kernel-ark/drivers/usb/gadget/atmel_usba_udc.c
David Brownell 00274921a0 USB: gadget code switches to pr_err() and friends
We now have pr_err(), pr_warning(), and friends ... start using
them in the gadget stack instead of printk(KERN_ERR) and friends.
This gives us shorter lines and somewhat increased readability.

Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-02-01 14:34:51 -08:00

2075 lines
49 KiB
C

/*
* Driver for the Atmel USBA high speed USB device controller
*
* Copyright (C) 2005-2007 Atmel Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/list.h>
#include <linux/platform_device.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <linux/delay.h>
#include <asm/gpio.h>
#include <asm/arch/board.h>
#include "atmel_usba_udc.h"
static struct usba_udc the_udc;
#ifdef CONFIG_USB_GADGET_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/uaccess.h>
static int queue_dbg_open(struct inode *inode, struct file *file)
{
struct usba_ep *ep = inode->i_private;
struct usba_request *req, *req_copy;
struct list_head *queue_data;
queue_data = kmalloc(sizeof(*queue_data), GFP_KERNEL);
if (!queue_data)
return -ENOMEM;
INIT_LIST_HEAD(queue_data);
spin_lock_irq(&ep->udc->lock);
list_for_each_entry(req, &ep->queue, queue) {
req_copy = kmalloc(sizeof(*req_copy), GFP_ATOMIC);
if (!req_copy)
goto fail;
memcpy(req_copy, req, sizeof(*req_copy));
list_add_tail(&req_copy->queue, queue_data);
}
spin_unlock_irq(&ep->udc->lock);
file->private_data = queue_data;
return 0;
fail:
spin_unlock_irq(&ep->udc->lock);
list_for_each_entry_safe(req, req_copy, queue_data, queue) {
list_del(&req->queue);
kfree(req);
}
kfree(queue_data);
return -ENOMEM;
}
/*
* bbbbbbbb llllllll IZS sssss nnnn FDL\n\0
*
* b: buffer address
* l: buffer length
* I/i: interrupt/no interrupt
* Z/z: zero/no zero
* S/s: short ok/short not ok
* s: status
* n: nr_packets
* F/f: submitted/not submitted to FIFO
* D/d: using/not using DMA
* L/l: last transaction/not last transaction
*/
static ssize_t queue_dbg_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct list_head *queue = file->private_data;
struct usba_request *req, *tmp_req;
size_t len, remaining, actual = 0;
char tmpbuf[38];
if (!access_ok(VERIFY_WRITE, buf, nbytes))
return -EFAULT;
mutex_lock(&file->f_dentry->d_inode->i_mutex);
list_for_each_entry_safe(req, tmp_req, queue, queue) {
len = snprintf(tmpbuf, sizeof(tmpbuf),
"%8p %08x %c%c%c %5d %c%c%c\n",
req->req.buf, req->req.length,
req->req.no_interrupt ? 'i' : 'I',
req->req.zero ? 'Z' : 'z',
req->req.short_not_ok ? 's' : 'S',
req->req.status,
req->submitted ? 'F' : 'f',
req->using_dma ? 'D' : 'd',
req->last_transaction ? 'L' : 'l');
len = min(len, sizeof(tmpbuf));
if (len > nbytes)
break;
list_del(&req->queue);
kfree(req);
remaining = __copy_to_user(buf, tmpbuf, len);
actual += len - remaining;
if (remaining)
break;
nbytes -= len;
buf += len;
}
mutex_unlock(&file->f_dentry->d_inode->i_mutex);
return actual;
}
static int queue_dbg_release(struct inode *inode, struct file *file)
{
struct list_head *queue_data = file->private_data;
struct usba_request *req, *tmp_req;
list_for_each_entry_safe(req, tmp_req, queue_data, queue) {
list_del(&req->queue);
kfree(req);
}
kfree(queue_data);
return 0;
}
static int regs_dbg_open(struct inode *inode, struct file *file)
{
struct usba_udc *udc;
unsigned int i;
u32 *data;
int ret = -ENOMEM;
mutex_lock(&inode->i_mutex);
udc = inode->i_private;
data = kmalloc(inode->i_size, GFP_KERNEL);
if (!data)
goto out;
spin_lock_irq(&udc->lock);
for (i = 0; i < inode->i_size / 4; i++)
data[i] = __raw_readl(udc->regs + i * 4);
spin_unlock_irq(&udc->lock);
file->private_data = data;
ret = 0;
out:
mutex_unlock(&inode->i_mutex);
return ret;
}
static ssize_t regs_dbg_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
struct inode *inode = file->f_dentry->d_inode;
int ret;
mutex_lock(&inode->i_mutex);
ret = simple_read_from_buffer(buf, nbytes, ppos,
file->private_data,
file->f_dentry->d_inode->i_size);
mutex_unlock(&inode->i_mutex);
return ret;
}
static int regs_dbg_release(struct inode *inode, struct file *file)
{
kfree(file->private_data);
return 0;
}
const struct file_operations queue_dbg_fops = {
.owner = THIS_MODULE,
.open = queue_dbg_open,
.llseek = no_llseek,
.read = queue_dbg_read,
.release = queue_dbg_release,
};
const struct file_operations regs_dbg_fops = {
.owner = THIS_MODULE,
.open = regs_dbg_open,
.llseek = generic_file_llseek,
.read = regs_dbg_read,
.release = regs_dbg_release,
};
static void usba_ep_init_debugfs(struct usba_udc *udc,
struct usba_ep *ep)
{
struct dentry *ep_root;
ep_root = debugfs_create_dir(ep->ep.name, udc->debugfs_root);
if (!ep_root)
goto err_root;
ep->debugfs_dir = ep_root;
ep->debugfs_queue = debugfs_create_file("queue", 0400, ep_root,
ep, &queue_dbg_fops);
if (!ep->debugfs_queue)
goto err_queue;
if (ep->can_dma) {
ep->debugfs_dma_status
= debugfs_create_u32("dma_status", 0400, ep_root,
&ep->last_dma_status);
if (!ep->debugfs_dma_status)
goto err_dma_status;
}
if (ep_is_control(ep)) {
ep->debugfs_state
= debugfs_create_u32("state", 0400, ep_root,
&ep->state);
if (!ep->debugfs_state)
goto err_state;
}
return;
err_state:
if (ep->can_dma)
debugfs_remove(ep->debugfs_dma_status);
err_dma_status:
debugfs_remove(ep->debugfs_queue);
err_queue:
debugfs_remove(ep_root);
err_root:
dev_err(&ep->udc->pdev->dev,
"failed to create debugfs directory for %s\n", ep->ep.name);
}
static void usba_ep_cleanup_debugfs(struct usba_ep *ep)
{
debugfs_remove(ep->debugfs_queue);
debugfs_remove(ep->debugfs_dma_status);
debugfs_remove(ep->debugfs_state);
debugfs_remove(ep->debugfs_dir);
ep->debugfs_dma_status = NULL;
ep->debugfs_dir = NULL;
}
static void usba_init_debugfs(struct usba_udc *udc)
{
struct dentry *root, *regs;
struct resource *regs_resource;
root = debugfs_create_dir(udc->gadget.name, NULL);
if (IS_ERR(root) || !root)
goto err_root;
udc->debugfs_root = root;
regs = debugfs_create_file("regs", 0400, root, udc, &regs_dbg_fops);
if (!regs)
goto err_regs;
regs_resource = platform_get_resource(udc->pdev, IORESOURCE_MEM,
CTRL_IOMEM_ID);
regs->d_inode->i_size = regs_resource->end - regs_resource->start + 1;
udc->debugfs_regs = regs;
usba_ep_init_debugfs(udc, to_usba_ep(udc->gadget.ep0));
return;
err_regs:
debugfs_remove(root);
err_root:
udc->debugfs_root = NULL;
dev_err(&udc->pdev->dev, "debugfs is not available\n");
}
static void usba_cleanup_debugfs(struct usba_udc *udc)
{
usba_ep_cleanup_debugfs(to_usba_ep(udc->gadget.ep0));
debugfs_remove(udc->debugfs_regs);
debugfs_remove(udc->debugfs_root);
udc->debugfs_regs = NULL;
udc->debugfs_root = NULL;
}
#else
static inline void usba_ep_init_debugfs(struct usba_udc *udc,
struct usba_ep *ep)
{
}
static inline void usba_ep_cleanup_debugfs(struct usba_ep *ep)
{
}
static inline void usba_init_debugfs(struct usba_udc *udc)
{
}
static inline void usba_cleanup_debugfs(struct usba_udc *udc)
{
}
#endif
static int vbus_is_present(struct usba_udc *udc)
{
if (udc->vbus_pin != -1)
return gpio_get_value(udc->vbus_pin);
/* No Vbus detection: Assume always present */
return 1;
}
static void copy_to_fifo(void __iomem *fifo, const void *buf, int len)
{
unsigned long tmp;
DBG(DBG_FIFO, "copy to FIFO (len %d):\n", len);
for (; len > 0; len -= 4, buf += 4, fifo += 4) {
tmp = *(unsigned long *)buf;
if (len >= 4) {
DBG(DBG_FIFO, " -> %08lx\n", tmp);
__raw_writel(tmp, fifo);
} else {
do {
DBG(DBG_FIFO, " -> %02lx\n", tmp >> 24);
__raw_writeb(tmp >> 24, fifo);
fifo++;
tmp <<= 8;
} while (--len);
break;
}
}
}
static void copy_from_fifo(void *buf, void __iomem *fifo, int len)
{
union {
unsigned long *w;
unsigned char *b;
} p;
unsigned long tmp;
DBG(DBG_FIFO, "copy from FIFO (len %d):\n", len);
for (p.w = buf; len > 0; len -= 4, p.w++, fifo += 4) {
if (len >= 4) {
tmp = __raw_readl(fifo);
*p.w = tmp;
DBG(DBG_FIFO, " -> %08lx\n", tmp);
} else {
do {
tmp = __raw_readb(fifo);
*p.b = tmp;
DBG(DBG_FIFO, " -> %02lx\n", tmp);
fifo++, p.b++;
} while (--len);
}
}
}
static void next_fifo_transaction(struct usba_ep *ep, struct usba_request *req)
{
unsigned int transaction_len;
transaction_len = req->req.length - req->req.actual;
req->last_transaction = 1;
if (transaction_len > ep->ep.maxpacket) {
transaction_len = ep->ep.maxpacket;
req->last_transaction = 0;
} else if (transaction_len == ep->ep.maxpacket && req->req.zero)
req->last_transaction = 0;
DBG(DBG_QUEUE, "%s: submit_transaction, req %p (length %d)%s\n",
ep->ep.name, req, transaction_len,
req->last_transaction ? ", done" : "");
copy_to_fifo(ep->fifo, req->req.buf + req->req.actual, transaction_len);
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
req->req.actual += transaction_len;
}
static void submit_request(struct usba_ep *ep, struct usba_request *req)
{
DBG(DBG_QUEUE, "%s: submit_request: req %p (length %d)\n",
ep->ep.name, req, req->req.length);
req->req.actual = 0;
req->submitted = 1;
if (req->using_dma) {
if (req->req.length == 0) {
usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY);
return;
}
if (req->req.zero)
usba_ep_writel(ep, CTL_ENB, USBA_SHORT_PACKET);
else
usba_ep_writel(ep, CTL_DIS, USBA_SHORT_PACKET);
usba_dma_writel(ep, ADDRESS, req->req.dma);
usba_dma_writel(ep, CONTROL, req->ctrl);
} else {
next_fifo_transaction(ep, req);
if (req->last_transaction) {
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
} else {
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY);
}
}
}
static void submit_next_request(struct usba_ep *ep)
{
struct usba_request *req;
if (list_empty(&ep->queue)) {
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY | USBA_RX_BK_RDY);
return;
}
req = list_entry(ep->queue.next, struct usba_request, queue);
if (!req->submitted)
submit_request(ep, req);
}
static void send_status(struct usba_udc *udc, struct usba_ep *ep)
{
ep->state = STATUS_STAGE_IN;
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
}
static void receive_data(struct usba_ep *ep)
{
struct usba_udc *udc = ep->udc;
struct usba_request *req;
unsigned long status;
unsigned int bytecount, nr_busy;
int is_complete = 0;
status = usba_ep_readl(ep, STA);
nr_busy = USBA_BFEXT(BUSY_BANKS, status);
DBG(DBG_QUEUE, "receive data: nr_busy=%u\n", nr_busy);
while (nr_busy > 0) {
if (list_empty(&ep->queue)) {
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
break;
}
req = list_entry(ep->queue.next,
struct usba_request, queue);
bytecount = USBA_BFEXT(BYTE_COUNT, status);
if (status & (1 << 31))
is_complete = 1;
if (req->req.actual + bytecount >= req->req.length) {
is_complete = 1;
bytecount = req->req.length - req->req.actual;
}
copy_from_fifo(req->req.buf + req->req.actual,
ep->fifo, bytecount);
req->req.actual += bytecount;
usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
if (is_complete) {
DBG(DBG_QUEUE, "%s: request done\n", ep->ep.name);
req->req.status = 0;
list_del_init(&req->queue);
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
spin_unlock(&udc->lock);
req->req.complete(&ep->ep, &req->req);
spin_lock(&udc->lock);
}
status = usba_ep_readl(ep, STA);
nr_busy = USBA_BFEXT(BUSY_BANKS, status);
if (is_complete && ep_is_control(ep)) {
send_status(udc, ep);
break;
}
}
}
static void
request_complete(struct usba_ep *ep, struct usba_request *req, int status)
{
struct usba_udc *udc = ep->udc;
WARN_ON(!list_empty(&req->queue));
if (req->req.status == -EINPROGRESS)
req->req.status = status;
if (req->mapped) {
dma_unmap_single(
&udc->pdev->dev, req->req.dma, req->req.length,
ep->is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
req->req.dma = DMA_ADDR_INVALID;
req->mapped = 0;
}
DBG(DBG_GADGET | DBG_REQ,
"%s: req %p complete: status %d, actual %u\n",
ep->ep.name, req, req->req.status, req->req.actual);
spin_unlock(&udc->lock);
req->req.complete(&ep->ep, &req->req);
spin_lock(&udc->lock);
}
static void
request_complete_list(struct usba_ep *ep, struct list_head *list, int status)
{
struct usba_request *req, *tmp_req;
list_for_each_entry_safe(req, tmp_req, list, queue) {
list_del_init(&req->queue);
request_complete(ep, req, status);
}
}
static int
usba_ep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
unsigned long flags, ept_cfg, maxpacket;
unsigned int nr_trans;
DBG(DBG_GADGET, "%s: ep_enable: desc=%p\n", ep->ep.name, desc);
maxpacket = le16_to_cpu(desc->wMaxPacketSize) & 0x7ff;
if (((desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK) != ep->index)
|| ep->index == 0
|| desc->bDescriptorType != USB_DT_ENDPOINT
|| maxpacket == 0
|| maxpacket > ep->fifo_size) {
DBG(DBG_ERR, "ep_enable: Invalid argument");
return -EINVAL;
}
ep->is_isoc = 0;
ep->is_in = 0;
if (maxpacket <= 8)
ept_cfg = USBA_BF(EPT_SIZE, USBA_EPT_SIZE_8);
else
/* LSB is bit 1, not 0 */
ept_cfg = USBA_BF(EPT_SIZE, fls(maxpacket - 1) - 3);
DBG(DBG_HW, "%s: EPT_SIZE = %lu (maxpacket = %lu)\n",
ep->ep.name, ept_cfg, maxpacket);
if ((desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) {
ep->is_in = 1;
ept_cfg |= USBA_EPT_DIR_IN;
}
switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_CONTROL:
ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_CONTROL);
ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_ONE);
break;
case USB_ENDPOINT_XFER_ISOC:
if (!ep->can_isoc) {
DBG(DBG_ERR, "ep_enable: %s is not isoc capable\n",
ep->ep.name);
return -EINVAL;
}
/*
* Bits 11:12 specify number of _additional_
* transactions per microframe.
*/
nr_trans = ((le16_to_cpu(desc->wMaxPacketSize) >> 11) & 3) + 1;
if (nr_trans > 3)
return -EINVAL;
ep->is_isoc = 1;
ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_ISO);
/*
* Do triple-buffering on high-bandwidth iso endpoints.
*/
if (nr_trans > 1 && ep->nr_banks == 3)
ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_TRIPLE);
else
ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_DOUBLE);
ept_cfg |= USBA_BF(NB_TRANS, nr_trans);
break;
case USB_ENDPOINT_XFER_BULK:
ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK);
ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_DOUBLE);
break;
case USB_ENDPOINT_XFER_INT:
ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_INT);
ept_cfg |= USBA_BF(BK_NUMBER, USBA_BK_NUMBER_DOUBLE);
break;
}
spin_lock_irqsave(&ep->udc->lock, flags);
if (ep->desc) {
spin_unlock_irqrestore(&ep->udc->lock, flags);
DBG(DBG_ERR, "ep%d already enabled\n", ep->index);
return -EBUSY;
}
ep->desc = desc;
ep->ep.maxpacket = maxpacket;
usba_ep_writel(ep, CFG, ept_cfg);
usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);
if (ep->can_dma) {
u32 ctrl;
usba_writel(udc, INT_ENB,
(usba_readl(udc, INT_ENB)
| USBA_BF(EPT_INT, 1 << ep->index)
| USBA_BF(DMA_INT, 1 << ep->index)));
ctrl = USBA_AUTO_VALID | USBA_INTDIS_DMA;
usba_ep_writel(ep, CTL_ENB, ctrl);
} else {
usba_writel(udc, INT_ENB,
(usba_readl(udc, INT_ENB)
| USBA_BF(EPT_INT, 1 << ep->index)));
}
spin_unlock_irqrestore(&udc->lock, flags);
DBG(DBG_HW, "EPT_CFG%d after init: %#08lx\n", ep->index,
(unsigned long)usba_ep_readl(ep, CFG));
DBG(DBG_HW, "INT_ENB after init: %#08lx\n",
(unsigned long)usba_readl(udc, INT_ENB));
return 0;
}
static int usba_ep_disable(struct usb_ep *_ep)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
LIST_HEAD(req_list);
unsigned long flags;
DBG(DBG_GADGET, "ep_disable: %s\n", ep->ep.name);
spin_lock_irqsave(&udc->lock, flags);
if (!ep->desc) {
spin_unlock_irqrestore(&udc->lock, flags);
DBG(DBG_ERR, "ep_disable: %s not enabled\n", ep->ep.name);
return -EINVAL;
}
ep->desc = NULL;
list_splice_init(&ep->queue, &req_list);
if (ep->can_dma) {
usba_dma_writel(ep, CONTROL, 0);
usba_dma_writel(ep, ADDRESS, 0);
usba_dma_readl(ep, STATUS);
}
usba_ep_writel(ep, CTL_DIS, USBA_EPT_ENABLE);
usba_writel(udc, INT_ENB,
usba_readl(udc, INT_ENB)
& ~USBA_BF(EPT_INT, 1 << ep->index));
request_complete_list(ep, &req_list, -ESHUTDOWN);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static struct usb_request *
usba_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
{
struct usba_request *req;
DBG(DBG_GADGET, "ep_alloc_request: %p, 0x%x\n", _ep, gfp_flags);
req = kzalloc(sizeof(*req), gfp_flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
req->req.dma = DMA_ADDR_INVALID;
return &req->req;
}
static void
usba_ep_free_request(struct usb_ep *_ep, struct usb_request *_req)
{
struct usba_request *req = to_usba_req(_req);
DBG(DBG_GADGET, "ep_free_request: %p, %p\n", _ep, _req);
kfree(req);
}
static int queue_dma(struct usba_udc *udc, struct usba_ep *ep,
struct usba_request *req, gfp_t gfp_flags)
{
unsigned long flags;
int ret;
DBG(DBG_DMA, "%s: req l/%u d/%08x %c%c%c\n",
ep->ep.name, req->req.length, req->req.dma,
req->req.zero ? 'Z' : 'z',
req->req.short_not_ok ? 'S' : 's',
req->req.no_interrupt ? 'I' : 'i');
if (req->req.length > 0x10000) {
/* Lengths from 0 to 65536 (inclusive) are supported */
DBG(DBG_ERR, "invalid request length %u\n", req->req.length);
return -EINVAL;
}
req->using_dma = 1;
if (req->req.dma == DMA_ADDR_INVALID) {
req->req.dma = dma_map_single(
&udc->pdev->dev, req->req.buf, req->req.length,
ep->is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
req->mapped = 1;
} else {
dma_sync_single_for_device(
&udc->pdev->dev, req->req.dma, req->req.length,
ep->is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
req->mapped = 0;
}
req->ctrl = USBA_BF(DMA_BUF_LEN, req->req.length)
| USBA_DMA_CH_EN | USBA_DMA_END_BUF_IE
| USBA_DMA_END_TR_EN | USBA_DMA_END_TR_IE;
if (ep->is_in)
req->ctrl |= USBA_DMA_END_BUF_EN;
/*
* Add this request to the queue and submit for DMA if
* possible. Check if we're still alive first -- we may have
* received a reset since last time we checked.
*/
ret = -ESHUTDOWN;
spin_lock_irqsave(&udc->lock, flags);
if (ep->desc) {
if (list_empty(&ep->queue))
submit_request(ep, req);
list_add_tail(&req->queue, &ep->queue);
ret = 0;
}
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static int
usba_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
{
struct usba_request *req = to_usba_req(_req);
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
unsigned long flags;
int ret;
DBG(DBG_GADGET | DBG_QUEUE | DBG_REQ, "%s: queue req %p, len %u\n",
ep->ep.name, req, _req->length);
if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN || !ep->desc)
return -ESHUTDOWN;
req->submitted = 0;
req->using_dma = 0;
req->last_transaction = 0;
_req->status = -EINPROGRESS;
_req->actual = 0;
if (ep->can_dma)
return queue_dma(udc, ep, req, gfp_flags);
/* May have received a reset since last time we checked */
ret = -ESHUTDOWN;
spin_lock_irqsave(&udc->lock, flags);
if (ep->desc) {
list_add_tail(&req->queue, &ep->queue);
if (ep->is_in || (ep_is_control(ep)
&& (ep->state == DATA_STAGE_IN
|| ep->state == STATUS_STAGE_IN)))
usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY);
else
usba_ep_writel(ep, CTL_ENB, USBA_RX_BK_RDY);
ret = 0;
}
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static void
usba_update_req(struct usba_ep *ep, struct usba_request *req, u32 status)
{
req->req.actual = req->req.length - USBA_BFEXT(DMA_BUF_LEN, status);
}
static int stop_dma(struct usba_ep *ep, u32 *pstatus)
{
unsigned int timeout;
u32 status;
/*
* Stop the DMA controller. When writing both CH_EN
* and LINK to 0, the other bits are not affected.
*/
usba_dma_writel(ep, CONTROL, 0);
/* Wait for the FIFO to empty */
for (timeout = 40; timeout; --timeout) {
status = usba_dma_readl(ep, STATUS);
if (!(status & USBA_DMA_CH_EN))
break;
udelay(1);
}
if (pstatus)
*pstatus = status;
if (timeout == 0) {
dev_err(&ep->udc->pdev->dev,
"%s: timed out waiting for DMA FIFO to empty\n",
ep->ep.name);
return -ETIMEDOUT;
}
return 0;
}
static int usba_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
struct usba_request *req = to_usba_req(_req);
unsigned long flags;
u32 status;
DBG(DBG_GADGET | DBG_QUEUE, "ep_dequeue: %s, req %p\n",
ep->ep.name, req);
spin_lock_irqsave(&udc->lock, flags);
if (req->using_dma) {
/*
* If this request is currently being transferred,
* stop the DMA controller and reset the FIFO.
*/
if (ep->queue.next == &req->queue) {
status = usba_dma_readl(ep, STATUS);
if (status & USBA_DMA_CH_EN)
stop_dma(ep, &status);
#ifdef CONFIG_USB_GADGET_DEBUG_FS
ep->last_dma_status = status;
#endif
usba_writel(udc, EPT_RST, 1 << ep->index);
usba_update_req(ep, req, status);
}
}
/*
* Errors should stop the queue from advancing until the
* completion function returns.
*/
list_del_init(&req->queue);
request_complete(ep, req, -ECONNRESET);
/* Process the next request if any */
submit_next_request(ep);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static int usba_ep_set_halt(struct usb_ep *_ep, int value)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
unsigned long flags;
int ret = 0;
DBG(DBG_GADGET, "endpoint %s: %s HALT\n", ep->ep.name,
value ? "set" : "clear");
if (!ep->desc) {
DBG(DBG_ERR, "Attempted to halt uninitialized ep %s\n",
ep->ep.name);
return -ENODEV;
}
if (ep->is_isoc) {
DBG(DBG_ERR, "Attempted to halt isochronous ep %s\n",
ep->ep.name);
return -ENOTTY;
}
spin_lock_irqsave(&udc->lock, flags);
/*
* We can't halt IN endpoints while there are still data to be
* transferred
*/
if (!list_empty(&ep->queue)
|| ((value && ep->is_in && (usba_ep_readl(ep, STA)
& USBA_BF(BUSY_BANKS, -1L))))) {
ret = -EAGAIN;
} else {
if (value)
usba_ep_writel(ep, SET_STA, USBA_FORCE_STALL);
else
usba_ep_writel(ep, CLR_STA,
USBA_FORCE_STALL | USBA_TOGGLE_CLR);
usba_ep_readl(ep, STA);
}
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static int usba_ep_fifo_status(struct usb_ep *_ep)
{
struct usba_ep *ep = to_usba_ep(_ep);
return USBA_BFEXT(BYTE_COUNT, usba_ep_readl(ep, STA));
}
static void usba_ep_fifo_flush(struct usb_ep *_ep)
{
struct usba_ep *ep = to_usba_ep(_ep);
struct usba_udc *udc = ep->udc;
usba_writel(udc, EPT_RST, 1 << ep->index);
}
static const struct usb_ep_ops usba_ep_ops = {
.enable = usba_ep_enable,
.disable = usba_ep_disable,
.alloc_request = usba_ep_alloc_request,
.free_request = usba_ep_free_request,
.queue = usba_ep_queue,
.dequeue = usba_ep_dequeue,
.set_halt = usba_ep_set_halt,
.fifo_status = usba_ep_fifo_status,
.fifo_flush = usba_ep_fifo_flush,
};
static int usba_udc_get_frame(struct usb_gadget *gadget)
{
struct usba_udc *udc = to_usba_udc(gadget);
return USBA_BFEXT(FRAME_NUMBER, usba_readl(udc, FNUM));
}
static int usba_udc_wakeup(struct usb_gadget *gadget)
{
struct usba_udc *udc = to_usba_udc(gadget);
unsigned long flags;
u32 ctrl;
int ret = -EINVAL;
spin_lock_irqsave(&udc->lock, flags);
if (udc->devstatus & (1 << USB_DEVICE_REMOTE_WAKEUP)) {
ctrl = usba_readl(udc, CTRL);
usba_writel(udc, CTRL, ctrl | USBA_REMOTE_WAKE_UP);
ret = 0;
}
spin_unlock_irqrestore(&udc->lock, flags);
return ret;
}
static int
usba_udc_set_selfpowered(struct usb_gadget *gadget, int is_selfpowered)
{
struct usba_udc *udc = to_usba_udc(gadget);
unsigned long flags;
spin_lock_irqsave(&udc->lock, flags);
if (is_selfpowered)
udc->devstatus |= 1 << USB_DEVICE_SELF_POWERED;
else
udc->devstatus &= ~(1 << USB_DEVICE_SELF_POWERED);
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
}
static const struct usb_gadget_ops usba_udc_ops = {
.get_frame = usba_udc_get_frame,
.wakeup = usba_udc_wakeup,
.set_selfpowered = usba_udc_set_selfpowered,
};
#define EP(nam, idx, maxpkt, maxbk, dma, isoc) \
{ \
.ep = { \
.ops = &usba_ep_ops, \
.name = nam, \
.maxpacket = maxpkt, \
}, \
.udc = &the_udc, \
.queue = LIST_HEAD_INIT(usba_ep[idx].queue), \
.fifo_size = maxpkt, \
.nr_banks = maxbk, \
.index = idx, \
.can_dma = dma, \
.can_isoc = isoc, \
}
static struct usba_ep usba_ep[] = {
EP("ep0", 0, 64, 1, 0, 0),
EP("ep1in-bulk", 1, 512, 2, 1, 1),
EP("ep2out-bulk", 2, 512, 2, 1, 1),
EP("ep3in-int", 3, 64, 3, 1, 0),
EP("ep4out-int", 4, 64, 3, 1, 0),
EP("ep5in-iso", 5, 1024, 3, 1, 1),
EP("ep6out-iso", 6, 1024, 3, 1, 1),
};
#undef EP
static struct usb_endpoint_descriptor usba_ep0_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = 0,
.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
.wMaxPacketSize = __constant_cpu_to_le16(64),
/* FIXME: I have no idea what to put here */
.bInterval = 1,
};
static void nop_release(struct device *dev)
{
}
static struct usba_udc the_udc = {
.gadget = {
.ops = &usba_udc_ops,
.ep0 = &usba_ep[0].ep,
.ep_list = LIST_HEAD_INIT(the_udc.gadget.ep_list),
.is_dualspeed = 1,
.name = "atmel_usba_udc",
.dev = {
.bus_id = "gadget",
.release = nop_release,
},
},
.lock = SPIN_LOCK_UNLOCKED,
};
/*
* Called with interrupts disabled and udc->lock held.
*/
static void reset_all_endpoints(struct usba_udc *udc)
{
struct usba_ep *ep;
struct usba_request *req, *tmp_req;
usba_writel(udc, EPT_RST, ~0UL);
ep = to_usba_ep(udc->gadget.ep0);
list_for_each_entry_safe(req, tmp_req, &ep->queue, queue) {
list_del_init(&req->queue);
request_complete(ep, req, -ECONNRESET);
}
list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
if (ep->desc) {
spin_unlock(&udc->lock);
usba_ep_disable(&ep->ep);
spin_lock(&udc->lock);
}
}
}
static struct usba_ep *get_ep_by_addr(struct usba_udc *udc, u16 wIndex)
{
struct usba_ep *ep;
if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
return to_usba_ep(udc->gadget.ep0);
list_for_each_entry (ep, &udc->gadget.ep_list, ep.ep_list) {
u8 bEndpointAddress;
if (!ep->desc)
continue;
bEndpointAddress = ep->desc->bEndpointAddress;
if ((wIndex ^ bEndpointAddress) & USB_DIR_IN)
continue;
if ((bEndpointAddress & USB_ENDPOINT_NUMBER_MASK)
== (wIndex & USB_ENDPOINT_NUMBER_MASK))
return ep;
}
return NULL;
}
/* Called with interrupts disabled and udc->lock held */
static inline void set_protocol_stall(struct usba_udc *udc, struct usba_ep *ep)
{
usba_ep_writel(ep, SET_STA, USBA_FORCE_STALL);
ep->state = WAIT_FOR_SETUP;
}
static inline int is_stalled(struct usba_udc *udc, struct usba_ep *ep)
{
if (usba_ep_readl(ep, STA) & USBA_FORCE_STALL)
return 1;
return 0;
}
static inline void set_address(struct usba_udc *udc, unsigned int addr)
{
u32 regval;
DBG(DBG_BUS, "setting address %u...\n", addr);
regval = usba_readl(udc, CTRL);
regval = USBA_BFINS(DEV_ADDR, addr, regval);
usba_writel(udc, CTRL, regval);
}
static int do_test_mode(struct usba_udc *udc)
{
static const char test_packet_buffer[] = {
/* JKJKJKJK * 9 */
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* JJKKJJKK * 8 */
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
/* JJKKJJKK * 8 */
0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE,
/* JJJJJJJKKKKKKK * 8 */
0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
/* JJJJJJJK * 8 */
0x7F, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD,
/* {JKKKKKKK * 10}, JK */
0xFC, 0x7E, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD, 0x7E
};
struct usba_ep *ep;
struct device *dev = &udc->pdev->dev;
int test_mode;
test_mode = udc->test_mode;
/* Start from a clean slate */
reset_all_endpoints(udc);
switch (test_mode) {
case 0x0100:
/* Test_J */
usba_writel(udc, TST, USBA_TST_J_MODE);
dev_info(dev, "Entering Test_J mode...\n");
break;
case 0x0200:
/* Test_K */
usba_writel(udc, TST, USBA_TST_K_MODE);
dev_info(dev, "Entering Test_K mode...\n");
break;
case 0x0300:
/*
* Test_SE0_NAK: Force high-speed mode and set up ep0
* for Bulk IN transfers
*/
ep = &usba_ep[0];
usba_writel(udc, TST,
USBA_BF(SPEED_CFG, USBA_SPEED_CFG_FORCE_HIGH));
usba_ep_writel(ep, CFG,
USBA_BF(EPT_SIZE, USBA_EPT_SIZE_64)
| USBA_EPT_DIR_IN
| USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK)
| USBA_BF(BK_NUMBER, 1));
if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED)) {
set_protocol_stall(udc, ep);
dev_err(dev, "Test_SE0_NAK: ep0 not mapped\n");
} else {
usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);
dev_info(dev, "Entering Test_SE0_NAK mode...\n");
}
break;
case 0x0400:
/* Test_Packet */
ep = &usba_ep[0];
usba_ep_writel(ep, CFG,
USBA_BF(EPT_SIZE, USBA_EPT_SIZE_64)
| USBA_EPT_DIR_IN
| USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK)
| USBA_BF(BK_NUMBER, 1));
if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED)) {
set_protocol_stall(udc, ep);
dev_err(dev, "Test_Packet: ep0 not mapped\n");
} else {
usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE);
usba_writel(udc, TST, USBA_TST_PKT_MODE);
copy_to_fifo(ep->fifo, test_packet_buffer,
sizeof(test_packet_buffer));
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
dev_info(dev, "Entering Test_Packet mode...\n");
}
break;
default:
dev_err(dev, "Invalid test mode: 0x%04x\n", test_mode);
return -EINVAL;
}
return 0;
}
/* Avoid overly long expressions */
static inline bool feature_is_dev_remote_wakeup(struct usb_ctrlrequest *crq)
{
if (crq->wValue == __constant_cpu_to_le16(USB_DEVICE_REMOTE_WAKEUP))
return true;
return false;
}
static inline bool feature_is_dev_test_mode(struct usb_ctrlrequest *crq)
{
if (crq->wValue == __constant_cpu_to_le16(USB_DEVICE_TEST_MODE))
return true;
return false;
}
static inline bool feature_is_ep_halt(struct usb_ctrlrequest *crq)
{
if (crq->wValue == __constant_cpu_to_le16(USB_ENDPOINT_HALT))
return true;
return false;
}
static int handle_ep0_setup(struct usba_udc *udc, struct usba_ep *ep,
struct usb_ctrlrequest *crq)
{
int retval = 0;;
switch (crq->bRequest) {
case USB_REQ_GET_STATUS: {
u16 status;
if (crq->bRequestType == (USB_DIR_IN | USB_RECIP_DEVICE)) {
status = cpu_to_le16(udc->devstatus);
} else if (crq->bRequestType
== (USB_DIR_IN | USB_RECIP_INTERFACE)) {
status = __constant_cpu_to_le16(0);
} else if (crq->bRequestType
== (USB_DIR_IN | USB_RECIP_ENDPOINT)) {
struct usba_ep *target;
target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
if (!target)
goto stall;
status = 0;
if (is_stalled(udc, target))
status |= __constant_cpu_to_le16(1);
} else
goto delegate;
/* Write directly to the FIFO. No queueing is done. */
if (crq->wLength != __constant_cpu_to_le16(sizeof(status)))
goto stall;
ep->state = DATA_STAGE_IN;
__raw_writew(status, ep->fifo);
usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY);
break;
}
case USB_REQ_CLEAR_FEATURE: {
if (crq->bRequestType == USB_RECIP_DEVICE) {
if (feature_is_dev_remote_wakeup(crq))
udc->devstatus
&= ~(1 << USB_DEVICE_REMOTE_WAKEUP);
else
/* Can't CLEAR_FEATURE TEST_MODE */
goto stall;
} else if (crq->bRequestType == USB_RECIP_ENDPOINT) {
struct usba_ep *target;
if (crq->wLength != __constant_cpu_to_le16(0)
|| !feature_is_ep_halt(crq))
goto stall;
target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
if (!target)
goto stall;
usba_ep_writel(target, CLR_STA, USBA_FORCE_STALL);
if (target->index != 0)
usba_ep_writel(target, CLR_STA,
USBA_TOGGLE_CLR);
} else {
goto delegate;
}
send_status(udc, ep);
break;
}
case USB_REQ_SET_FEATURE: {
if (crq->bRequestType == USB_RECIP_DEVICE) {
if (feature_is_dev_test_mode(crq)) {
send_status(udc, ep);
ep->state = STATUS_STAGE_TEST;
udc->test_mode = le16_to_cpu(crq->wIndex);
return 0;
} else if (feature_is_dev_remote_wakeup(crq)) {
udc->devstatus |= 1 << USB_DEVICE_REMOTE_WAKEUP;
} else {
goto stall;
}
} else if (crq->bRequestType == USB_RECIP_ENDPOINT) {
struct usba_ep *target;
if (crq->wLength != __constant_cpu_to_le16(0)
|| !feature_is_ep_halt(crq))
goto stall;
target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex));
if (!target)
goto stall;
usba_ep_writel(target, SET_STA, USBA_FORCE_STALL);
} else
goto delegate;
send_status(udc, ep);
break;
}
case USB_REQ_SET_ADDRESS:
if (crq->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE))
goto delegate;
set_address(udc, le16_to_cpu(crq->wValue));
send_status(udc, ep);
ep->state = STATUS_STAGE_ADDR;
break;
default:
delegate:
spin_unlock(&udc->lock);
retval = udc->driver->setup(&udc->gadget, crq);
spin_lock(&udc->lock);
}
return retval;
stall:
pr_err("udc: %s: Invalid setup request: %02x.%02x v%04x i%04x l%d, "
"halting endpoint...\n",
ep->ep.name, crq->bRequestType, crq->bRequest,
le16_to_cpu(crq->wValue), le16_to_cpu(crq->wIndex),
le16_to_cpu(crq->wLength));
set_protocol_stall(udc, ep);
return -1;
}
static void usba_control_irq(struct usba_udc *udc, struct usba_ep *ep)
{
struct usba_request *req;
u32 epstatus;
u32 epctrl;
restart:
epstatus = usba_ep_readl(ep, STA);
epctrl = usba_ep_readl(ep, CTL);
DBG(DBG_INT, "%s [%d]: s/%08x c/%08x\n",
ep->ep.name, ep->state, epstatus, epctrl);
req = NULL;
if (!list_empty(&ep->queue))
req = list_entry(ep->queue.next,
struct usba_request, queue);
if ((epctrl & USBA_TX_PK_RDY) && !(epstatus & USBA_TX_PK_RDY)) {
if (req->submitted)
next_fifo_transaction(ep, req);
else
submit_request(ep, req);
if (req->last_transaction) {
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE);
}
goto restart;
}
if ((epstatus & epctrl) & USBA_TX_COMPLETE) {
usba_ep_writel(ep, CLR_STA, USBA_TX_COMPLETE);
switch (ep->state) {
case DATA_STAGE_IN:
usba_ep_writel(ep, CTL_ENB, USBA_RX_BK_RDY);
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = STATUS_STAGE_OUT;
break;
case STATUS_STAGE_ADDR:
/* Activate our new address */
usba_writel(udc, CTRL, (usba_readl(udc, CTRL)
| USBA_FADDR_EN));
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = WAIT_FOR_SETUP;
break;
case STATUS_STAGE_IN:
if (req) {
list_del_init(&req->queue);
request_complete(ep, req, 0);
submit_next_request(ep);
}
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = WAIT_FOR_SETUP;
break;
case STATUS_STAGE_TEST:
usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE);
ep->state = WAIT_FOR_SETUP;
if (do_test_mode(udc))
set_protocol_stall(udc, ep);
break;
default:
pr_err("udc: %s: TXCOMP: Invalid endpoint state %d, "
"halting endpoint...\n",
ep->ep.name, ep->state);
set_protocol_stall(udc, ep);
break;
}
goto restart;
}
if ((epstatus & epctrl) & USBA_RX_BK_RDY) {
switch (ep->state) {
case STATUS_STAGE_OUT:
usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
if (req) {
list_del_init(&req->queue);
request_complete(ep, req, 0);
}
ep->state = WAIT_FOR_SETUP;
break;
case DATA_STAGE_OUT:
receive_data(ep);
break;
default:
usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
pr_err("udc: %s: RXRDY: Invalid endpoint state %d, "
"halting endpoint...\n",
ep->ep.name, ep->state);
set_protocol_stall(udc, ep);
break;
}
goto restart;
}
if (epstatus & USBA_RX_SETUP) {
union {
struct usb_ctrlrequest crq;
unsigned long data[2];
} crq;
unsigned int pkt_len;
int ret;
if (ep->state != WAIT_FOR_SETUP) {
/*
* Didn't expect a SETUP packet at this
* point. Clean up any pending requests (which
* may be successful).
*/
int status = -EPROTO;
/*
* RXRDY and TXCOMP are dropped when SETUP
* packets arrive. Just pretend we received
* the status packet.
*/
if (ep->state == STATUS_STAGE_OUT
|| ep->state == STATUS_STAGE_IN) {
usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY);
status = 0;
}
if (req) {
list_del_init(&req->queue);
request_complete(ep, req, status);
}
}
pkt_len = USBA_BFEXT(BYTE_COUNT, usba_ep_readl(ep, STA));
DBG(DBG_HW, "Packet length: %u\n", pkt_len);
if (pkt_len != sizeof(crq)) {
pr_warning("udc: Invalid packet length %u "
"(expected %lu)\n", pkt_len, sizeof(crq));
set_protocol_stall(udc, ep);
return;
}
DBG(DBG_FIFO, "Copying ctrl request from 0x%p:\n", ep->fifo);
copy_from_fifo(crq.data, ep->fifo, sizeof(crq));
/* Free up one bank in the FIFO so that we can
* generate or receive a reply right away. */
usba_ep_writel(ep, CLR_STA, USBA_RX_SETUP);
/* printk(KERN_DEBUG "setup: %d: %02x.%02x\n",
ep->state, crq.crq.bRequestType,
crq.crq.bRequest); */
if (crq.crq.bRequestType & USB_DIR_IN) {
/*
* The USB 2.0 spec states that "if wLength is
* zero, there is no data transfer phase."
* However, testusb #14 seems to actually
* expect a data phase even if wLength = 0...
*/
ep->state = DATA_STAGE_IN;
} else {
if (crq.crq.wLength != __constant_cpu_to_le16(0))
ep->state = DATA_STAGE_OUT;
else
ep->state = STATUS_STAGE_IN;
}
ret = -1;
if (ep->index == 0)
ret = handle_ep0_setup(udc, ep, &crq.crq);
else {
spin_unlock(&udc->lock);
ret = udc->driver->setup(&udc->gadget, &crq.crq);
spin_lock(&udc->lock);
}
DBG(DBG_BUS, "req %02x.%02x, length %d, state %d, ret %d\n",
crq.crq.bRequestType, crq.crq.bRequest,
le16_to_cpu(crq.crq.wLength), ep->state, ret);
if (ret < 0) {
/* Let the host know that we failed */
set_protocol_stall(udc, ep);
}
}
}
static void usba_ep_irq(struct usba_udc *udc, struct usba_ep *ep)
{
struct usba_request *req;
u32 epstatus;
u32 epctrl;
epstatus = usba_ep_readl(ep, STA);
epctrl = usba_ep_readl(ep, CTL);
DBG(DBG_INT, "%s: interrupt, status: 0x%08x\n", ep->ep.name, epstatus);
while ((epctrl & USBA_TX_PK_RDY) && !(epstatus & USBA_TX_PK_RDY)) {
DBG(DBG_BUS, "%s: TX PK ready\n", ep->ep.name);
if (list_empty(&ep->queue)) {
dev_warn(&udc->pdev->dev, "ep_irq: queue empty\n");
usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY);
return;
}
req = list_entry(ep->queue.next, struct usba_request, queue);
if (req->using_dma) {
/* Send a zero-length packet */
usba_ep_writel(ep, SET_STA,
USBA_TX_PK_RDY);
usba_ep_writel(ep, CTL_DIS,
USBA_TX_PK_RDY);
list_del_init(&req->queue);
submit_next_request(ep);
request_complete(ep, req, 0);
} else {
if (req->submitted)
next_fifo_transaction(ep, req);
else
submit_request(ep, req);
if (req->last_transaction) {
list_del_init(&req->queue);
submit_next_request(ep);
request_complete(ep, req, 0);
}
}
epstatus = usba_ep_readl(ep, STA);
epctrl = usba_ep_readl(ep, CTL);
}
if ((epstatus & epctrl) & USBA_RX_BK_RDY) {
DBG(DBG_BUS, "%s: RX data ready\n", ep->ep.name);
receive_data(ep);
usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY);
}
}
static void usba_dma_irq(struct usba_udc *udc, struct usba_ep *ep)
{
struct usba_request *req;
u32 status, control, pending;
status = usba_dma_readl(ep, STATUS);
control = usba_dma_readl(ep, CONTROL);
#ifdef CONFIG_USB_GADGET_DEBUG_FS
ep->last_dma_status = status;
#endif
pending = status & control;
DBG(DBG_INT | DBG_DMA, "dma irq, s/%#08x, c/%#08x\n", status, control);
if (status & USBA_DMA_CH_EN) {
dev_err(&udc->pdev->dev,
"DMA_CH_EN is set after transfer is finished!\n");
dev_err(&udc->pdev->dev,
"status=%#08x, pending=%#08x, control=%#08x\n",
status, pending, control);
/*
* try to pretend nothing happened. We might have to
* do something here...
*/
}
if (list_empty(&ep->queue))
/* Might happen if a reset comes along at the right moment */
return;
if (pending & (USBA_DMA_END_TR_ST | USBA_DMA_END_BUF_ST)) {
req = list_entry(ep->queue.next, struct usba_request, queue);
usba_update_req(ep, req, status);
list_del_init(&req->queue);
submit_next_request(ep);
request_complete(ep, req, 0);
}
}
static irqreturn_t usba_udc_irq(int irq, void *devid)
{
struct usba_udc *udc = devid;
u32 status;
u32 dma_status;
u32 ep_status;
spin_lock(&udc->lock);
status = usba_readl(udc, INT_STA);
DBG(DBG_INT, "irq, status=%#08x\n", status);
if (status & USBA_DET_SUSPEND) {
usba_writel(udc, INT_CLR, USBA_DET_SUSPEND);
DBG(DBG_BUS, "Suspend detected\n");
if (udc->gadget.speed != USB_SPEED_UNKNOWN
&& udc->driver && udc->driver->suspend) {
spin_unlock(&udc->lock);
udc->driver->suspend(&udc->gadget);
spin_lock(&udc->lock);
}
}
if (status & USBA_WAKE_UP) {
usba_writel(udc, INT_CLR, USBA_WAKE_UP);
DBG(DBG_BUS, "Wake Up CPU detected\n");
}
if (status & USBA_END_OF_RESUME) {
usba_writel(udc, INT_CLR, USBA_END_OF_RESUME);
DBG(DBG_BUS, "Resume detected\n");
if (udc->gadget.speed != USB_SPEED_UNKNOWN
&& udc->driver && udc->driver->resume) {
spin_unlock(&udc->lock);
udc->driver->resume(&udc->gadget);
spin_lock(&udc->lock);
}
}
dma_status = USBA_BFEXT(DMA_INT, status);
if (dma_status) {
int i;
for (i = 1; i < USBA_NR_ENDPOINTS; i++)
if (dma_status & (1 << i))
usba_dma_irq(udc, &usba_ep[i]);
}
ep_status = USBA_BFEXT(EPT_INT, status);
if (ep_status) {
int i;
for (i = 0; i < USBA_NR_ENDPOINTS; i++)
if (ep_status & (1 << i)) {
if (ep_is_control(&usba_ep[i]))
usba_control_irq(udc, &usba_ep[i]);
else
usba_ep_irq(udc, &usba_ep[i]);
}
}
if (status & USBA_END_OF_RESET) {
struct usba_ep *ep0;
usba_writel(udc, INT_CLR, USBA_END_OF_RESET);
reset_all_endpoints(udc);
if (status & USBA_HIGH_SPEED) {
DBG(DBG_BUS, "High-speed bus reset detected\n");
udc->gadget.speed = USB_SPEED_HIGH;
} else {
DBG(DBG_BUS, "Full-speed bus reset detected\n");
udc->gadget.speed = USB_SPEED_FULL;
}
ep0 = &usba_ep[0];
ep0->desc = &usba_ep0_desc;
ep0->state = WAIT_FOR_SETUP;
usba_ep_writel(ep0, CFG,
(USBA_BF(EPT_SIZE, EP0_EPT_SIZE)
| USBA_BF(EPT_TYPE, USBA_EPT_TYPE_CONTROL)
| USBA_BF(BK_NUMBER, USBA_BK_NUMBER_ONE)));
usba_ep_writel(ep0, CTL_ENB,
USBA_EPT_ENABLE | USBA_RX_SETUP);
usba_writel(udc, INT_ENB,
(usba_readl(udc, INT_ENB)
| USBA_BF(EPT_INT, 1)
| USBA_DET_SUSPEND
| USBA_END_OF_RESUME));
if (!(usba_ep_readl(ep0, CFG) & USBA_EPT_MAPPED))
dev_warn(&udc->pdev->dev,
"WARNING: EP0 configuration is invalid!\n");
}
spin_unlock(&udc->lock);
return IRQ_HANDLED;
}
static irqreturn_t usba_vbus_irq(int irq, void *devid)
{
struct usba_udc *udc = devid;
int vbus;
/* debounce */
udelay(10);
spin_lock(&udc->lock);
/* May happen if Vbus pin toggles during probe() */
if (!udc->driver)
goto out;
vbus = gpio_get_value(udc->vbus_pin);
if (vbus != udc->vbus_prev) {
if (vbus) {
usba_writel(udc, CTRL, USBA_EN_USBA);
usba_writel(udc, INT_ENB, USBA_END_OF_RESET);
} else {
udc->gadget.speed = USB_SPEED_UNKNOWN;
reset_all_endpoints(udc);
usba_writel(udc, CTRL, 0);
spin_unlock(&udc->lock);
udc->driver->disconnect(&udc->gadget);
spin_lock(&udc->lock);
}
udc->vbus_prev = vbus;
}
out:
spin_unlock(&udc->lock);
return IRQ_HANDLED;
}
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct usba_udc *udc = &the_udc;
unsigned long flags;
int ret;
if (!udc->pdev)
return -ENODEV;
spin_lock_irqsave(&udc->lock, flags);
if (udc->driver) {
spin_unlock_irqrestore(&udc->lock, flags);
return -EBUSY;
}
udc->devstatus = 1 << USB_DEVICE_SELF_POWERED;
udc->driver = driver;
udc->gadget.dev.driver = &driver->driver;
spin_unlock_irqrestore(&udc->lock, flags);
clk_enable(udc->pclk);
clk_enable(udc->hclk);
ret = driver->bind(&udc->gadget);
if (ret) {
DBG(DBG_ERR, "Could not bind to driver %s: error %d\n",
driver->driver.name, ret);
goto err_driver_bind;
}
DBG(DBG_GADGET, "registered driver `%s'\n", driver->driver.name);
udc->vbus_prev = 0;
if (udc->vbus_pin != -1)
enable_irq(gpio_to_irq(udc->vbus_pin));
/* If Vbus is present, enable the controller and wait for reset */
spin_lock_irqsave(&udc->lock, flags);
if (vbus_is_present(udc) && udc->vbus_prev == 0) {
usba_writel(udc, CTRL, USBA_EN_USBA);
usba_writel(udc, INT_ENB, USBA_END_OF_RESET);
}
spin_unlock_irqrestore(&udc->lock, flags);
return 0;
err_driver_bind:
udc->driver = NULL;
udc->gadget.dev.driver = NULL;
return ret;
}
EXPORT_SYMBOL(usb_gadget_register_driver);
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct usba_udc *udc = &the_udc;
unsigned long flags;
if (!udc->pdev)
return -ENODEV;
if (driver != udc->driver)
return -EINVAL;
if (udc->vbus_pin != -1)
disable_irq(gpio_to_irq(udc->vbus_pin));
spin_lock_irqsave(&udc->lock, flags);
udc->gadget.speed = USB_SPEED_UNKNOWN;
reset_all_endpoints(udc);
spin_unlock_irqrestore(&udc->lock, flags);
/* This will also disable the DP pullup */
usba_writel(udc, CTRL, 0);
driver->unbind(&udc->gadget);
udc->gadget.dev.driver = NULL;
udc->driver = NULL;
clk_disable(udc->hclk);
clk_disable(udc->pclk);
DBG(DBG_GADGET, "unregistered driver `%s'\n", driver->driver.name);
return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
static int __init usba_udc_probe(struct platform_device *pdev)
{
struct usba_platform_data *pdata = pdev->dev.platform_data;
struct resource *regs, *fifo;
struct clk *pclk, *hclk;
struct usba_udc *udc = &the_udc;
int irq, ret, i;
regs = platform_get_resource(pdev, IORESOURCE_MEM, CTRL_IOMEM_ID);
fifo = platform_get_resource(pdev, IORESOURCE_MEM, FIFO_IOMEM_ID);
if (!regs || !fifo)
return -ENXIO;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
pclk = clk_get(&pdev->dev, "pclk");
if (IS_ERR(pclk))
return PTR_ERR(pclk);
hclk = clk_get(&pdev->dev, "hclk");
if (IS_ERR(hclk)) {
ret = PTR_ERR(hclk);
goto err_get_hclk;
}
udc->pdev = pdev;
udc->pclk = pclk;
udc->hclk = hclk;
udc->vbus_pin = -1;
ret = -ENOMEM;
udc->regs = ioremap(regs->start, regs->end - regs->start + 1);
if (!udc->regs) {
dev_err(&pdev->dev, "Unable to map I/O memory, aborting.\n");
goto err_map_regs;
}
dev_info(&pdev->dev, "MMIO registers at 0x%08lx mapped at %p\n",
(unsigned long)regs->start, udc->regs);
udc->fifo = ioremap(fifo->start, fifo->end - fifo->start + 1);
if (!udc->fifo) {
dev_err(&pdev->dev, "Unable to map FIFO, aborting.\n");
goto err_map_fifo;
}
dev_info(&pdev->dev, "FIFO at 0x%08lx mapped at %p\n",
(unsigned long)fifo->start, udc->fifo);
device_initialize(&udc->gadget.dev);
udc->gadget.dev.parent = &pdev->dev;
udc->gadget.dev.dma_mask = pdev->dev.dma_mask;
platform_set_drvdata(pdev, udc);
/* Make sure we start from a clean slate */
clk_enable(pclk);
usba_writel(udc, CTRL, 0);
clk_disable(pclk);
INIT_LIST_HEAD(&usba_ep[0].ep.ep_list);
usba_ep[0].ep_regs = udc->regs + USBA_EPT_BASE(0);
usba_ep[0].dma_regs = udc->regs + USBA_DMA_BASE(0);
usba_ep[0].fifo = udc->fifo + USBA_FIFO_BASE(0);
for (i = 1; i < ARRAY_SIZE(usba_ep); i++) {
struct usba_ep *ep = &usba_ep[i];
ep->ep_regs = udc->regs + USBA_EPT_BASE(i);
ep->dma_regs = udc->regs + USBA_DMA_BASE(i);
ep->fifo = udc->fifo + USBA_FIFO_BASE(i);
list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
}
ret = request_irq(irq, usba_udc_irq, 0, "atmel_usba_udc", udc);
if (ret) {
dev_err(&pdev->dev, "Cannot request irq %d (error %d)\n",
irq, ret);
goto err_request_irq;
}
udc->irq = irq;
ret = device_add(&udc->gadget.dev);
if (ret) {
dev_dbg(&pdev->dev, "Could not add gadget: %d\n", ret);
goto err_device_add;
}
if (pdata && pdata->vbus_pin != GPIO_PIN_NONE) {
if (!gpio_request(pdata->vbus_pin, "atmel_usba_udc")) {
udc->vbus_pin = pdata->vbus_pin;
ret = request_irq(gpio_to_irq(udc->vbus_pin),
usba_vbus_irq, 0,
"atmel_usba_udc", udc);
if (ret) {
gpio_free(udc->vbus_pin);
udc->vbus_pin = -1;
dev_warn(&udc->pdev->dev,
"failed to request vbus irq; "
"assuming always on\n");
} else {
disable_irq(gpio_to_irq(udc->vbus_pin));
}
}
}
usba_init_debugfs(udc);
for (i = 1; i < ARRAY_SIZE(usba_ep); i++)
usba_ep_init_debugfs(udc, &usba_ep[i]);
return 0;
err_device_add:
free_irq(irq, udc);
err_request_irq:
iounmap(udc->fifo);
err_map_fifo:
iounmap(udc->regs);
err_map_regs:
clk_put(hclk);
err_get_hclk:
clk_put(pclk);
platform_set_drvdata(pdev, NULL);
return ret;
}
static int __exit usba_udc_remove(struct platform_device *pdev)
{
struct usba_udc *udc;
int i;
udc = platform_get_drvdata(pdev);
for (i = 1; i < ARRAY_SIZE(usba_ep); i++)
usba_ep_cleanup_debugfs(&usba_ep[i]);
usba_cleanup_debugfs(udc);
if (udc->vbus_pin != -1)
gpio_free(udc->vbus_pin);
free_irq(udc->irq, udc);
iounmap(udc->fifo);
iounmap(udc->regs);
clk_put(udc->hclk);
clk_put(udc->pclk);
device_unregister(&udc->gadget.dev);
return 0;
}
static struct platform_driver udc_driver = {
.remove = __exit_p(usba_udc_remove),
.driver = {
.name = "atmel_usba_udc",
},
};
static int __init udc_init(void)
{
return platform_driver_probe(&udc_driver, usba_udc_probe);
}
module_init(udc_init);
static void __exit udc_exit(void)
{
platform_driver_unregister(&udc_driver);
}
module_exit(udc_exit);
MODULE_DESCRIPTION("Atmel USBA UDC driver");
MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
MODULE_LICENSE("GPL");