kernel-ark/drivers/parisc/ccio-dma.c
Arjan van de Ven d54b1fdb1d [PATCH] mark struct file_operations const 5
Many struct file_operations in the kernel can be "const".  Marking them const
moves these to the .rodata section, which avoids false sharing with potential
dirty data.  In addition it'll catch accidental writes at compile time to
these shared resources.

Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-12 09:48:45 -08:00

1600 lines
48 KiB
C

/*
** ccio-dma.c:
** DMA management routines for first generation cache-coherent machines.
** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
**
** (c) Copyright 2000 Grant Grundler
** (c) Copyright 2000 Ryan Bradetich
** (c) Copyright 2000 Hewlett-Packard Company
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
**
** "Real Mode" operation refers to U2/Uturn chip operation.
** U2/Uturn were designed to perform coherency checks w/o using
** the I/O MMU - basically what x86 does.
**
** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
**
** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
**
** Drawbacks of using Real Mode are:
** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
** o Ability to do scatter/gather in HW is lost.
** o Doesn't work under PCX-U/U+ machines since they didn't follow
** the coherency design originally worked out. Only PCX-W does.
*/
#include <linux/types.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/pci.h>
#include <linux/reboot.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <asm/byteorder.h>
#include <asm/cache.h> /* for L1_CACHE_BYTES */
#include <asm/uaccess.h>
#include <asm/page.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/hardware.h> /* for register_module() */
#include <asm/parisc-device.h>
/*
** Choose "ccio" since that's what HP-UX calls it.
** Make it easier for folks to migrate from one to the other :^)
*/
#define MODULE_NAME "ccio"
#undef DEBUG_CCIO_RES
#undef DEBUG_CCIO_RUN
#undef DEBUG_CCIO_INIT
#undef DEBUG_CCIO_RUN_SG
#ifdef CONFIG_PROC_FS
/*
* CCIO_SEARCH_TIME can help measure how fast the bitmap search is.
* impacts performance though - ditch it if you don't use it.
*/
#define CCIO_SEARCH_TIME
#undef CCIO_MAP_STATS
#else
#undef CCIO_SEARCH_TIME
#undef CCIO_MAP_STATS
#endif
#include <linux/proc_fs.h>
#include <asm/runway.h> /* for proc_runway_root */
#ifdef DEBUG_CCIO_INIT
#define DBG_INIT(x...) printk(x)
#else
#define DBG_INIT(x...)
#endif
#ifdef DEBUG_CCIO_RUN
#define DBG_RUN(x...) printk(x)
#else
#define DBG_RUN(x...)
#endif
#ifdef DEBUG_CCIO_RES
#define DBG_RES(x...) printk(x)
#else
#define DBG_RES(x...)
#endif
#ifdef DEBUG_CCIO_RUN_SG
#define DBG_RUN_SG(x...) printk(x)
#else
#define DBG_RUN_SG(x...)
#endif
#define CCIO_INLINE inline
#define WRITE_U32(value, addr) __raw_writel(value, addr)
#define READ_U32(addr) __raw_readl(addr)
#define U2_IOA_RUNWAY 0x580
#define U2_BC_GSC 0x501
#define UTURN_IOA_RUNWAY 0x581
#define UTURN_BC_GSC 0x502
#define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
#define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
#define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
struct ioa_registers {
/* Runway Supervisory Set */
int32_t unused1[12];
uint32_t io_command; /* Offset 12 */
uint32_t io_status; /* Offset 13 */
uint32_t io_control; /* Offset 14 */
int32_t unused2[1];
/* Runway Auxiliary Register Set */
uint32_t io_err_resp; /* Offset 0 */
uint32_t io_err_info; /* Offset 1 */
uint32_t io_err_req; /* Offset 2 */
uint32_t io_err_resp_hi; /* Offset 3 */
uint32_t io_tlb_entry_m; /* Offset 4 */
uint32_t io_tlb_entry_l; /* Offset 5 */
uint32_t unused3[1];
uint32_t io_pdir_base; /* Offset 7 */
uint32_t io_io_low_hv; /* Offset 8 */
uint32_t io_io_high_hv; /* Offset 9 */
uint32_t unused4[1];
uint32_t io_chain_id_mask; /* Offset 11 */
uint32_t unused5[2];
uint32_t io_io_low; /* Offset 14 */
uint32_t io_io_high; /* Offset 15 */
};
/*
** IOA Registers
** -------------
**
** Runway IO_CONTROL Register (+0x38)
**
** The Runway IO_CONTROL register controls the forwarding of transactions.
**
** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
** | HV | TLB | reserved | HV | mode | reserved |
**
** o mode field indicates the address translation of transactions
** forwarded from Runway to GSC+:
** Mode Name Value Definition
** Off (default) 0 Opaque to matching addresses.
** Include 1 Transparent for matching addresses.
** Peek 3 Map matching addresses.
**
** + "Off" mode: Runway transactions which match the I/O range
** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
** + "Include" mode: all addresses within the I/O range specified
** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
** forwarded. This is the I/O Adapter's normal operating mode.
** + "Peek" mode: used during system configuration to initialize the
** GSC+ bus. Runway Write_Shorts in the address range specified by
** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
** *AND* the GSC+ address is remapped to the Broadcast Physical
** Address space by setting the 14 high order address bits of the
** 32 bit GSC+ address to ones.
**
** o TLB field affects transactions which are forwarded from GSC+ to Runway.
** "Real" mode is the poweron default.
**
** TLB Mode Value Description
** Real 0 No TLB translation. Address is directly mapped and the
** virtual address is composed of selected physical bits.
** Error 1 Software fills the TLB manually.
** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
**
**
** IO_IO_LOW_HV +0x60 (HV dependent)
** IO_IO_HIGH_HV +0x64 (HV dependent)
** IO_IO_LOW +0x78 (Architected register)
** IO_IO_HIGH +0x7c (Architected register)
**
** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
** I/O Adapter address space, respectively.
**
** 0 ... 7 | 8 ... 15 | 16 ... 31 |
** 11111111 | 11111111 | address |
**
** Each LOW/HIGH pair describes a disjoint address space region.
** (2 per GSC+ port). Each incoming Runway transaction address is compared
** with both sets of LOW/HIGH registers. If the address is in the range
** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
** for forwarded to the respective GSC+ bus.
** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
** an address space region.
**
** In order for a Runway address to reside within GSC+ extended address space:
** Runway Address [0:7] must identically compare to 8'b11111111
** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
** Runway Address [12:23] must be greater than or equal to
** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
** Runway Address [24:39] is not used in the comparison.
**
** When the Runway transaction is forwarded to GSC+, the GSC+ address is
** as follows:
** GSC+ Address[0:3] 4'b1111
** GSC+ Address[4:29] Runway Address[12:37]
** GSC+ Address[30:31] 2'b00
**
** All 4 Low/High registers must be initialized (by PDC) once the lower bus
** is interrogated and address space is defined. The operating system will
** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
** the PDC initialization. However, the hardware version dependent IO_IO_LOW
** and IO_IO_HIGH registers should not be subsequently altered by the OS.
**
** Writes to both sets of registers will take effect immediately, bypassing
** the queues, which ensures that subsequent Runway transactions are checked
** against the updated bounds values. However reads are queued, introducing
** the possibility of a read being bypassed by a subsequent write to the same
** register. This sequence can be avoided by having software wait for read
** returns before issuing subsequent writes.
*/
struct ioc {
struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
u8 *res_map; /* resource map, bit == pdir entry */
u64 *pdir_base; /* physical base address */
u32 pdir_size; /* bytes, function of IOV Space size */
u32 res_hint; /* next available IOVP -
circular search */
u32 res_size; /* size of resource map in bytes */
spinlock_t res_lock;
#ifdef CCIO_SEARCH_TIME
#define CCIO_SEARCH_SAMPLE 0x100
unsigned long avg_search[CCIO_SEARCH_SAMPLE];
unsigned long avg_idx; /* current index into avg_search */
#endif
#ifdef CCIO_MAP_STATS
unsigned long used_pages;
unsigned long msingle_calls;
unsigned long msingle_pages;
unsigned long msg_calls;
unsigned long msg_pages;
unsigned long usingle_calls;
unsigned long usingle_pages;
unsigned long usg_calls;
unsigned long usg_pages;
#endif
unsigned short cujo20_bug;
/* STUFF We don't need in performance path */
u32 chainid_shift; /* specify bit location of chain_id */
struct ioc *next; /* Linked list of discovered iocs */
const char *name; /* device name from firmware */
unsigned int hw_path; /* the hardware path this ioc is associatd with */
struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
struct resource mmio_region[2]; /* The "routed" MMIO regions */
};
static struct ioc *ioc_list;
static int ioc_count;
/**************************************************************
*
* I/O Pdir Resource Management
*
* Bits set in the resource map are in use.
* Each bit can represent a number of pages.
* LSbs represent lower addresses (IOVA's).
*
* This was was copied from sba_iommu.c. Don't try to unify
* the two resource managers unless a way to have different
* allocation policies is also adjusted. We'd like to avoid
* I/O TLB thrashing by having resource allocation policy
* match the I/O TLB replacement policy.
*
***************************************************************/
#define IOVP_SIZE PAGE_SIZE
#define IOVP_SHIFT PAGE_SHIFT
#define IOVP_MASK PAGE_MASK
/* Convert from IOVP to IOVA and vice versa. */
#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
#define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
#define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
#define ROUNDUP(x,y) ((x + ((y)-1)) & ~((y)-1))
/*
** Don't worry about the 150% average search length on a miss.
** If the search wraps around, and passes the res_hint, it will
** cause the kernel to panic anyhow.
*/
#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
for(; res_ptr < res_end; ++res_ptr) { \
if(0 == (*res_ptr & mask)) { \
*res_ptr |= mask; \
res_idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
ioc->res_hint = res_idx + (size >> 3); \
goto resource_found; \
} \
}
#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
res_ptr = (u##size *)&(ioc)->res_map[0]; \
CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
/*
** Find available bit in this ioa's resource map.
** Use a "circular" search:
** o Most IOVA's are "temporary" - avg search time should be small.
** o keep a history of what happened for debugging
** o KISS.
**
** Perf optimizations:
** o search for log2(size) bits at a time.
** o search for available resource bits using byte/word/whatever.
** o use different search for "large" (eg > 4 pages) or "very large"
** (eg > 16 pages) mappings.
*/
/**
* ccio_alloc_range - Allocate pages in the ioc's resource map.
* @ioc: The I/O Controller.
* @pages_needed: The requested number of pages to be mapped into the
* I/O Pdir...
*
* This function searches the resource map of the ioc to locate a range
* of available pages for the requested size.
*/
static int
ccio_alloc_range(struct ioc *ioc, size_t size)
{
unsigned int pages_needed = size >> IOVP_SHIFT;
unsigned int res_idx;
#ifdef CCIO_SEARCH_TIME
unsigned long cr_start = mfctl(16);
#endif
BUG_ON(pages_needed == 0);
BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
DBG_RES("%s() size: %d pages_needed %d\n",
__FUNCTION__, size, pages_needed);
/*
** "seek and ye shall find"...praying never hurts either...
** ggg sacrifices another 710 to the computer gods.
*/
if (pages_needed <= 8) {
/*
* LAN traffic will not thrash the TLB IFF the same NIC
* uses 8 adjacent pages to map seperate payload data.
* ie the same byte in the resource bit map.
*/
#if 0
/* FIXME: bit search should shift it's way through
* an unsigned long - not byte at a time. As it is now,
* we effectively allocate this byte to this mapping.
*/
unsigned long mask = ~(~0UL >> pages_needed);
CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
#else
CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
#endif
} else if (pages_needed <= 16) {
CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
} else if (pages_needed <= 32) {
CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
#ifdef __LP64__
} else if (pages_needed <= 64) {
CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
#endif
} else {
panic("%s: %s() Too many pages to map. pages_needed: %u\n",
__FILE__, __FUNCTION__, pages_needed);
}
panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
__FUNCTION__);
resource_found:
DBG_RES("%s() res_idx %d res_hint: %d\n",
__FUNCTION__, res_idx, ioc->res_hint);
#ifdef CCIO_SEARCH_TIME
{
unsigned long cr_end = mfctl(16);
unsigned long tmp = cr_end - cr_start;
/* check for roll over */
cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
}
ioc->avg_search[ioc->avg_idx++] = cr_start;
ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
#endif
#ifdef CCIO_MAP_STATS
ioc->used_pages += pages_needed;
#endif
/*
** return the bit address.
*/
return res_idx << 3;
}
#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
BUG_ON((*res_ptr & mask) != mask); \
*res_ptr &= ~(mask);
/**
* ccio_free_range - Free pages from the ioc's resource map.
* @ioc: The I/O Controller.
* @iova: The I/O Virtual Address.
* @pages_mapped: The requested number of pages to be freed from the
* I/O Pdir.
*
* This function frees the resouces allocated for the iova.
*/
static void
ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
{
unsigned long iovp = CCIO_IOVP(iova);
unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
BUG_ON(pages_mapped == 0);
BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
BUG_ON(pages_mapped > BITS_PER_LONG);
DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
__FUNCTION__, res_idx, pages_mapped);
#ifdef CCIO_MAP_STATS
ioc->used_pages -= pages_mapped;
#endif
if(pages_mapped <= 8) {
#if 0
/* see matching comments in alloc_range */
unsigned long mask = ~(~0UL >> pages_mapped);
CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
#else
CCIO_FREE_MAPPINGS(ioc, res_idx, 0xff, 8);
#endif
} else if(pages_mapped <= 16) {
CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffff, 16);
} else if(pages_mapped <= 32) {
CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
#ifdef __LP64__
} else if(pages_mapped <= 64) {
CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
#endif
} else {
panic("%s:%s() Too many pages to unmap.\n", __FILE__,
__FUNCTION__);
}
}
/****************************************************************
**
** CCIO dma_ops support routines
**
*****************************************************************/
typedef unsigned long space_t;
#define KERNEL_SPACE 0
/*
** DMA "Page Type" and Hints
** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
** set for subcacheline DMA transfers since we don't want to damage the
** other part of a cacheline.
** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
** data can avoid this if the mapping covers full cache lines.
** o STOP_MOST is needed for atomicity across cachelines.
** Apparently only "some EISA devices" need this.
** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
** to use this hint iff the EISA devices needs this feature.
** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
** o PREFETCH should *not* be set for cases like Multiple PCI devices
** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
** device can be fetched and multiply DMA streams will thrash the
** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
** and Invalidation of Prefetch Entries".
**
** FIXME: the default hints need to be per GSC device - not global.
**
** HP-UX dorks: linux device driver programming model is totally different
** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
** do special things to work on non-coherent platforms...linux has to
** be much more careful with this.
*/
#define IOPDIR_VALID 0x01UL
#define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
#ifdef CONFIG_EISA
#define HINT_STOP_MOST 0x04UL /* LSL support */
#else
#define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
#endif
#define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
#define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
/*
** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
** ccio_alloc_consistent() depends on this to get SAFE_DMA
** when it passes in BIDIRECTIONAL flag.
*/
static u32 hint_lookup[] = {
[PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
[PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
[PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
};
/**
* ccio_io_pdir_entry - Initialize an I/O Pdir.
* @pdir_ptr: A pointer into I/O Pdir.
* @sid: The Space Identifier.
* @vba: The virtual address.
* @hints: The DMA Hint.
*
* Given a virtual address (vba, arg2) and space id, (sid, arg1),
* load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
* entry consists of 8 bytes as shown below (MSB == bit 0):
*
*
* WORD 0:
* +------+----------------+-----------------------------------------------+
* | Phys | Virtual Index | Phys |
* | 0:3 | 0:11 | 4:19 |
* |4 bits| 12 bits | 16 bits |
* +------+----------------+-----------------------------------------------+
* WORD 1:
* +-----------------------+-----------------------------------------------+
* | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
* | 20:39 | | Enable |Enable | |Enable|DMA | |
* | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
* +-----------------------+-----------------------------------------------+
*
* The virtual index field is filled with the results of the LCI
* (Load Coherence Index) instruction. The 8 bits used for the virtual
* index are bits 12:19 of the value returned by LCI.
*/
void CCIO_INLINE
ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
unsigned long hints)
{
register unsigned long pa;
register unsigned long ci; /* coherent index */
/* We currently only support kernel addresses */
BUG_ON(sid != KERNEL_SPACE);
mtsp(sid,1);
/*
** WORD 1 - low order word
** "hints" parm includes the VALID bit!
** "dep" clobbers the physical address offset bits as well.
*/
pa = virt_to_phys(vba);
asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
((u32 *)pdir_ptr)[1] = (u32) pa;
/*
** WORD 0 - high order word
*/
#ifdef __LP64__
/*
** get bits 12:15 of physical address
** shift bits 16:31 of physical address
** and deposit them
*/
asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
#else
pa = 0;
#endif
/*
** get CPU coherency index bits
** Grab virtual index [0:11]
** Deposit virt_idx bits into I/O PDIR word
*/
asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
((u32 *)pdir_ptr)[0] = (u32) pa;
/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
** PCX-U/U+ do. (eg C200/C240)
** PCX-T'? Don't know. (eg C110 or similar K-class)
**
** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
** Hopefully we can patch (NOP) these out at boot time somehow.
**
** "Since PCX-U employs an offset hash that is incompatible with
** the real mode coherence index generation of U2, the PDIR entry
** must be flushed to memory to retain coherence."
*/
asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
asm volatile("sync");
}
/**
* ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
* @ioc: The I/O Controller.
* @iovp: The I/O Virtual Page.
* @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
*
* Purge invalid I/O PDIR entries from the I/O TLB.
*
* FIXME: Can we change the byte_cnt to pages_mapped?
*/
static CCIO_INLINE void
ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
{
u32 chain_size = 1 << ioc->chainid_shift;
iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
byte_cnt += chain_size;
while(byte_cnt > chain_size) {
WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
iovp += chain_size;
byte_cnt -= chain_size;
}
}
/**
* ccio_mark_invalid - Mark the I/O Pdir entries invalid.
* @ioc: The I/O Controller.
* @iova: The I/O Virtual Address.
* @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
*
* Mark the I/O Pdir entries invalid and blow away the corresponding I/O
* TLB entries.
*
* FIXME: at some threshhold it might be "cheaper" to just blow
* away the entire I/O TLB instead of individual entries.
*
* FIXME: Uturn has 256 TLB entries. We don't need to purge every
* PDIR entry - just once for each possible TLB entry.
* (We do need to maker I/O PDIR entries invalid regardless).
*
* FIXME: Can we change byte_cnt to pages_mapped?
*/
static CCIO_INLINE void
ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
{
u32 iovp = (u32)CCIO_IOVP(iova);
size_t saved_byte_cnt;
/* round up to nearest page size */
saved_byte_cnt = byte_cnt = ROUNDUP(byte_cnt, IOVP_SIZE);
while(byte_cnt > 0) {
/* invalidate one page at a time */
unsigned int idx = PDIR_INDEX(iovp);
char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
pdir_ptr[7] = 0; /* clear only VALID bit */
/*
** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
** PCX-U/U+ do. (eg C200/C240)
** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
**
** Hopefully someone figures out how to patch (NOP) the
** FDC/SYNC out at boot time.
*/
asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
iovp += IOVP_SIZE;
byte_cnt -= IOVP_SIZE;
}
asm volatile("sync");
ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
}
/****************************************************************
**
** CCIO dma_ops
**
*****************************************************************/
/**
* ccio_dma_supported - Verify the IOMMU supports the DMA address range.
* @dev: The PCI device.
* @mask: A bit mask describing the DMA address range of the device.
*
* This function implements the pci_dma_supported function.
*/
static int
ccio_dma_supported(struct device *dev, u64 mask)
{
if(dev == NULL) {
printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
BUG();
return 0;
}
/* only support 32-bit devices (ie PCI/GSC) */
return (int)(mask == 0xffffffffUL);
}
/**
* ccio_map_single - Map an address range into the IOMMU.
* @dev: The PCI device.
* @addr: The start address of the DMA region.
* @size: The length of the DMA region.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_map_single function.
*/
static dma_addr_t
ccio_map_single(struct device *dev, void *addr, size_t size,
enum dma_data_direction direction)
{
int idx;
struct ioc *ioc;
unsigned long flags;
dma_addr_t iovp;
dma_addr_t offset;
u64 *pdir_start;
unsigned long hint = hint_lookup[(int)direction];
BUG_ON(!dev);
ioc = GET_IOC(dev);
BUG_ON(size <= 0);
/* save offset bits */
offset = ((unsigned long) addr) & ~IOVP_MASK;
/* round up to nearest IOVP_SIZE */
size = ROUNDUP(size + offset, IOVP_SIZE);
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef CCIO_MAP_STATS
ioc->msingle_calls++;
ioc->msingle_pages += size >> IOVP_SHIFT;
#endif
idx = ccio_alloc_range(ioc, size);
iovp = (dma_addr_t)MKIOVP(idx);
pdir_start = &(ioc->pdir_base[idx]);
DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
__FUNCTION__, addr, (long)iovp | offset, size);
/* If not cacheline aligned, force SAFE_DMA on the whole mess */
if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
hint |= HINT_SAFE_DMA;
while(size > 0) {
ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
DBG_RUN(" pdir %p %08x%08x\n",
pdir_start,
(u32) (((u32 *) pdir_start)[0]),
(u32) (((u32 *) pdir_start)[1]));
++pdir_start;
addr += IOVP_SIZE;
size -= IOVP_SIZE;
}
spin_unlock_irqrestore(&ioc->res_lock, flags);
/* form complete address */
return CCIO_IOVA(iovp, offset);
}
/**
* ccio_unmap_single - Unmap an address range from the IOMMU.
* @dev: The PCI device.
* @addr: The start address of the DMA region.
* @size: The length of the DMA region.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_unmap_single function.
*/
static void
ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
enum dma_data_direction direction)
{
struct ioc *ioc;
unsigned long flags;
dma_addr_t offset = iova & ~IOVP_MASK;
BUG_ON(!dev);
ioc = GET_IOC(dev);
DBG_RUN("%s() iovp 0x%lx/%x\n",
__FUNCTION__, (long)iova, size);
iova ^= offset; /* clear offset bits */
size += offset;
size = ROUNDUP(size, IOVP_SIZE);
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef CCIO_MAP_STATS
ioc->usingle_calls++;
ioc->usingle_pages += size >> IOVP_SHIFT;
#endif
ccio_mark_invalid(ioc, iova, size);
ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
spin_unlock_irqrestore(&ioc->res_lock, flags);
}
/**
* ccio_alloc_consistent - Allocate a consistent DMA mapping.
* @dev: The PCI device.
* @size: The length of the DMA region.
* @dma_handle: The DMA address handed back to the device (not the cpu).
*
* This function implements the pci_alloc_consistent function.
*/
static void *
ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
{
void *ret;
#if 0
/* GRANT Need to establish hierarchy for non-PCI devs as well
** and then provide matching gsc_map_xxx() functions for them as well.
*/
if(!hwdev) {
/* only support PCI */
*dma_handle = 0;
return 0;
}
#endif
ret = (void *) __get_free_pages(flag, get_order(size));
if (ret) {
memset(ret, 0, size);
*dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
}
return ret;
}
/**
* ccio_free_consistent - Free a consistent DMA mapping.
* @dev: The PCI device.
* @size: The length of the DMA region.
* @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
* @dma_handle: The device address returned from the ccio_alloc_consistent.
*
* This function implements the pci_free_consistent function.
*/
static void
ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle)
{
ccio_unmap_single(dev, dma_handle, size, 0);
free_pages((unsigned long)cpu_addr, get_order(size));
}
/*
** Since 0 is a valid pdir_base index value, can't use that
** to determine if a value is valid or not. Use a flag to indicate
** the SG list entry contains a valid pdir index.
*/
#define PIDE_FLAG 0x80000000UL
#ifdef CCIO_MAP_STATS
#define IOMMU_MAP_STATS
#endif
#include "iommu-helpers.h"
/**
* ccio_map_sg - Map the scatter/gather list into the IOMMU.
* @dev: The PCI device.
* @sglist: The scatter/gather list to be mapped in the IOMMU.
* @nents: The number of entries in the scatter/gather list.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_map_sg function.
*/
static int
ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
enum dma_data_direction direction)
{
struct ioc *ioc;
int coalesced, filled = 0;
unsigned long flags;
unsigned long hint = hint_lookup[(int)direction];
unsigned long prev_len = 0, current_len = 0;
int i;
BUG_ON(!dev);
ioc = GET_IOC(dev);
DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents);
/* Fast path single entry scatterlists. */
if (nents == 1) {
sg_dma_address(sglist) = ccio_map_single(dev,
(void *)sg_virt_addr(sglist), sglist->length,
direction);
sg_dma_len(sglist) = sglist->length;
return 1;
}
for(i = 0; i < nents; i++)
prev_len += sglist[i].length;
spin_lock_irqsave(&ioc->res_lock, flags);
#ifdef CCIO_MAP_STATS
ioc->msg_calls++;
#endif
/*
** First coalesce the chunks and allocate I/O pdir space
**
** If this is one DMA stream, we can properly map using the
** correct virtual address associated with each DMA page.
** w/o this association, we wouldn't have coherent DMA!
** Access to the virtual address is what forces a two pass algorithm.
*/
coalesced = iommu_coalesce_chunks(ioc, sglist, nents, ccio_alloc_range);
/*
** Program the I/O Pdir
**
** map the virtual addresses to the I/O Pdir
** o dma_address will contain the pdir index
** o dma_len will contain the number of bytes to map
** o page/offset contain the virtual address.
*/
filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
spin_unlock_irqrestore(&ioc->res_lock, flags);
BUG_ON(coalesced != filled);
DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled);
for (i = 0; i < filled; i++)
current_len += sg_dma_len(sglist + i);
BUG_ON(current_len != prev_len);
return filled;
}
/**
* ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
* @dev: The PCI device.
* @sglist: The scatter/gather list to be unmapped from the IOMMU.
* @nents: The number of entries in the scatter/gather list.
* @direction: The direction of the DMA transaction (to/from device).
*
* This function implements the pci_unmap_sg function.
*/
static void
ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
enum dma_data_direction direction)
{
struct ioc *ioc;
BUG_ON(!dev);
ioc = GET_IOC(dev);
DBG_RUN_SG("%s() START %d entries, %08lx,%x\n",
__FUNCTION__, nents, sg_virt_addr(sglist), sglist->length);
#ifdef CCIO_MAP_STATS
ioc->usg_calls++;
#endif
while(sg_dma_len(sglist) && nents--) {
#ifdef CCIO_MAP_STATS
ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
#endif
ccio_unmap_single(dev, sg_dma_address(sglist),
sg_dma_len(sglist), direction);
++sglist;
}
DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__, nents);
}
static struct hppa_dma_ops ccio_ops = {
.dma_supported = ccio_dma_supported,
.alloc_consistent = ccio_alloc_consistent,
.alloc_noncoherent = ccio_alloc_consistent,
.free_consistent = ccio_free_consistent,
.map_single = ccio_map_single,
.unmap_single = ccio_unmap_single,
.map_sg = ccio_map_sg,
.unmap_sg = ccio_unmap_sg,
.dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */
.dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */
.dma_sync_sg_for_cpu = NULL, /* ditto */
.dma_sync_sg_for_device = NULL, /* ditto */
};
#ifdef CONFIG_PROC_FS
static int ccio_proc_info(struct seq_file *m, void *p)
{
int len = 0;
struct ioc *ioc = ioc_list;
while (ioc != NULL) {
unsigned int total_pages = ioc->res_size << 3;
unsigned long avg = 0, min, max;
int j;
len += seq_printf(m, "%s\n", ioc->name);
len += seq_printf(m, "Cujo 2.0 bug : %s\n",
(ioc->cujo20_bug ? "yes" : "no"));
len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
total_pages * 8, total_pages);
#ifdef CCIO_MAP_STATS
len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
total_pages - ioc->used_pages, ioc->used_pages,
(int)(ioc->used_pages * 100 / total_pages));
#endif
len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
ioc->res_size, total_pages);
#ifdef CCIO_SEARCH_TIME
min = max = ioc->avg_search[0];
for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
avg += ioc->avg_search[j];
if(ioc->avg_search[j] > max)
max = ioc->avg_search[j];
if(ioc->avg_search[j] < min)
min = ioc->avg_search[j];
}
avg /= CCIO_SEARCH_SAMPLE;
len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
min, avg, max);
#endif
#ifdef CCIO_MAP_STATS
len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
ioc->msingle_calls, ioc->msingle_pages,
(int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
/* KLUGE - unmap_sg calls unmap_single for each mapped page */
min = ioc->usingle_calls - ioc->usg_calls;
max = ioc->usingle_pages - ioc->usg_pages;
len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
min, max, (int)((max * 1000)/min));
len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
ioc->msg_calls, ioc->msg_pages,
(int)((ioc->msg_pages * 1000)/ioc->msg_calls));
len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
ioc->usg_calls, ioc->usg_pages,
(int)((ioc->usg_pages * 1000)/ioc->usg_calls));
#endif /* CCIO_MAP_STATS */
ioc = ioc->next;
}
return 0;
}
static int ccio_proc_info_open(struct inode *inode, struct file *file)
{
return single_open(file, &ccio_proc_info, NULL);
}
static const struct file_operations ccio_proc_info_fops = {
.owner = THIS_MODULE,
.open = ccio_proc_info_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
{
int len = 0;
struct ioc *ioc = ioc_list;
while (ioc != NULL) {
u32 *res_ptr = (u32 *)ioc->res_map;
int j;
for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
if ((j & 7) == 0)
len += seq_puts(m, "\n ");
len += seq_printf(m, "%08x", *res_ptr);
res_ptr++;
}
len += seq_puts(m, "\n\n");
ioc = ioc->next;
break; /* XXX - remove me */
}
return 0;
}
static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
{
return single_open(file, &ccio_proc_bitmap_info, NULL);
}
static const struct file_operations ccio_proc_bitmap_fops = {
.owner = THIS_MODULE,
.open = ccio_proc_bitmap_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#endif
/**
* ccio_find_ioc - Find the ioc in the ioc_list
* @hw_path: The hardware path of the ioc.
*
* This function searches the ioc_list for an ioc that matches
* the provide hardware path.
*/
static struct ioc * ccio_find_ioc(int hw_path)
{
int i;
struct ioc *ioc;
ioc = ioc_list;
for (i = 0; i < ioc_count; i++) {
if (ioc->hw_path == hw_path)
return ioc;
ioc = ioc->next;
}
return NULL;
}
/**
* ccio_get_iommu - Find the iommu which controls this device
* @dev: The parisc device.
*
* This function searches through the registered IOMMU's and returns
* the appropriate IOMMU for the device based on its hardware path.
*/
void * ccio_get_iommu(const struct parisc_device *dev)
{
dev = find_pa_parent_type(dev, HPHW_IOA);
if (!dev)
return NULL;
return ccio_find_ioc(dev->hw_path);
}
#define CUJO_20_STEP 0x10000000 /* inc upper nibble */
/* Cujo 2.0 has a bug which will silently corrupt data being transferred
* to/from certain pages. To avoid this happening, we mark these pages
* as `used', and ensure that nothing will try to allocate from them.
*/
void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
{
unsigned int idx;
struct parisc_device *dev = parisc_parent(cujo);
struct ioc *ioc = ccio_get_iommu(dev);
u8 *res_ptr;
ioc->cujo20_bug = 1;
res_ptr = ioc->res_map;
idx = PDIR_INDEX(iovp) >> 3;
while (idx < ioc->res_size) {
res_ptr[idx] |= 0xff;
idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
}
}
#if 0
/* GRANT - is this needed for U2 or not? */
/*
** Get the size of the I/O TLB for this I/O MMU.
**
** If spa_shift is non-zero (ie probably U2),
** then calculate the I/O TLB size using spa_shift.
**
** Otherwise we are supposed to get the IODC entry point ENTRY TLB
** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
** I think only Java (K/D/R-class too?) systems don't do this.
*/
static int
ccio_get_iotlb_size(struct parisc_device *dev)
{
if (dev->spa_shift == 0) {
panic("%s() : Can't determine I/O TLB size.\n", __FUNCTION__);
}
return (1 << dev->spa_shift);
}
#else
/* Uturn supports 256 TLB entries */
#define CCIO_CHAINID_SHIFT 8
#define CCIO_CHAINID_MASK 0xff
#endif /* 0 */
/* We *can't* support JAVA (T600). Venture there at your own risk. */
static struct parisc_device_id ccio_tbl[] = {
{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
{ 0, }
};
static int ccio_probe(struct parisc_device *dev);
static struct parisc_driver ccio_driver = {
.name = "ccio",
.id_table = ccio_tbl,
.probe = ccio_probe,
};
/**
* ccio_ioc_init - Initalize the I/O Controller
* @ioc: The I/O Controller.
*
* Initalize the I/O Controller which includes setting up the
* I/O Page Directory, the resource map, and initalizing the
* U2/Uturn chip into virtual mode.
*/
static void
ccio_ioc_init(struct ioc *ioc)
{
int i;
unsigned int iov_order;
u32 iova_space_size;
/*
** Determine IOVA Space size from memory size.
**
** Ideally, PCI drivers would register the maximum number
** of DMA they can have outstanding for each device they
** own. Next best thing would be to guess how much DMA
** can be outstanding based on PCI Class/sub-class. Both
** methods still require some "extra" to support PCI
** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
*/
iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver));
/* limit IOVA space size to 1MB-1GB */
if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
iova_space_size = 1 << (20 - PAGE_SHIFT);
#ifdef __LP64__
} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
iova_space_size = 1 << (30 - PAGE_SHIFT);
#endif
}
/*
** iova space must be log2() in size.
** thus, pdir/res_map will also be log2().
*/
/* We could use larger page sizes in order to *decrease* the number
** of mappings needed. (ie 8k pages means 1/2 the mappings).
**
** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
** since the pages must also be physically contiguous - typically
** this is the case under linux."
*/
iov_order = get_order(iova_space_size << PAGE_SHIFT);
/* iova_space_size is now bytes, not pages */
iova_space_size = 1 << (iov_order + PAGE_SHIFT);
ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
/* Verify it's a power of two */
BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
__FUNCTION__, ioc->ioc_regs,
(unsigned long) num_physpages >> (20 - PAGE_SHIFT),
iova_space_size>>20,
iov_order + PAGE_SHIFT);
ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
get_order(ioc->pdir_size));
if(NULL == ioc->pdir_base) {
panic("%s() could not allocate I/O Page Table\n", __FUNCTION__);
}
memset(ioc->pdir_base, 0, ioc->pdir_size);
BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
DBG_INIT(" base %p\n", ioc->pdir_base);
/* resource map size dictated by pdir_size */
ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__, ioc->res_size);
ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
get_order(ioc->res_size));
if(NULL == ioc->res_map) {
panic("%s() could not allocate resource map\n", __FUNCTION__);
}
memset(ioc->res_map, 0, ioc->res_size);
/* Initialize the res_hint to 16 */
ioc->res_hint = 16;
/* Initialize the spinlock */
spin_lock_init(&ioc->res_lock);
/*
** Chainid is the upper most bits of an IOVP used to determine
** which TLB entry an IOVP will use.
*/
ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
/*
** Initialize IOA hardware
*/
WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
&ioc->ioc_regs->io_chain_id_mask);
WRITE_U32(virt_to_phys(ioc->pdir_base),
&ioc->ioc_regs->io_pdir_base);
/*
** Go to "Virtual Mode"
*/
WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
/*
** Initialize all I/O TLB entries to 0 (Valid bit off).
*/
WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
&ioc->ioc_regs->io_command);
}
}
static void
ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
{
int result;
res->parent = NULL;
res->flags = IORESOURCE_MEM;
/*
* bracing ((signed) ...) are required for 64bit kernel because
* we only want to sign extend the lower 16 bits of the register.
* The upper 16-bits of range registers are hardcoded to 0xffff.
*/
res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
res->name = name;
/*
* Check if this MMIO range is disable
*/
if (res->end + 1 == res->start)
return;
/* On some platforms (e.g. K-Class), we have already registered
* resources for devices reported by firmware. Some are children
* of ccio.
* "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
*/
result = insert_resource(&iomem_resource, res);
if (result < 0) {
printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
__FUNCTION__, res->start, res->end);
}
}
static void __init ccio_init_resources(struct ioc *ioc)
{
struct resource *res = ioc->mmio_region;
char *name = kmalloc(14, GFP_KERNEL);
snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
}
static int new_ioc_area(struct resource *res, unsigned long size,
unsigned long min, unsigned long max, unsigned long align)
{
if (max <= min)
return -EBUSY;
res->start = (max - size + 1) &~ (align - 1);
res->end = res->start + size;
/* We might be trying to expand the MMIO range to include
* a child device that has already registered it's MMIO space.
* Use "insert" instead of request_resource().
*/
if (!insert_resource(&iomem_resource, res))
return 0;
return new_ioc_area(res, size, min, max - size, align);
}
static int expand_ioc_area(struct resource *res, unsigned long size,
unsigned long min, unsigned long max, unsigned long align)
{
unsigned long start, len;
if (!res->parent)
return new_ioc_area(res, size, min, max, align);
start = (res->start - size) &~ (align - 1);
len = res->end - start + 1;
if (start >= min) {
if (!adjust_resource(res, start, len))
return 0;
}
start = res->start;
len = ((size + res->end + align) &~ (align - 1)) - start;
if (start + len <= max) {
if (!adjust_resource(res, start, len))
return 0;
}
return -EBUSY;
}
/*
* Dino calls this function. Beware that we may get called on systems
* which have no IOC (725, B180, C160L, etc) but do have a Dino.
* So it's legal to find no parent IOC.
*
* Some other issues: one of the resources in the ioc may be unassigned.
*/
int ccio_allocate_resource(const struct parisc_device *dev,
struct resource *res, unsigned long size,
unsigned long min, unsigned long max, unsigned long align)
{
struct resource *parent = &iomem_resource;
struct ioc *ioc = ccio_get_iommu(dev);
if (!ioc)
goto out;
parent = ioc->mmio_region;
if (parent->parent &&
!allocate_resource(parent, res, size, min, max, align, NULL, NULL))
return 0;
if ((parent + 1)->parent &&
!allocate_resource(parent + 1, res, size, min, max, align,
NULL, NULL))
return 0;
if (!expand_ioc_area(parent, size, min, max, align)) {
__raw_writel(((parent->start)>>16) | 0xffff0000,
&ioc->ioc_regs->io_io_low);
__raw_writel(((parent->end)>>16) | 0xffff0000,
&ioc->ioc_regs->io_io_high);
} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
parent++;
__raw_writel(((parent->start)>>16) | 0xffff0000,
&ioc->ioc_regs->io_io_low_hv);
__raw_writel(((parent->end)>>16) | 0xffff0000,
&ioc->ioc_regs->io_io_high_hv);
} else {
return -EBUSY;
}
out:
return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
}
int ccio_request_resource(const struct parisc_device *dev,
struct resource *res)
{
struct resource *parent;
struct ioc *ioc = ccio_get_iommu(dev);
if (!ioc) {
parent = &iomem_resource;
} else if ((ioc->mmio_region->start <= res->start) &&
(res->end <= ioc->mmio_region->end)) {
parent = ioc->mmio_region;
} else if (((ioc->mmio_region + 1)->start <= res->start) &&
(res->end <= (ioc->mmio_region + 1)->end)) {
parent = ioc->mmio_region + 1;
} else {
return -EBUSY;
}
/* "transparent" bus bridges need to register MMIO resources
* firmware assigned them. e.g. children of hppb.c (e.g. K-class)
* registered their resources in the PDC "bus walk" (See
* arch/parisc/kernel/inventory.c).
*/
return insert_resource(parent, res);
}
/**
* ccio_probe - Determine if ccio should claim this device.
* @dev: The device which has been found
*
* Determine if ccio should claim this chip (return 0) or not (return 1).
* If so, initialize the chip and tell other partners in crime they
* have work to do.
*/
static int ccio_probe(struct parisc_device *dev)
{
int i;
struct ioc *ioc, **ioc_p = &ioc_list;
struct proc_dir_entry *info_entry, *bitmap_entry;
ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
if (ioc == NULL) {
printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
return 1;
}
ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa.start);
for (i = 0; i < ioc_count; i++) {
ioc_p = &(*ioc_p)->next;
}
*ioc_p = ioc;
ioc->hw_path = dev->hw_path;
ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
ccio_ioc_init(ioc);
ccio_init_resources(ioc);
hppa_dma_ops = &ccio_ops;
dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
/* if this fails, no I/O cards will work, so may as well bug */
BUG_ON(dev->dev.platform_data == NULL);
HBA_DATA(dev->dev.platform_data)->iommu = ioc;
if (ioc_count == 0) {
info_entry = create_proc_entry(MODULE_NAME, 0, proc_runway_root);
if (info_entry)
info_entry->proc_fops = &ccio_proc_info_fops;
bitmap_entry = create_proc_entry(MODULE_NAME"-bitmap", 0, proc_runway_root);
if (bitmap_entry)
bitmap_entry->proc_fops = &ccio_proc_bitmap_fops;
}
ioc_count++;
parisc_vmerge_boundary = IOVP_SIZE;
parisc_vmerge_max_size = BITS_PER_LONG * IOVP_SIZE;
parisc_has_iommu();
return 0;
}
/**
* ccio_init - ccio initalization procedure.
*
* Register this driver.
*/
void __init ccio_init(void)
{
register_parisc_driver(&ccio_driver);
}