 = 0x00800000;
|
||
|
||
MB_A_PCI_PCILTR = 0x20;
|
||
|
||
MB_A_PCI_PCIPBAM |= 0x3;
|
||
|
||
MB_A_PCI_PCISR = ~0; /* Clear errors. */
|
||
|
||
/* Reprogram the motherboard's IO/config address space,
|
||
as we don't support the GCS7 address space that the
|
||
default uses. */
|
||
|
||
/* Significant address bits used for decoding PCI GCS5 space
|
||
accessess. */
|
||
MB_A_PCI_DMRR = ~(MB_A_PCI_MEM_SIZE - 1);
|
||
|
||
/* I don't understand this, but the SolutionGear example code
|
||
uses such an offset, and it doesn't work without it. XXX */
|
||
#if GCS5_SIZE == 0x00800000
|
||
#define GCS5_CFG_OFFS 0x00800000
|
||
#else
|
||
#define GCS5_CFG_OFFS 0
|
||
#endif
|
||
|
||
/* Address bit values for matching. Note that we have to give
|
||
the address from the motherboard's point of view, which is
|
||
different than the CPU's. */
|
||
/* PCI memory space. */
|
||
MB_A_PCI_DMLBAM = GCS5_CFG_OFFS + 0x0;
|
||
/* PCI I/O space. */
|
||
MB_A_PCI_DMLBAI =
|
||
GCS5_CFG_OFFS + (MB_A_PCI_IO_ADDR - GCS5_ADDR);
|
||
|
||
mb_pci_bus = pci_scan_bus (0, &mb_pci_config_ops, 0);
|
||
|
||
pcibios_assign_resources ();
|
||
} else
|
||
printk (KERN_ERR "PCI: HOST/PCI bridge not found\n");
|
||
|
||
return 0;
|
||
}
|
||
|
||
subsys_initcall (pcibios_init);
|
||
|
||
char __devinit *pcibios_setup (char *option)
|
||
{
|
||
/* Don't handle any options. */
|
||
return option;
|
||
}
|
||
|
||
|
||
int __nomods_init pcibios_enable_device (struct pci_dev *dev, int mask)
|
||
{
|
||
u16 cmd, old_cmd;
|
||
int idx;
|
||
struct resource *r;
|
||
|
||
pci_read_config_word(dev, PCI_COMMAND, &cmd);
|
||
old_cmd = cmd;
|
||
for (idx = 0; idx < 6; idx++) {
|
||
r = &dev->resource[idx];
|
||
if (!r->start && r->end) {
|
||
printk(KERN_ERR "PCI: Device %s not available because "
|
||
"of resource collisions\n", pci_name(dev));
|
||
return -EINVAL;
|
||
}
|
||
if (r->flags & IORESOURCE_IO)
|
||
cmd |= PCI_COMMAND_IO;
|
||
if (r->flags & IORESOURCE_MEM)
|
||
cmd |= PCI_COMMAND_MEMORY;
|
||
}
|
||
if (cmd != old_cmd) {
|
||
printk("PCI: Enabling device %s (%04x -> %04x)\n",
|
||
pci_name(dev), old_cmd, cmd);
|
||
pci_write_config_word(dev, PCI_COMMAND, cmd);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Resource allocation. */
|
||
static void __devinit pcibios_assign_resources (void)
|
||
{
|
||
struct pci_dev *dev = NULL;
|
||
struct resource *r;
|
||
|
||
for_each_pci_dev(dev) {
|
||
unsigned di_num;
|
||
unsigned class = dev->class >> 8;
|
||
|
||
if (class && class != PCI_CLASS_BRIDGE_HOST) {
|
||
unsigned r_num;
|
||
for(r_num = 0; r_num < 6; r_num++) {
|
||
r = &dev->resource[r_num];
|
||
if (!r->start && r->end)
|
||
pci_assign_resource (dev, r_num);
|
||
}
|
||
}
|
||
|
||
/* Assign interrupts. */
|
||
for (di_num = 0; di_num < NUM_MB_PCI_DEV_IRQS; di_num++) {
|
||
struct mb_pci_dev_irq *di = &mb_pci_dev_irqs[di_num];
|
||
|
||
if (di->dev == PCI_SLOT (dev->devfn)) {
|
||
unsigned irq = di->irq_base;
|
||
|
||
if (di->query_pin) {
|
||
/* Find out which interrupt pin
|
||
this device uses (each PCI
|
||
slot has 4). */
|
||
u8 irq_pin;
|
||
|
||
pci_read_config_byte (dev,
|
||
PCI_INTERRUPT_PIN,
|
||
&irq_pin);
|
||
|
||
if (irq_pin == 0)
|
||
/* Doesn't use interrupts. */
|
||
continue;
|
||
else
|
||
irq += irq_pin - 1;
|
||
}
|
||
|
||
pcibios_update_irq (dev, irq);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void __devinit pcibios_update_irq (struct pci_dev *dev, int irq)
|
||
{
|
||
dev->irq = irq;
|
||
pci_write_config_byte (dev, PCI_INTERRUPT_LINE, irq);
|
||
}
|
||
|
||
void __devinit
|
||
pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region,
|
||
struct resource *res)
|
||
{
|
||
unsigned long offset = 0;
|
||
|
||
if (res->flags & IORESOURCE_IO) {
|
||
offset = MB_A_PCI_IO_ADDR;
|
||
} else if (res->flags & IORESOURCE_MEM) {
|
||
offset = MB_A_PCI_MEM_ADDR;
|
||
}
|
||
|
||
region->start = res->start - offset;
|
||
region->end = res->end - offset;
|
||
}
|
||
|
||
|
||
/* Stubs for things we don't use. */
|
||
|
||
/* Called after each bus is probed, but before its children are examined. */
|
||
void pcibios_fixup_bus(struct pci_bus *b)
|
||
{
|
||
}
|
||
|
||
void
|
||
pcibios_align_resource (void *data, struct resource *res,
|
||
unsigned long size, unsigned long align)
|
||
{
|
||
}
|
||
|
||
void pcibios_set_master (struct pci_dev *dev)
|
||
{
|
||
}
|
||
|
||
|
||
/* Mother-A SRAM memory allocation. This is a simple first-fit allocator. */
|
||
|
||
/* A memory free-list node. */
|
||
struct mb_sram_free_area {
|
||
void *mem;
|
||
unsigned long size;
|
||
struct mb_sram_free_area *next;
|
||
};
|
||
|
||
/* The tail of the free-list, which starts out containing all the SRAM. */
|
||
static struct mb_sram_free_area mb_sram_free_tail = {
|
||
(void *)MB_A_SRAM_ADDR, MB_A_SRAM_SIZE, 0
|
||
};
|
||
|
||
/* The free-list. */
|
||
static struct mb_sram_free_area *mb_sram_free_areas = &mb_sram_free_tail;
|
||
|
||
/* The free-list of free free-list nodes. (:-) */
|
||
static struct mb_sram_free_area *mb_sram_free_free_areas = 0;
|
||
|
||
/* Spinlock protecting the above globals. */
|
||
static DEFINE_SPINLOCK(mb_sram_lock);
|
||
|
||
/* Allocate a memory block at least SIZE bytes long in the Mother-A SRAM
|
||
space. */
|
||
static void *alloc_mb_sram (size_t size)
|
||
{
|
||
struct mb_sram_free_area *prev, *fa;
|
||
int flags;
|
||
void *mem = 0;
|
||
|
||
spin_lock_irqsave (mb_sram_lock, flags);
|
||
|
||
/* Look for a free area that can contain SIZE bytes. */
|
||
for (prev = 0, fa = mb_sram_free_areas; fa; prev = fa, fa = fa->next)
|
||
if (fa->size >= size) {
|
||
/* Found one! */
|
||
mem = fa->mem;
|
||
|
||
if (fa->size == size) {
|
||
/* In fact, it fits exactly, so remove
|
||
this node from the free-list. */
|
||
if (prev)
|
||
prev->next = fa->next;
|
||
else
|
||
mb_sram_free_areas = fa->next;
|
||
/* Put it on the free-list-entry-free-list. */
|
||
fa->next = mb_sram_free_free_areas;
|
||
mb_sram_free_free_areas = fa;
|
||
} else {
|
||
/* FA is bigger than SIZE, so just
|
||
reduce its size to account for this
|
||
allocation. */
|
||
fa->mem += size;
|
||
fa->size -= size;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
spin_unlock_irqrestore (mb_sram_lock, flags);
|
||
|
||
return mem;
|
||
}
|
||
|
||
/* Return the memory area MEM of size SIZE to the MB SRAM free pool. */
|
||
static void free_mb_sram (void *mem, size_t size)
|
||
{
|
||
struct mb_sram_free_area *prev, *fa, *new_fa;
|
||
int flags;
|
||
void *end = mem + size;
|
||
|
||
spin_lock_irqsave (mb_sram_lock, flags);
|
||
|
||
retry:
|
||
/* Find an adjacent free-list entry. */
|
||
for (prev = 0, fa = mb_sram_free_areas; fa; prev = fa, fa = fa->next)
|
||
if (fa->mem == end) {
|
||
/* FA is just after MEM, grow down to encompass it. */
|
||
fa->mem = mem;
|
||
fa->size += size;
|
||
goto done;
|
||
} else if (fa->mem + fa->size == mem) {
|
||
struct mb_sram_free_area *next_fa = fa->next;
|
||
|
||
/* FA is just before MEM, expand to encompass it. */
|
||
fa->size += size;
|
||
|
||
/* See if FA can now be merged with its successor. */
|
||
if (next_fa && fa->mem + fa->size == next_fa->mem) {
|
||
/* Yup; merge NEXT_FA's info into FA. */
|
||
fa->size += next_fa->size;
|
||
fa->next = next_fa->next;
|
||
/* Free NEXT_FA. */
|
||
next_fa->next = mb_sram_free_free_areas;
|
||
mb_sram_free_free_areas = next_fa;
|
||
}
|
||
goto done;
|
||
} else if (fa->mem > mem)
|
||
/* We've reached the right spot in the free-list
|
||
without finding an adjacent free-area, so add
|
||
a new free area to hold mem. */
|
||
break;
|
||
|
||
/* Make a new free-list entry. */
|
||
|
||
/* First, get a free-list entry. */
|
||
if (! mb_sram_free_free_areas) {
|
||
/* There are none, so make some. */
|
||
void *block;
|
||
size_t block_size = sizeof (struct mb_sram_free_area) * 8;
|
||
|
||
/* Don't hold the lock while calling kmalloc (I'm not
|
||
sure whether it would be a problem, since we use
|
||
GFP_ATOMIC, but it makes me nervous). */
|
||
spin_unlock_irqrestore (mb_sram_lock, flags);
|
||
|
||
block = kmalloc (block_size, GFP_ATOMIC);
|
||
if (! block)
|
||
panic ("free_mb_sram: can't allocate free-list entry");
|
||
|
||
/* Now get the lock back. */
|
||
spin_lock_irqsave (mb_sram_lock, flags);
|
||
|
||
/* Add the new free free-list entries. */
|
||
while (block_size > 0) {
|
||
struct mb_sram_free_area *nfa = block;
|
||
nfa->next = mb_sram_free_free_areas;
|
||
mb_sram_free_free_areas = nfa;
|
||
block += sizeof *nfa;
|
||
block_size -= sizeof *nfa;
|
||
}
|
||
|
||
/* Since we dropped the lock to call kmalloc, the
|
||
free-list could have changed, so retry from the
|
||
beginning. */
|
||
goto retry;
|
||
}
|
||
|
||
/* Remove NEW_FA from the free-list of free-list entries. */
|
||
new_fa = mb_sram_free_free_areas;
|
||
mb_sram_free_free_areas = new_fa->next;
|
||
|
||
/* NEW_FA initially holds only MEM. */
|
||
new_fa->mem = mem;
|
||
new_fa->size = size;
|
||
|
||
/* Insert NEW_FA in the free-list between PREV and FA. */
|
||
new_fa->next = fa;
|
||
if (prev)
|
||
prev->next = new_fa;
|
||
else
|
||
mb_sram_free_areas = new_fa;
|
||
|
||
done:
|
||
spin_unlock_irqrestore (mb_sram_lock, flags);
|
||
}
|
||
|
||
|
||
/* Maintainence of CPU -> Mother-A DMA mappings. */
|
||
|
||
struct dma_mapping {
|
||
void *cpu_addr;
|
||
void *mb_sram_addr;
|
||
size_t size;
|
||
struct dma_mapping *next;
|
||
};
|
||
|
||
/* A list of mappings from CPU addresses to MB SRAM addresses for active
|
||
DMA blocks (that have been `granted' to the PCI device). */
|
||
static struct dma_mapping *active_dma_mappings = 0;
|
||
|
||
/* A list of free mapping objects. */
|
||
static struct dma_mapping *free_dma_mappings = 0;
|
||
|
||
/* Spinlock protecting the above globals. */
|
||
static DEFINE_SPINLOCK(dma_mappings_lock);
|
||
|
||
static struct dma_mapping *new_dma_mapping (size_t size)
|
||
{
|
||
int flags;
|
||
struct dma_mapping *mapping;
|
||
void *mb_sram_block = alloc_mb_sram (size);
|
||
|
||
if (! mb_sram_block)
|
||
return 0;
|
||
|
||
spin_lock_irqsave (dma_mappings_lock, flags);
|
||
|
||
if (! free_dma_mappings) {
|
||
/* We're out of mapping structures, make more. */
|
||
void *mblock;
|
||
size_t mblock_size = sizeof (struct dma_mapping) * 8;
|
||
|
||
/* Don't hold the lock while calling kmalloc (I'm not
|
||
sure whether it would be a problem, since we use
|
||
GFP_ATOMIC, but it makes me nervous). */
|
||
spin_unlock_irqrestore (dma_mappings_lock, flags);
|
||
|
||
mblock = kmalloc (mblock_size, GFP_ATOMIC);
|
||
if (! mblock) {
|
||
free_mb_sram (mb_sram_block, size);
|
||
return 0;
|
||
}
|
||
|
||
/* Get the lock back. */
|
||
spin_lock_irqsave (dma_mappings_lock, flags);
|
||
|
||
/* Add the new mapping structures to the free-list. */
|
||
while (mblock_size > 0) {
|
||
struct dma_mapping *fm = mblock;
|
||
fm->next = free_dma_mappings;
|
||
free_dma_mappings = fm;
|
||
mblock += sizeof *fm;
|
||
mblock_size -= sizeof *fm;
|
||
}
|
||
}
|
||
|
||
/* Get a mapping struct from the freelist. */
|
||
mapping = free_dma_mappings;
|
||
free_dma_mappings = mapping->next;
|
||
|
||
/* Initialize the mapping. Other fields should be filled in by
|
||
caller. */
|
||
mapping->mb_sram_addr = mb_sram_block;
|
||
mapping->size = size;
|
||
|
||
/* Add it to the list of active mappings. */
|
||
mapping->next = active_dma_mappings;
|
||
active_dma_mappings = mapping;
|
||
|
||
spin_unlock_irqrestore (dma_mappings_lock, flags);
|
||
|
||
return mapping;
|
||
}
|
||
|
||
static struct dma_mapping *find_dma_mapping (void *mb_sram_addr)
|
||
{
|
||
int flags;
|
||
struct dma_mapping *mapping;
|
||
|
||
spin_lock_irqsave (dma_mappings_lock, flags);
|
||
|
||
for (mapping = active_dma_mappings; mapping; mapping = mapping->next)
|
||
if (mapping->mb_sram_addr == mb_sram_addr) {
|
||
spin_unlock_irqrestore (dma_mappings_lock, flags);
|
||
return mapping;
|
||
}
|
||
|
||
panic ("find_dma_mapping: unmapped PCI DMA addr 0x%x",
|
||
MB_SRAM_TO_PCI (mb_sram_addr));
|
||
}
|
||
|
||
static struct dma_mapping *deactivate_dma_mapping (void *mb_sram_addr)
|
||
{
|
||
int flags;
|
||
struct dma_mapping *mapping, *prev;
|
||
|
||
spin_lock_irqsave (dma_mappings_lock, flags);
|
||
|
||
for (prev = 0, mapping = active_dma_mappings;
|
||
mapping;
|
||
prev = mapping, mapping = mapping->next)
|
||
{
|
||
if (mapping->mb_sram_addr == mb_sram_addr) {
|
||
/* This is the MAPPING; deactivate it. */
|
||
if (prev)
|
||
prev->next = mapping->next;
|
||
else
|
||
active_dma_mappings = mapping->next;
|
||
|
||
spin_unlock_irqrestore (dma_mappings_lock, flags);
|
||
|
||
return mapping;
|
||
}
|
||
}
|
||
|
||
panic ("deactivate_dma_mapping: unmapped PCI DMA addr 0x%x",
|
||
MB_SRAM_TO_PCI (mb_sram_addr));
|
||
}
|
||
|
||
/* Return MAPPING to the freelist. */
|
||
static inline void
|
||
free_dma_mapping (struct dma_mapping *mapping)
|
||
{
|
||
int flags;
|
||
|
||
free_mb_sram (mapping->mb_sram_addr, mapping->size);
|
||
|
||
spin_lock_irqsave (dma_mappings_lock, flags);
|
||
|
||
mapping->next = free_dma_mappings;
|
||
free_dma_mappings = mapping;
|
||
|
||
spin_unlock_irqrestore (dma_mappings_lock, flags);
|
||
}
|
||
|
||
|
||
/* Single PCI DMA mappings. */
|
||
|
||
/* `Grant' to PDEV the memory block at CPU_ADDR, for doing DMA. The
|
||
32-bit PCI bus mastering address to use is returned. the device owns
|
||
this memory until either pci_unmap_single or pci_dma_sync_single is
|
||
performed. */
|
||
dma_addr_t
|
||
pci_map_single (struct pci_dev *pdev, void *cpu_addr, size_t size, int dir)
|
||
{
|
||
struct dma_mapping *mapping = new_dma_mapping (size);
|
||
|
||
if (! mapping)
|
||
return 0;
|
||
|
||
mapping->cpu_addr = cpu_addr;
|
||
|
||
if (dir == PCI_DMA_BIDIRECTIONAL || dir == PCI_DMA_TODEVICE)
|
||
memcpy (mapping->mb_sram_addr, cpu_addr, size);
|
||
|
||
return MB_SRAM_TO_PCI (mapping->mb_sram_addr);
|
||
}
|
||
|
||
/* Return to the CPU the PCI DMA memory block previously `granted' to
|
||
PDEV, at DMA_ADDR. */
|
||
void pci_unmap_single (struct pci_dev *pdev, dma_addr_t dma_addr, size_t size,
|
||
int dir)
|
||
{
|
||
void *mb_sram_addr = PCI_TO_MB_SRAM (dma_addr);
|
||
struct dma_mapping *mapping = deactivate_dma_mapping (mb_sram_addr);
|
||
|
||
if (size != mapping->size)
|
||
panic ("pci_unmap_single: size (%d) doesn't match"
|
||
" size of mapping at PCI DMA addr 0x%x (%d)\n",
|
||
size, dma_addr, mapping->size);
|
||
|
||
/* Copy back the DMA'd contents if necessary. */
|
||
if (dir == PCI_DMA_BIDIRECTIONAL || dir == PCI_DMA_FROMDEVICE)
|
||
memcpy (mapping->cpu_addr, mb_sram_addr, size);
|
||
|
||
/* Return mapping to the freelist. */
|
||
free_dma_mapping (mapping);
|
||
}
|
||
|
||
/* Make physical memory consistent for a single streaming mode DMA
|
||
translation after a transfer.
|
||
|
||
If you perform a pci_map_single() but wish to interrogate the
|
||
buffer using the cpu, yet do not wish to teardown the PCI dma
|
||
mapping, you must call this function before doing so. At the next
|
||
point you give the PCI dma address back to the card, you must first
|
||
perform a pci_dma_sync_for_device, and then the device again owns
|
||
the buffer. */
|
||
void
|
||
pci_dma_sync_single_for_cpu (struct pci_dev *pdev, dma_addr_t dma_addr, size_t size,
|
||
int dir)
|
||
{
|
||
void *mb_sram_addr = PCI_TO_MB_SRAM (dma_addr);
|
||
struct dma_mapping *mapping = find_dma_mapping (mb_sram_addr);
|
||
|
||
/* Synchronize the DMA buffer with the CPU buffer if necessary. */
|
||
if (dir == PCI_DMA_FROMDEVICE)
|
||
memcpy (mapping->cpu_addr, mb_sram_addr, size);
|
||
else if (dir == PCI_DMA_TODEVICE)
|
||
; /* nothing to do */
|
||
else
|
||
panic("pci_dma_sync_single: unsupported sync dir: %d", dir);
|
||
}
|
||
|
||
void
|
||
pci_dma_sync_single_for_device (struct pci_dev *pdev, dma_addr_t dma_addr, size_t size,
|
||
int dir)
|
||
{
|
||
void *mb_sram_addr = PCI_TO_MB_SRAM (dma_addr);
|
||
struct dma_mapping *mapping = find_dma_mapping (mb_sram_addr);
|
||
|
||
/* Synchronize the DMA buffer with the CPU buffer if necessary. */
|
||
if (dir == PCI_DMA_FROMDEVICE)
|
||
; /* nothing to do */
|
||
else if (dir == PCI_DMA_TODEVICE)
|
||
memcpy (mb_sram_addr, mapping->cpu_addr, size);
|
||
else
|
||
panic("pci_dma_sync_single: unsupported sync dir: %d", dir);
|
||
}
|
||
|
||
|
||
/* Scatter-gather PCI DMA mappings. */
|
||
|
||
/* Do multiple DMA mappings at once. */
|
||
int
|
||
pci_map_sg (struct pci_dev *pdev, struct scatterlist *sg, int sg_len, int dir)
|
||
{
|
||
BUG ();
|
||
return 0;
|
||
}
|
||
|
||
/* Unmap multiple DMA mappings at once. */
|
||
void
|
||
pci_unmap_sg (struct pci_dev *pdev, struct scatterlist *sg, int sg_len,int dir)
|
||
{
|
||
BUG ();
|
||
}
|
||
|
||
/* Make physical memory consistent for a set of streaming mode DMA
|
||
translations after a transfer. The same as pci_dma_sync_single_* but
|
||
for a scatter-gather list, same rules and usage. */
|
||
|
||
void
|
||
pci_dma_sync_sg_for_cpu (struct pci_dev *dev, struct scatterlist *sg, int sg_len,
|
||
int dir)
|
||
{
|
||
BUG ();
|
||
}
|
||
|
||
void
|
||
pci_dma_sync_sg_for_device (struct pci_dev *dev, struct scatterlist *sg, int sg_len,
|
||
int dir)
|
||
{
|
||
BUG ();
|
||
}
|
||
|
||
|
||
/* PCI mem mapping. */
|
||
|
||
/* Allocate and map kernel buffer using consistent mode DMA for PCI
|
||
device. Returns non-NULL cpu-view pointer to the buffer if
|
||
successful and sets *DMA_ADDR to the pci side dma address as well,
|
||
else DMA_ADDR is undefined. */
|
||
void *
|
||
pci_alloc_consistent (struct pci_dev *pdev, size_t size, dma_addr_t *dma_addr)
|
||
{
|
||
void *mb_sram_mem = alloc_mb_sram (size);
|
||
if (mb_sram_mem)
|
||
*dma_addr = MB_SRAM_TO_PCI (mb_sram_mem);
|
||
return mb_sram_mem;
|
||
}
|
||
|
||
/* Free and unmap a consistent DMA buffer. CPU_ADDR and DMA_ADDR must
|
||
be values that were returned from pci_alloc_consistent. SIZE must be
|
||
the same as what as passed into pci_alloc_consistent. References to
|
||
the memory and mappings assosciated with CPU_ADDR or DMA_ADDR past
|
||
this call are illegal. */
|
||
void
|
||
pci_free_consistent (struct pci_dev *pdev, size_t size, void *cpu_addr,
|
||
dma_addr_t dma_addr)
|
||
{
|
||
void *mb_sram_mem = PCI_TO_MB_SRAM (dma_addr);
|
||
free_mb_sram (mb_sram_mem, size);
|
||
}
|
||
|
||
|
||
/* symbol exports (for modules) */
|
||
|
||
EXPORT_SYMBOL (pci_map_single);
|
||
EXPORT_SYMBOL (pci_unmap_single);
|
||
EXPORT_SYMBOL (pci_alloc_consistent);
|
||
EXPORT_SYMBOL (pci_free_consistent);
|
||
EXPORT_SYMBOL (pci_dma_sync_single_for_cpu);
|
||
EXPORT_SYMBOL (pci_dma_sync_single_for_device);
|