kernel-ark/drivers/gpio/mcp23s08.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

436 lines
9.7 KiB
C

/*
* mcp23s08.c - SPI gpio expander driver
*/
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/workqueue.h>
#include <linux/mutex.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/mcp23s08.h>
#include <linux/slab.h>
/* Registers are all 8 bits wide.
*
* The mcp23s17 has twice as many bits, and can be configured to work
* with either 16 bit registers or with two adjacent 8 bit banks.
*
* Also, there are I2C versions of both chips.
*/
#define MCP_IODIR 0x00 /* init/reset: all ones */
#define MCP_IPOL 0x01
#define MCP_GPINTEN 0x02
#define MCP_DEFVAL 0x03
#define MCP_INTCON 0x04
#define MCP_IOCON 0x05
# define IOCON_SEQOP (1 << 5)
# define IOCON_HAEN (1 << 3)
# define IOCON_ODR (1 << 2)
# define IOCON_INTPOL (1 << 1)
#define MCP_GPPU 0x06
#define MCP_INTF 0x07
#define MCP_INTCAP 0x08
#define MCP_GPIO 0x09
#define MCP_OLAT 0x0a
struct mcp23s08 {
struct spi_device *spi;
u8 addr;
u8 cache[11];
/* lock protects the cached values */
struct mutex lock;
struct gpio_chip chip;
struct work_struct work;
};
/* A given spi_device can represent up to four mcp23s08 chips
* sharing the same chipselect but using different addresses
* (e.g. chips #0 and #3 might be populated, but not #1 or $2).
* Driver data holds all the per-chip data.
*/
struct mcp23s08_driver_data {
unsigned ngpio;
struct mcp23s08 *mcp[4];
struct mcp23s08 chip[];
};
static int mcp23s08_read(struct mcp23s08 *mcp, unsigned reg)
{
u8 tx[2], rx[1];
int status;
tx[0] = mcp->addr | 0x01;
tx[1] = reg;
status = spi_write_then_read(mcp->spi, tx, sizeof tx, rx, sizeof rx);
return (status < 0) ? status : rx[0];
}
static int mcp23s08_write(struct mcp23s08 *mcp, unsigned reg, u8 val)
{
u8 tx[3];
tx[0] = mcp->addr;
tx[1] = reg;
tx[2] = val;
return spi_write_then_read(mcp->spi, tx, sizeof tx, NULL, 0);
}
static int
mcp23s08_read_regs(struct mcp23s08 *mcp, unsigned reg, u8 *vals, unsigned n)
{
u8 tx[2];
if ((n + reg) > sizeof mcp->cache)
return -EINVAL;
tx[0] = mcp->addr | 0x01;
tx[1] = reg;
return spi_write_then_read(mcp->spi, tx, sizeof tx, vals, n);
}
/*----------------------------------------------------------------------*/
static int mcp23s08_direction_input(struct gpio_chip *chip, unsigned offset)
{
struct mcp23s08 *mcp = container_of(chip, struct mcp23s08, chip);
int status;
mutex_lock(&mcp->lock);
mcp->cache[MCP_IODIR] |= (1 << offset);
status = mcp23s08_write(mcp, MCP_IODIR, mcp->cache[MCP_IODIR]);
mutex_unlock(&mcp->lock);
return status;
}
static int mcp23s08_get(struct gpio_chip *chip, unsigned offset)
{
struct mcp23s08 *mcp = container_of(chip, struct mcp23s08, chip);
int status;
mutex_lock(&mcp->lock);
/* REVISIT reading this clears any IRQ ... */
status = mcp23s08_read(mcp, MCP_GPIO);
if (status < 0)
status = 0;
else {
mcp->cache[MCP_GPIO] = status;
status = !!(status & (1 << offset));
}
mutex_unlock(&mcp->lock);
return status;
}
static int __mcp23s08_set(struct mcp23s08 *mcp, unsigned mask, int value)
{
u8 olat = mcp->cache[MCP_OLAT];
if (value)
olat |= mask;
else
olat &= ~mask;
mcp->cache[MCP_OLAT] = olat;
return mcp23s08_write(mcp, MCP_OLAT, olat);
}
static void mcp23s08_set(struct gpio_chip *chip, unsigned offset, int value)
{
struct mcp23s08 *mcp = container_of(chip, struct mcp23s08, chip);
u8 mask = 1 << offset;
mutex_lock(&mcp->lock);
__mcp23s08_set(mcp, mask, value);
mutex_unlock(&mcp->lock);
}
static int
mcp23s08_direction_output(struct gpio_chip *chip, unsigned offset, int value)
{
struct mcp23s08 *mcp = container_of(chip, struct mcp23s08, chip);
u8 mask = 1 << offset;
int status;
mutex_lock(&mcp->lock);
status = __mcp23s08_set(mcp, mask, value);
if (status == 0) {
mcp->cache[MCP_IODIR] &= ~mask;
status = mcp23s08_write(mcp, MCP_IODIR, mcp->cache[MCP_IODIR]);
}
mutex_unlock(&mcp->lock);
return status;
}
/*----------------------------------------------------------------------*/
#ifdef CONFIG_DEBUG_FS
#include <linux/seq_file.h>
/*
* This shows more info than the generic gpio dump code:
* pullups, deglitching, open drain drive.
*/
static void mcp23s08_dbg_show(struct seq_file *s, struct gpio_chip *chip)
{
struct mcp23s08 *mcp;
char bank;
int t;
unsigned mask;
mcp = container_of(chip, struct mcp23s08, chip);
/* NOTE: we only handle one bank for now ... */
bank = '0' + ((mcp->addr >> 1) & 0x3);
mutex_lock(&mcp->lock);
t = mcp23s08_read_regs(mcp, 0, mcp->cache, sizeof mcp->cache);
if (t < 0) {
seq_printf(s, " I/O ERROR %d\n", t);
goto done;
}
for (t = 0, mask = 1; t < 8; t++, mask <<= 1) {
const char *label;
label = gpiochip_is_requested(chip, t);
if (!label)
continue;
seq_printf(s, " gpio-%-3d P%c.%d (%-12s) %s %s %s",
chip->base + t, bank, t, label,
(mcp->cache[MCP_IODIR] & mask) ? "in " : "out",
(mcp->cache[MCP_GPIO] & mask) ? "hi" : "lo",
(mcp->cache[MCP_GPPU] & mask) ? " " : "up");
/* NOTE: ignoring the irq-related registers */
seq_printf(s, "\n");
}
done:
mutex_unlock(&mcp->lock);
}
#else
#define mcp23s08_dbg_show NULL
#endif
/*----------------------------------------------------------------------*/
static int mcp23s08_probe_one(struct spi_device *spi, unsigned addr,
unsigned base, unsigned pullups)
{
struct mcp23s08_driver_data *data = spi_get_drvdata(spi);
struct mcp23s08 *mcp = data->mcp[addr];
int status;
int do_update = 0;
mutex_init(&mcp->lock);
mcp->spi = spi;
mcp->addr = 0x40 | (addr << 1);
mcp->chip.label = "mcp23s08",
mcp->chip.direction_input = mcp23s08_direction_input;
mcp->chip.get = mcp23s08_get;
mcp->chip.direction_output = mcp23s08_direction_output;
mcp->chip.set = mcp23s08_set;
mcp->chip.dbg_show = mcp23s08_dbg_show;
mcp->chip.base = base;
mcp->chip.ngpio = 8;
mcp->chip.can_sleep = 1;
mcp->chip.dev = &spi->dev;
mcp->chip.owner = THIS_MODULE;
/* verify MCP_IOCON.SEQOP = 0, so sequential reads work,
* and MCP_IOCON.HAEN = 1, so we work with all chips.
*/
status = mcp23s08_read(mcp, MCP_IOCON);
if (status < 0)
goto fail;
if ((status & IOCON_SEQOP) || !(status & IOCON_HAEN)) {
status &= ~IOCON_SEQOP;
status |= IOCON_HAEN;
status = mcp23s08_write(mcp, MCP_IOCON, (u8) status);
if (status < 0)
goto fail;
}
/* configure ~100K pullups */
status = mcp23s08_write(mcp, MCP_GPPU, pullups);
if (status < 0)
goto fail;
status = mcp23s08_read_regs(mcp, 0, mcp->cache, sizeof mcp->cache);
if (status < 0)
goto fail;
/* disable inverter on input */
if (mcp->cache[MCP_IPOL] != 0) {
mcp->cache[MCP_IPOL] = 0;
do_update = 1;
}
/* disable irqs */
if (mcp->cache[MCP_GPINTEN] != 0) {
mcp->cache[MCP_GPINTEN] = 0;
do_update = 1;
}
if (do_update) {
u8 tx[4];
tx[0] = mcp->addr;
tx[1] = MCP_IPOL;
memcpy(&tx[2], &mcp->cache[MCP_IPOL], sizeof(tx) - 2);
status = spi_write_then_read(mcp->spi, tx, sizeof tx, NULL, 0);
if (status < 0)
goto fail;
}
status = gpiochip_add(&mcp->chip);
fail:
if (status < 0)
dev_dbg(&spi->dev, "can't setup chip %d, --> %d\n",
addr, status);
return status;
}
static int mcp23s08_probe(struct spi_device *spi)
{
struct mcp23s08_platform_data *pdata;
unsigned addr;
unsigned chips = 0;
struct mcp23s08_driver_data *data;
int status;
unsigned base;
pdata = spi->dev.platform_data;
if (!pdata || !gpio_is_valid(pdata->base)) {
dev_dbg(&spi->dev, "invalid or missing platform data\n");
return -EINVAL;
}
for (addr = 0; addr < 4; addr++) {
if (!pdata->chip[addr].is_present)
continue;
chips++;
}
if (!chips)
return -ENODEV;
data = kzalloc(sizeof *data + chips * sizeof(struct mcp23s08),
GFP_KERNEL);
if (!data)
return -ENOMEM;
spi_set_drvdata(spi, data);
base = pdata->base;
for (addr = 0; addr < 4; addr++) {
if (!pdata->chip[addr].is_present)
continue;
chips--;
data->mcp[addr] = &data->chip[chips];
status = mcp23s08_probe_one(spi, addr, base,
pdata->chip[addr].pullups);
if (status < 0)
goto fail;
base += 8;
}
data->ngpio = base - pdata->base;
/* NOTE: these chips have a relatively sane IRQ framework, with
* per-signal masking and level/edge triggering. It's not yet
* handled here...
*/
if (pdata->setup) {
status = pdata->setup(spi,
pdata->base, data->ngpio,
pdata->context);
if (status < 0)
dev_dbg(&spi->dev, "setup --> %d\n", status);
}
return 0;
fail:
for (addr = 0; addr < 4; addr++) {
int tmp;
if (!data->mcp[addr])
continue;
tmp = gpiochip_remove(&data->mcp[addr]->chip);
if (tmp < 0)
dev_err(&spi->dev, "%s --> %d\n", "remove", tmp);
}
kfree(data);
return status;
}
static int mcp23s08_remove(struct spi_device *spi)
{
struct mcp23s08_driver_data *data = spi_get_drvdata(spi);
struct mcp23s08_platform_data *pdata = spi->dev.platform_data;
unsigned addr;
int status = 0;
if (pdata->teardown) {
status = pdata->teardown(spi,
pdata->base, data->ngpio,
pdata->context);
if (status < 0) {
dev_err(&spi->dev, "%s --> %d\n", "teardown", status);
return status;
}
}
for (addr = 0; addr < 4; addr++) {
int tmp;
if (!data->mcp[addr])
continue;
tmp = gpiochip_remove(&data->mcp[addr]->chip);
if (tmp < 0) {
dev_err(&spi->dev, "%s --> %d\n", "remove", tmp);
status = tmp;
}
}
if (status == 0)
kfree(data);
return status;
}
static struct spi_driver mcp23s08_driver = {
.probe = mcp23s08_probe,
.remove = mcp23s08_remove,
.driver = {
.name = "mcp23s08",
.owner = THIS_MODULE,
},
};
/*----------------------------------------------------------------------*/
static int __init mcp23s08_init(void)
{
return spi_register_driver(&mcp23s08_driver);
}
/* register after spi postcore initcall and before
* subsys initcalls that may rely on these GPIOs
*/
subsys_initcall(mcp23s08_init);
static void __exit mcp23s08_exit(void)
{
spi_unregister_driver(&mcp23s08_driver);
}
module_exit(mcp23s08_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:mcp23s08");