77bf440031
This patch makes a number of simplifications enabled by the removal of CHOOSE_MODE. There were lots of functions that looked like int foo(args){ foo_skas(args); } The bodies of foo_skas are now folded into foo, and their declarations (and sometimes entire header files) are deleted. In addition, the union uml_pt_regs, which was a union between the tt and skas register formats, is now a struct, with the tt-mode arm of the union being removed. It turns out that usr2_handler was unused, so it is gone. Signed-off-by: Jeff Dike <jdike@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
558 lines
13 KiB
C
558 lines
13 KiB
C
/*
|
|
* Copyright (C) 2000 Jeff Dike (jdike@karaya.com)
|
|
* Licensed under the GPL
|
|
* Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
|
|
* Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
|
|
*/
|
|
|
|
#include "linux/kernel.h"
|
|
#include "linux/module.h"
|
|
#include "linux/smp.h"
|
|
#include "linux/kernel_stat.h"
|
|
#include "linux/interrupt.h"
|
|
#include "linux/random.h"
|
|
#include "linux/slab.h"
|
|
#include "linux/file.h"
|
|
#include "linux/proc_fs.h"
|
|
#include "linux/init.h"
|
|
#include "linux/seq_file.h"
|
|
#include "linux/profile.h"
|
|
#include "linux/hardirq.h"
|
|
#include "asm/irq.h"
|
|
#include "asm/hw_irq.h"
|
|
#include "asm/atomic.h"
|
|
#include "asm/signal.h"
|
|
#include "asm/system.h"
|
|
#include "asm/errno.h"
|
|
#include "asm/uaccess.h"
|
|
#include "kern_util.h"
|
|
#include "irq_user.h"
|
|
#include "irq_kern.h"
|
|
#include "os.h"
|
|
#include "sigio.h"
|
|
#include "misc_constants.h"
|
|
#include "as-layout.h"
|
|
|
|
/*
|
|
* Generic, controller-independent functions:
|
|
*/
|
|
|
|
int show_interrupts(struct seq_file *p, void *v)
|
|
{
|
|
int i = *(loff_t *) v, j;
|
|
struct irqaction * action;
|
|
unsigned long flags;
|
|
|
|
if (i == 0) {
|
|
seq_printf(p, " ");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "CPU%d ",j);
|
|
seq_putc(p, '\n');
|
|
}
|
|
|
|
if (i < NR_IRQS) {
|
|
spin_lock_irqsave(&irq_desc[i].lock, flags);
|
|
action = irq_desc[i].action;
|
|
if (!action)
|
|
goto skip;
|
|
seq_printf(p, "%3d: ",i);
|
|
#ifndef CONFIG_SMP
|
|
seq_printf(p, "%10u ", kstat_irqs(i));
|
|
#else
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", kstat_cpu(j).irqs[i]);
|
|
#endif
|
|
seq_printf(p, " %14s", irq_desc[i].chip->typename);
|
|
seq_printf(p, " %s", action->name);
|
|
|
|
for (action=action->next; action; action = action->next)
|
|
seq_printf(p, ", %s", action->name);
|
|
|
|
seq_putc(p, '\n');
|
|
skip:
|
|
spin_unlock_irqrestore(&irq_desc[i].lock, flags);
|
|
} else if (i == NR_IRQS) {
|
|
seq_putc(p, '\n');
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This list is accessed under irq_lock, except in sigio_handler,
|
|
* where it is safe from being modified. IRQ handlers won't change it -
|
|
* if an IRQ source has vanished, it will be freed by free_irqs just
|
|
* before returning from sigio_handler. That will process a separate
|
|
* list of irqs to free, with its own locking, coming back here to
|
|
* remove list elements, taking the irq_lock to do so.
|
|
*/
|
|
static struct irq_fd *active_fds = NULL;
|
|
static struct irq_fd **last_irq_ptr = &active_fds;
|
|
|
|
extern void free_irqs(void);
|
|
|
|
void sigio_handler(int sig, struct uml_pt_regs *regs)
|
|
{
|
|
struct irq_fd *irq_fd;
|
|
int n;
|
|
|
|
if (smp_sigio_handler())
|
|
return;
|
|
|
|
while (1) {
|
|
n = os_waiting_for_events(active_fds);
|
|
if (n <= 0) {
|
|
if(n == -EINTR) continue;
|
|
else break;
|
|
}
|
|
|
|
for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
|
|
if (irq_fd->current_events != 0) {
|
|
irq_fd->current_events = 0;
|
|
do_IRQ(irq_fd->irq, regs);
|
|
}
|
|
}
|
|
}
|
|
|
|
free_irqs();
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(irq_lock);
|
|
|
|
int activate_fd(int irq, int fd, int type, void *dev_id)
|
|
{
|
|
struct pollfd *tmp_pfd;
|
|
struct irq_fd *new_fd, *irq_fd;
|
|
unsigned long flags;
|
|
int pid, events, err, n;
|
|
|
|
pid = os_getpid();
|
|
err = os_set_fd_async(fd, pid);
|
|
if (err < 0)
|
|
goto out;
|
|
|
|
err = -ENOMEM;
|
|
new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
|
|
if (new_fd == NULL)
|
|
goto out;
|
|
|
|
if (type == IRQ_READ)
|
|
events = UM_POLLIN | UM_POLLPRI;
|
|
else
|
|
events = UM_POLLOUT;
|
|
*new_fd = ((struct irq_fd) { .next = NULL,
|
|
.id = dev_id,
|
|
.fd = fd,
|
|
.type = type,
|
|
.irq = irq,
|
|
.pid = pid,
|
|
.events = events,
|
|
.current_events = 0 } );
|
|
|
|
err = -EBUSY;
|
|
spin_lock_irqsave(&irq_lock, flags);
|
|
for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
|
|
if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
|
|
printk("Registering fd %d twice\n", fd);
|
|
printk("Irqs : %d, %d\n", irq_fd->irq, irq);
|
|
printk("Ids : 0x%p, 0x%p\n", irq_fd->id, dev_id);
|
|
goto out_unlock;
|
|
}
|
|
}
|
|
|
|
if (type == IRQ_WRITE)
|
|
fd = -1;
|
|
|
|
tmp_pfd = NULL;
|
|
n = 0;
|
|
|
|
while (1) {
|
|
n = os_create_pollfd(fd, events, tmp_pfd, n);
|
|
if (n == 0)
|
|
break;
|
|
|
|
/* n > 0
|
|
* It means we couldn't put new pollfd to current pollfds
|
|
* and tmp_fds is NULL or too small for new pollfds array.
|
|
* Needed size is equal to n as minimum.
|
|
*
|
|
* Here we have to drop the lock in order to call
|
|
* kmalloc, which might sleep.
|
|
* If something else came in and changed the pollfds array
|
|
* so we will not be able to put new pollfd struct to pollfds
|
|
* then we free the buffer tmp_fds and try again.
|
|
*/
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
kfree(tmp_pfd);
|
|
|
|
tmp_pfd = kmalloc(n, GFP_KERNEL);
|
|
if (tmp_pfd == NULL)
|
|
goto out_kfree;
|
|
|
|
spin_lock_irqsave(&irq_lock, flags);
|
|
}
|
|
|
|
*last_irq_ptr = new_fd;
|
|
last_irq_ptr = &new_fd->next;
|
|
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
|
|
/* This calls activate_fd, so it has to be outside the critical
|
|
* section.
|
|
*/
|
|
maybe_sigio_broken(fd, (type == IRQ_READ));
|
|
|
|
return 0;
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
out_kfree:
|
|
kfree(new_fd);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&irq_lock, flags);
|
|
os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
}
|
|
|
|
struct irq_and_dev {
|
|
int irq;
|
|
void *dev;
|
|
};
|
|
|
|
static int same_irq_and_dev(struct irq_fd *irq, void *d)
|
|
{
|
|
struct irq_and_dev *data = d;
|
|
|
|
return ((irq->irq == data->irq) && (irq->id == data->dev));
|
|
}
|
|
|
|
void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
|
|
{
|
|
struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq,
|
|
.dev = dev });
|
|
|
|
free_irq_by_cb(same_irq_and_dev, &data);
|
|
}
|
|
|
|
static int same_fd(struct irq_fd *irq, void *fd)
|
|
{
|
|
return (irq->fd == *((int *)fd));
|
|
}
|
|
|
|
void free_irq_by_fd(int fd)
|
|
{
|
|
free_irq_by_cb(same_fd, &fd);
|
|
}
|
|
|
|
/* Must be called with irq_lock held */
|
|
static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
|
|
{
|
|
struct irq_fd *irq;
|
|
int i = 0;
|
|
int fdi;
|
|
|
|
for (irq = active_fds; irq != NULL; irq = irq->next) {
|
|
if ((irq->fd == fd) && (irq->irq == irqnum))
|
|
break;
|
|
i++;
|
|
}
|
|
if (irq == NULL) {
|
|
printk("find_irq_by_fd doesn't have descriptor %d\n", fd);
|
|
goto out;
|
|
}
|
|
fdi = os_get_pollfd(i);
|
|
if ((fdi != -1) && (fdi != fd)) {
|
|
printk("find_irq_by_fd - mismatch between active_fds and "
|
|
"pollfds, fd %d vs %d, need %d\n", irq->fd,
|
|
fdi, fd);
|
|
irq = NULL;
|
|
goto out;
|
|
}
|
|
*index_out = i;
|
|
out:
|
|
return irq;
|
|
}
|
|
|
|
void reactivate_fd(int fd, int irqnum)
|
|
{
|
|
struct irq_fd *irq;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&irq_lock, flags);
|
|
irq = find_irq_by_fd(fd, irqnum, &i);
|
|
if (irq == NULL) {
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
return;
|
|
}
|
|
os_set_pollfd(i, irq->fd);
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
|
|
add_sigio_fd(fd);
|
|
}
|
|
|
|
void deactivate_fd(int fd, int irqnum)
|
|
{
|
|
struct irq_fd *irq;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&irq_lock, flags);
|
|
irq = find_irq_by_fd(fd, irqnum, &i);
|
|
if(irq == NULL){
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
return;
|
|
}
|
|
|
|
os_set_pollfd(i, -1);
|
|
spin_unlock_irqrestore(&irq_lock, flags);
|
|
|
|
ignore_sigio_fd(fd);
|
|
}
|
|
|
|
/*
|
|
* Called just before shutdown in order to provide a clean exec
|
|
* environment in case the system is rebooting. No locking because
|
|
* that would cause a pointless shutdown hang if something hadn't
|
|
* released the lock.
|
|
*/
|
|
int deactivate_all_fds(void)
|
|
{
|
|
struct irq_fd *irq;
|
|
int err;
|
|
|
|
for (irq = active_fds; irq != NULL; irq = irq->next) {
|
|
err = os_clear_fd_async(irq->fd);
|
|
if (err)
|
|
return err;
|
|
}
|
|
/* If there is a signal already queued, after unblocking ignore it */
|
|
os_set_ioignore();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* do_IRQ handles all normal device IRQ's (the special
|
|
* SMP cross-CPU interrupts have their own specific
|
|
* handlers).
|
|
*/
|
|
unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
|
|
irq_enter();
|
|
__do_IRQ(irq);
|
|
irq_exit();
|
|
set_irq_regs(old_regs);
|
|
return 1;
|
|
}
|
|
|
|
int um_request_irq(unsigned int irq, int fd, int type,
|
|
irq_handler_t handler,
|
|
unsigned long irqflags, const char * devname,
|
|
void *dev_id)
|
|
{
|
|
int err;
|
|
|
|
err = request_irq(irq, handler, irqflags, devname, dev_id);
|
|
if (err)
|
|
return err;
|
|
|
|
if (fd != -1)
|
|
err = activate_fd(irq, fd, type, dev_id);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL(um_request_irq);
|
|
EXPORT_SYMBOL(reactivate_fd);
|
|
|
|
/* hw_interrupt_type must define (startup || enable) &&
|
|
* (shutdown || disable) && end */
|
|
static void dummy(unsigned int irq)
|
|
{
|
|
}
|
|
|
|
/* This is used for everything else than the timer. */
|
|
static struct hw_interrupt_type normal_irq_type = {
|
|
.typename = "SIGIO",
|
|
.release = free_irq_by_irq_and_dev,
|
|
.disable = dummy,
|
|
.enable = dummy,
|
|
.ack = dummy,
|
|
.end = dummy
|
|
};
|
|
|
|
static struct hw_interrupt_type SIGVTALRM_irq_type = {
|
|
.typename = "SIGVTALRM",
|
|
.release = free_irq_by_irq_and_dev,
|
|
.shutdown = dummy, /* never called */
|
|
.disable = dummy,
|
|
.enable = dummy,
|
|
.ack = dummy,
|
|
.end = dummy
|
|
};
|
|
|
|
void __init init_IRQ(void)
|
|
{
|
|
int i;
|
|
|
|
irq_desc[TIMER_IRQ].status = IRQ_DISABLED;
|
|
irq_desc[TIMER_IRQ].action = NULL;
|
|
irq_desc[TIMER_IRQ].depth = 1;
|
|
irq_desc[TIMER_IRQ].chip = &SIGVTALRM_irq_type;
|
|
enable_irq(TIMER_IRQ);
|
|
for (i = 1; i < NR_IRQS; i++) {
|
|
irq_desc[i].status = IRQ_DISABLED;
|
|
irq_desc[i].action = NULL;
|
|
irq_desc[i].depth = 1;
|
|
irq_desc[i].chip = &normal_irq_type;
|
|
enable_irq(i);
|
|
}
|
|
}
|
|
|
|
int init_aio_irq(int irq, char *name, irq_handler_t handler)
|
|
{
|
|
int fds[2], err;
|
|
|
|
err = os_pipe(fds, 1, 1);
|
|
if (err) {
|
|
printk("init_aio_irq - os_pipe failed, err = %d\n", -err);
|
|
goto out;
|
|
}
|
|
|
|
err = um_request_irq(irq, fds[0], IRQ_READ, handler,
|
|
IRQF_DISABLED | IRQF_SAMPLE_RANDOM, name,
|
|
(void *) (long) fds[0]);
|
|
if (err) {
|
|
printk("init_aio_irq - : um_request_irq failed, err = %d\n",
|
|
err);
|
|
goto out_close;
|
|
}
|
|
|
|
err = fds[1];
|
|
goto out;
|
|
|
|
out_close:
|
|
os_close_file(fds[0]);
|
|
os_close_file(fds[1]);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* IRQ stack entry and exit:
|
|
*
|
|
* Unlike i386, UML doesn't receive IRQs on the normal kernel stack
|
|
* and switch over to the IRQ stack after some preparation. We use
|
|
* sigaltstack to receive signals on a separate stack from the start.
|
|
* These two functions make sure the rest of the kernel won't be too
|
|
* upset by being on a different stack. The IRQ stack has a
|
|
* thread_info structure at the bottom so that current et al continue
|
|
* to work.
|
|
*
|
|
* to_irq_stack copies the current task's thread_info to the IRQ stack
|
|
* thread_info and sets the tasks's stack to point to the IRQ stack.
|
|
*
|
|
* from_irq_stack copies the thread_info struct back (flags may have
|
|
* been modified) and resets the task's stack pointer.
|
|
*
|
|
* Tricky bits -
|
|
*
|
|
* What happens when two signals race each other? UML doesn't block
|
|
* signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
|
|
* could arrive while a previous one is still setting up the
|
|
* thread_info.
|
|
*
|
|
* There are three cases -
|
|
* The first interrupt on the stack - sets up the thread_info and
|
|
* handles the interrupt
|
|
* A nested interrupt interrupting the copying of the thread_info -
|
|
* can't handle the interrupt, as the stack is in an unknown state
|
|
* A nested interrupt not interrupting the copying of the
|
|
* thread_info - doesn't do any setup, just handles the interrupt
|
|
*
|
|
* The first job is to figure out whether we interrupted stack setup.
|
|
* This is done by xchging the signal mask with thread_info->pending.
|
|
* If the value that comes back is zero, then there is no setup in
|
|
* progress, and the interrupt can be handled. If the value is
|
|
* non-zero, then there is stack setup in progress. In order to have
|
|
* the interrupt handled, we leave our signal in the mask, and it will
|
|
* be handled by the upper handler after it has set up the stack.
|
|
*
|
|
* Next is to figure out whether we are the outer handler or a nested
|
|
* one. As part of setting up the stack, thread_info->real_thread is
|
|
* set to non-NULL (and is reset to NULL on exit). This is the
|
|
* nesting indicator. If it is non-NULL, then the stack is already
|
|
* set up and the handler can run.
|
|
*/
|
|
|
|
static unsigned long pending_mask;
|
|
|
|
unsigned long to_irq_stack(unsigned long *mask_out)
|
|
{
|
|
struct thread_info *ti;
|
|
unsigned long mask, old;
|
|
int nested;
|
|
|
|
mask = xchg(&pending_mask, *mask_out);
|
|
if(mask != 0){
|
|
/* If any interrupts come in at this point, we want to
|
|
* make sure that their bits aren't lost by our
|
|
* putting our bit in. So, this loop accumulates bits
|
|
* until xchg returns the same value that we put in.
|
|
* When that happens, there were no new interrupts,
|
|
* and pending_mask contains a bit for each interrupt
|
|
* that came in.
|
|
*/
|
|
old = *mask_out;
|
|
do {
|
|
old |= mask;
|
|
mask = xchg(&pending_mask, old);
|
|
} while(mask != old);
|
|
return 1;
|
|
}
|
|
|
|
ti = current_thread_info();
|
|
nested = (ti->real_thread != NULL);
|
|
if(!nested){
|
|
struct task_struct *task;
|
|
struct thread_info *tti;
|
|
|
|
task = cpu_tasks[ti->cpu].task;
|
|
tti = task_thread_info(task);
|
|
|
|
*ti = *tti;
|
|
ti->real_thread = tti;
|
|
task->stack = ti;
|
|
}
|
|
|
|
mask = xchg(&pending_mask, 0);
|
|
*mask_out |= mask | nested;
|
|
return 0;
|
|
}
|
|
|
|
unsigned long from_irq_stack(int nested)
|
|
{
|
|
struct thread_info *ti, *to;
|
|
unsigned long mask;
|
|
|
|
ti = current_thread_info();
|
|
|
|
pending_mask = 1;
|
|
|
|
to = ti->real_thread;
|
|
current->stack = to;
|
|
ti->real_thread = NULL;
|
|
*to = *ti;
|
|
|
|
mask = xchg(&pending_mask, 0);
|
|
return mask & ~1;
|
|
}
|
|
|