kernel-ark/drivers/net/wan/fsl_ucc_hdlc.c
Christophe Jaillet 776482cd8d wan/fsl_ucc_hdlc: Fix size used in dma_free_coherent()
Size used with 'dma_alloc_coherent()' and 'dma_free_coherent()' should be
consistent.
Here, the size of a pointer is used in dma_alloc... and the size of the
pointed structure is used in dma_free...

This has been spotted with coccinelle, using the following script:
////////////////////
@r@
expression x0, x1, y0, y1, z0, z1, t0, t1, ret;
@@

*   ret = dma_alloc_coherent(x0, y0, z0, t0);
    ...
*   dma_free_coherent(x1, y1, ret, t1);

@script:python@
y0 << r.y0;
y1 << r.y1;

@@
if y1.find(y0) == -1:
 print "WARNING: sizes look different:  '%s'   vs   '%s'" % (y0, y1)
////////////////////

Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-10-08 00:04:48 -04:00

1179 lines
28 KiB
C

/* Freescale QUICC Engine HDLC Device Driver
*
* Copyright 2016 Freescale Semiconductor Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/hdlc.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stddef.h>
#include <soc/fsl/qe/qe_tdm.h>
#include <uapi/linux/if_arp.h>
#include "fsl_ucc_hdlc.h"
#define DRV_DESC "Freescale QE UCC HDLC Driver"
#define DRV_NAME "ucc_hdlc"
#define TDM_PPPOHT_SLIC_MAXIN
#define BROKEN_FRAME_INFO
static struct ucc_tdm_info utdm_primary_info = {
.uf_info = {
.tsa = 0,
.cdp = 0,
.cds = 1,
.ctsp = 1,
.ctss = 1,
.revd = 0,
.urfs = 256,
.utfs = 256,
.urfet = 128,
.urfset = 192,
.utfet = 128,
.utftt = 0x40,
.ufpt = 256,
.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
.tenc = UCC_FAST_TX_ENCODING_NRZ,
.renc = UCC_FAST_RX_ENCODING_NRZ,
.tcrc = UCC_FAST_16_BIT_CRC,
.synl = UCC_FAST_SYNC_LEN_NOT_USED,
},
.si_info = {
#ifdef TDM_PPPOHT_SLIC_MAXIN
.simr_rfsd = 1,
.simr_tfsd = 2,
#else
.simr_rfsd = 0,
.simr_tfsd = 0,
#endif
.simr_crt = 0,
.simr_sl = 0,
.simr_ce = 1,
.simr_fe = 1,
.simr_gm = 0,
},
};
static struct ucc_tdm_info utdm_info[MAX_HDLC_NUM];
static int uhdlc_init(struct ucc_hdlc_private *priv)
{
struct ucc_tdm_info *ut_info;
struct ucc_fast_info *uf_info;
u32 cecr_subblock;
u16 bd_status;
int ret, i;
void *bd_buffer;
dma_addr_t bd_dma_addr;
u32 riptr;
u32 tiptr;
u32 gumr;
ut_info = priv->ut_info;
uf_info = &ut_info->uf_info;
if (priv->tsa) {
uf_info->tsa = 1;
uf_info->ctsp = 1;
}
uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
UCC_HDLC_UCCE_TXB) << 16);
ret = ucc_fast_init(uf_info, &priv->uccf);
if (ret) {
dev_err(priv->dev, "Failed to init uccf.");
return ret;
}
priv->uf_regs = priv->uccf->uf_regs;
ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
/* Loopback mode */
if (priv->loopback) {
dev_info(priv->dev, "Loopback Mode\n");
gumr = ioread32be(&priv->uf_regs->gumr);
gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
UCC_FAST_GUMR_TCI);
gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
iowrite32be(gumr, &priv->uf_regs->gumr);
}
/* Initialize SI */
if (priv->tsa)
ucc_tdm_init(priv->utdm, priv->ut_info);
/* Write to QE CECR, UCCx channel to Stop Transmission */
cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
QE_CR_PROTOCOL_UNSPECIFIED, 0);
/* Set UPSMR normal mode (need fixed)*/
iowrite32be(0, &priv->uf_regs->upsmr);
priv->rx_ring_size = RX_BD_RING_LEN;
priv->tx_ring_size = TX_BD_RING_LEN;
/* Alloc Rx BD */
priv->rx_bd_base = dma_alloc_coherent(priv->dev,
RX_BD_RING_LEN * sizeof(struct qe_bd *),
&priv->dma_rx_bd, GFP_KERNEL);
if (!priv->rx_bd_base) {
dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
ret = -ENOMEM;
goto free_uccf;
}
/* Alloc Tx BD */
priv->tx_bd_base = dma_alloc_coherent(priv->dev,
TX_BD_RING_LEN * sizeof(struct qe_bd *),
&priv->dma_tx_bd, GFP_KERNEL);
if (!priv->tx_bd_base) {
dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
ret = -ENOMEM;
goto free_rx_bd;
}
/* Alloc parameter ram for ucc hdlc */
priv->ucc_pram_offset = qe_muram_alloc(sizeof(priv->ucc_pram),
ALIGNMENT_OF_UCC_HDLC_PRAM);
if (priv->ucc_pram_offset < 0) {
dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
ret = -ENOMEM;
goto free_tx_bd;
}
priv->rx_skbuff = kzalloc(priv->rx_ring_size * sizeof(*priv->rx_skbuff),
GFP_KERNEL);
if (!priv->rx_skbuff)
goto free_ucc_pram;
priv->tx_skbuff = kzalloc(priv->tx_ring_size * sizeof(*priv->tx_skbuff),
GFP_KERNEL);
if (!priv->tx_skbuff)
goto free_rx_skbuff;
priv->skb_curtx = 0;
priv->skb_dirtytx = 0;
priv->curtx_bd = priv->tx_bd_base;
priv->dirty_tx = priv->tx_bd_base;
priv->currx_bd = priv->rx_bd_base;
priv->currx_bdnum = 0;
/* init parameter base */
cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
qe_muram_addr(priv->ucc_pram_offset);
/* Zero out parameter ram */
memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
/* Alloc riptr, tiptr */
riptr = qe_muram_alloc(32, 32);
if (riptr < 0) {
dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
ret = -ENOMEM;
goto free_tx_skbuff;
}
tiptr = qe_muram_alloc(32, 32);
if (tiptr < 0) {
dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
ret = -ENOMEM;
goto free_riptr;
}
/* Set RIPTR, TIPTR */
iowrite16be(riptr, &priv->ucc_pram->riptr);
iowrite16be(tiptr, &priv->ucc_pram->tiptr);
/* Set MRBLR */
iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
/* Set RBASE, TBASE */
iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
/* Set RSTATE, TSTATE */
iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
/* Set C_MASK, C_PRES for 16bit CRC */
iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
iowrite16be(DEFAULT_ADDR_MASK, &priv->ucc_pram->hmask);
iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
/* Get BD buffer */
bd_buffer = dma_alloc_coherent(priv->dev,
(RX_BD_RING_LEN + TX_BD_RING_LEN) *
MAX_RX_BUF_LENGTH,
&bd_dma_addr, GFP_KERNEL);
if (!bd_buffer) {
dev_err(priv->dev, "Could not allocate buffer descriptors\n");
ret = -ENOMEM;
goto free_tiptr;
}
memset(bd_buffer, 0, (RX_BD_RING_LEN + TX_BD_RING_LEN)
* MAX_RX_BUF_LENGTH);
priv->rx_buffer = bd_buffer;
priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
priv->dma_rx_addr = bd_dma_addr;
priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
for (i = 0; i < RX_BD_RING_LEN; i++) {
if (i < (RX_BD_RING_LEN - 1))
bd_status = R_E_S | R_I_S;
else
bd_status = R_E_S | R_I_S | R_W_S;
iowrite16be(bd_status, &priv->rx_bd_base[i].status);
iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
&priv->rx_bd_base[i].buf);
}
for (i = 0; i < TX_BD_RING_LEN; i++) {
if (i < (TX_BD_RING_LEN - 1))
bd_status = T_I_S | T_TC_S;
else
bd_status = T_I_S | T_TC_S | T_W_S;
iowrite16be(bd_status, &priv->tx_bd_base[i].status);
iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
&priv->tx_bd_base[i].buf);
}
return 0;
free_tiptr:
qe_muram_free(tiptr);
free_riptr:
qe_muram_free(riptr);
free_tx_skbuff:
kfree(priv->tx_skbuff);
free_rx_skbuff:
kfree(priv->rx_skbuff);
free_ucc_pram:
qe_muram_free(priv->ucc_pram_offset);
free_tx_bd:
dma_free_coherent(priv->dev,
TX_BD_RING_LEN * sizeof(struct qe_bd *),
priv->tx_bd_base, priv->dma_tx_bd);
free_rx_bd:
dma_free_coherent(priv->dev,
RX_BD_RING_LEN * sizeof(struct qe_bd *),
priv->rx_bd_base, priv->dma_rx_bd);
free_uccf:
ucc_fast_free(priv->uccf);
return ret;
}
static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
{
hdlc_device *hdlc = dev_to_hdlc(dev);
struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
struct qe_bd __iomem *bd;
u16 bd_status;
unsigned long flags;
u8 *send_buf;
int i;
u16 *proto_head;
switch (dev->type) {
case ARPHRD_RAWHDLC:
if (skb_headroom(skb) < HDLC_HEAD_LEN) {
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
netdev_err(dev, "No enough space for hdlc head\n");
return -ENOMEM;
}
skb_push(skb, HDLC_HEAD_LEN);
proto_head = (u16 *)skb->data;
*proto_head = htons(DEFAULT_HDLC_HEAD);
dev->stats.tx_bytes += skb->len;
break;
case ARPHRD_PPP:
proto_head = (u16 *)skb->data;
if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
netdev_err(dev, "Wrong ppp header\n");
return -ENOMEM;
}
dev->stats.tx_bytes += skb->len;
break;
default:
dev->stats.tx_dropped++;
dev_kfree_skb(skb);
return -ENOMEM;
}
pr_info("Tx data skb->len:%d ", skb->len);
send_buf = (u8 *)skb->data;
pr_info("\nTransmitted data:\n");
for (i = 0; i < 16; i++) {
if (i == skb->len)
pr_info("++++");
else
pr_info("%02x\n", send_buf[i]);
}
spin_lock_irqsave(&priv->lock, flags);
/* Start from the next BD that should be filled */
bd = priv->curtx_bd;
bd_status = ioread16be(&bd->status);
/* Save the skb pointer so we can free it later */
priv->tx_skbuff[priv->skb_curtx] = skb;
/* Update the current skb pointer (wrapping if this was the last) */
priv->skb_curtx =
(priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
/* copy skb data to tx buffer for sdma processing */
memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
skb->data, skb->len);
/* set bd status and length */
bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
iowrite16be(bd_status, &bd->status);
iowrite16be(skb->len, &bd->length);
/* Move to next BD in the ring */
if (!(bd_status & T_W_S))
bd += 1;
else
bd = priv->tx_bd_base;
if (bd == priv->dirty_tx) {
if (!netif_queue_stopped(dev))
netif_stop_queue(dev);
}
priv->curtx_bd = bd;
spin_unlock_irqrestore(&priv->lock, flags);
return NETDEV_TX_OK;
}
static int hdlc_tx_done(struct ucc_hdlc_private *priv)
{
/* Start from the next BD that should be filled */
struct net_device *dev = priv->ndev;
struct qe_bd *bd; /* BD pointer */
u16 bd_status;
bd = priv->dirty_tx;
bd_status = ioread16be(&bd->status);
/* Normal processing. */
while ((bd_status & T_R_S) == 0) {
struct sk_buff *skb;
/* BD contains already transmitted buffer. */
/* Handle the transmitted buffer and release */
/* the BD to be used with the current frame */
skb = priv->tx_skbuff[priv->skb_dirtytx];
if (!skb)
break;
pr_info("TxBD: %x\n", bd_status);
dev->stats.tx_packets++;
memset(priv->tx_buffer +
(be32_to_cpu(bd->buf) - priv->dma_tx_addr),
0, skb->len);
dev_kfree_skb_irq(skb);
priv->tx_skbuff[priv->skb_dirtytx] = NULL;
priv->skb_dirtytx =
(priv->skb_dirtytx +
1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
/* We freed a buffer, so now we can restart transmission */
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
/* Advance the confirmation BD pointer */
if (!(bd_status & T_W_S))
bd += 1;
else
bd = priv->tx_bd_base;
bd_status = ioread16be(&bd->status);
}
priv->dirty_tx = bd;
return 0;
}
static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
{
struct net_device *dev = priv->ndev;
struct sk_buff *skb;
hdlc_device *hdlc = dev_to_hdlc(dev);
struct qe_bd *bd;
u32 bd_status;
u16 length, howmany = 0;
u8 *bdbuffer;
int i;
static int entry;
bd = priv->currx_bd;
bd_status = ioread16be(&bd->status);
/* while there are received buffers and BD is full (~R_E) */
while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
if (bd_status & R_OV_S)
dev->stats.rx_over_errors++;
if (bd_status & R_CR_S) {
#ifdef BROKEN_FRAME_INFO
pr_info("Broken Frame with RxBD: %x\n", bd_status);
#endif
dev->stats.rx_crc_errors++;
dev->stats.rx_dropped++;
goto recycle;
}
bdbuffer = priv->rx_buffer +
(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
length = ioread16be(&bd->length);
pr_info("Received data length:%d", length);
pr_info("while entry times:%d", entry++);
pr_info("\nReceived data:\n");
for (i = 0; (i < 16); i++) {
if (i == length)
pr_info("++++");
else
pr_info("%02x\n", bdbuffer[i]);
}
switch (dev->type) {
case ARPHRD_RAWHDLC:
bdbuffer += HDLC_HEAD_LEN;
length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
skb = dev_alloc_skb(length);
if (!skb) {
dev->stats.rx_dropped++;
return -ENOMEM;
}
skb_put(skb, length);
skb->len = length;
skb->dev = dev;
memcpy(skb->data, bdbuffer, length);
break;
case ARPHRD_PPP:
length -= HDLC_CRC_SIZE;
skb = dev_alloc_skb(length);
if (!skb) {
dev->stats.rx_dropped++;
return -ENOMEM;
}
skb_put(skb, length);
skb->len = length;
skb->dev = dev;
memcpy(skb->data, bdbuffer, length);
break;
}
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
howmany++;
if (hdlc->proto)
skb->protocol = hdlc_type_trans(skb, dev);
pr_info("skb->protocol:%x\n", skb->protocol);
netif_receive_skb(skb);
recycle:
iowrite16be(bd_status | R_E_S | R_I_S, &bd->status);
/* update to point at the next bd */
if (bd_status & R_W_S) {
priv->currx_bdnum = 0;
bd = priv->rx_bd_base;
} else {
if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
priv->currx_bdnum += 1;
else
priv->currx_bdnum = RX_BD_RING_LEN - 1;
bd += 1;
}
bd_status = ioread16be(&bd->status);
}
priv->currx_bd = bd;
return howmany;
}
static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
{
struct ucc_hdlc_private *priv = container_of(napi,
struct ucc_hdlc_private,
napi);
int howmany;
/* Tx event processing */
spin_lock(&priv->lock);
hdlc_tx_done(priv);
spin_unlock(&priv->lock);
howmany = 0;
howmany += hdlc_rx_done(priv, budget - howmany);
if (howmany < budget) {
napi_complete(napi);
qe_setbits32(priv->uccf->p_uccm,
(UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
}
return howmany;
}
static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
{
struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
struct net_device *dev = priv->ndev;
struct ucc_fast_private *uccf;
struct ucc_tdm_info *ut_info;
u32 ucce;
u32 uccm;
ut_info = priv->ut_info;
uccf = priv->uccf;
ucce = ioread32be(uccf->p_ucce);
uccm = ioread32be(uccf->p_uccm);
ucce &= uccm;
iowrite32be(ucce, uccf->p_ucce);
pr_info("irq ucce:%x\n", ucce);
if (!ucce)
return IRQ_NONE;
if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
if (napi_schedule_prep(&priv->napi)) {
uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
<< 16);
iowrite32be(uccm, uccf->p_uccm);
__napi_schedule(&priv->napi);
}
}
/* Errors and other events */
if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
dev->stats.rx_errors++;
if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
dev->stats.tx_errors++;
return IRQ_HANDLED;
}
static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
const size_t size = sizeof(te1_settings);
te1_settings line;
struct ucc_hdlc_private *priv = netdev_priv(dev);
if (cmd != SIOCWANDEV)
return hdlc_ioctl(dev, ifr, cmd);
switch (ifr->ifr_settings.type) {
case IF_GET_IFACE:
ifr->ifr_settings.type = IF_IFACE_E1;
if (ifr->ifr_settings.size < size) {
ifr->ifr_settings.size = size; /* data size wanted */
return -ENOBUFS;
}
memset(&line, 0, sizeof(line));
line.clock_type = priv->clocking;
if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
return -EFAULT;
return 0;
default:
return hdlc_ioctl(dev, ifr, cmd);
}
}
static int uhdlc_open(struct net_device *dev)
{
u32 cecr_subblock;
hdlc_device *hdlc = dev_to_hdlc(dev);
struct ucc_hdlc_private *priv = hdlc->priv;
struct ucc_tdm *utdm = priv->utdm;
if (priv->hdlc_busy != 1) {
if (request_irq(priv->ut_info->uf_info.irq,
ucc_hdlc_irq_handler, 0, "hdlc", priv))
return -ENODEV;
cecr_subblock = ucc_fast_get_qe_cr_subblock(
priv->ut_info->uf_info.ucc_num);
qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
QE_CR_PROTOCOL_UNSPECIFIED, 0);
ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
/* Enable the TDM port */
if (priv->tsa)
utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
priv->hdlc_busy = 1;
netif_device_attach(priv->ndev);
napi_enable(&priv->napi);
netif_start_queue(dev);
hdlc_open(dev);
}
return 0;
}
static void uhdlc_memclean(struct ucc_hdlc_private *priv)
{
qe_muram_free(priv->ucc_pram->riptr);
qe_muram_free(priv->ucc_pram->tiptr);
if (priv->rx_bd_base) {
dma_free_coherent(priv->dev,
RX_BD_RING_LEN * sizeof(struct qe_bd *),
priv->rx_bd_base, priv->dma_rx_bd);
priv->rx_bd_base = NULL;
priv->dma_rx_bd = 0;
}
if (priv->tx_bd_base) {
dma_free_coherent(priv->dev,
TX_BD_RING_LEN * sizeof(struct qe_bd *),
priv->tx_bd_base, priv->dma_tx_bd);
priv->tx_bd_base = NULL;
priv->dma_tx_bd = 0;
}
if (priv->ucc_pram) {
qe_muram_free(priv->ucc_pram_offset);
priv->ucc_pram = NULL;
priv->ucc_pram_offset = 0;
}
kfree(priv->rx_skbuff);
priv->rx_skbuff = NULL;
kfree(priv->tx_skbuff);
priv->tx_skbuff = NULL;
if (priv->uf_regs) {
iounmap(priv->uf_regs);
priv->uf_regs = NULL;
}
if (priv->uccf) {
ucc_fast_free(priv->uccf);
priv->uccf = NULL;
}
if (priv->rx_buffer) {
dma_free_coherent(priv->dev,
RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
priv->rx_buffer, priv->dma_rx_addr);
priv->rx_buffer = NULL;
priv->dma_rx_addr = 0;
}
if (priv->tx_buffer) {
dma_free_coherent(priv->dev,
TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
priv->tx_buffer, priv->dma_tx_addr);
priv->tx_buffer = NULL;
priv->dma_tx_addr = 0;
}
}
static int uhdlc_close(struct net_device *dev)
{
struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
struct ucc_tdm *utdm = priv->utdm;
u32 cecr_subblock;
napi_disable(&priv->napi);
cecr_subblock = ucc_fast_get_qe_cr_subblock(
priv->ut_info->uf_info.ucc_num);
qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
(u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
(u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
if (priv->tsa)
utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
free_irq(priv->ut_info->uf_info.irq, priv);
netif_stop_queue(dev);
priv->hdlc_busy = 0;
return 0;
}
static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
unsigned short parity)
{
struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
if (encoding != ENCODING_NRZ &&
encoding != ENCODING_NRZI)
return -EINVAL;
if (parity != PARITY_NONE &&
parity != PARITY_CRC32_PR1_CCITT &&
parity != PARITY_CRC16_PR1_CCITT)
return -EINVAL;
priv->encoding = encoding;
priv->parity = parity;
return 0;
}
#ifdef CONFIG_PM
static void store_clk_config(struct ucc_hdlc_private *priv)
{
struct qe_mux *qe_mux_reg = &qe_immr->qmx;
/* store si clk */
priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
/* store si sync */
priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
/* store ucc clk */
memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
}
static void resume_clk_config(struct ucc_hdlc_private *priv)
{
struct qe_mux *qe_mux_reg = &qe_immr->qmx;
memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
}
static int uhdlc_suspend(struct device *dev)
{
struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
struct ucc_tdm_info *ut_info;
struct ucc_fast __iomem *uf_regs;
if (!priv)
return -EINVAL;
if (!netif_running(priv->ndev))
return 0;
netif_device_detach(priv->ndev);
napi_disable(&priv->napi);
ut_info = priv->ut_info;
uf_regs = priv->uf_regs;
/* backup gumr guemr*/
priv->gumr = ioread32be(&uf_regs->gumr);
priv->guemr = ioread8(&uf_regs->guemr);
priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
GFP_KERNEL);
if (!priv->ucc_pram_bak)
return -ENOMEM;
/* backup HDLC parameter */
memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
sizeof(struct ucc_hdlc_param));
/* store the clk configuration */
store_clk_config(priv);
/* save power */
ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
dev_dbg(dev, "ucc hdlc suspend\n");
return 0;
}
static int uhdlc_resume(struct device *dev)
{
struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
struct ucc_tdm *utdm;
struct ucc_tdm_info *ut_info;
struct ucc_fast __iomem *uf_regs;
struct ucc_fast_private *uccf;
struct ucc_fast_info *uf_info;
int ret, i;
u32 cecr_subblock;
u16 bd_status;
if (!priv)
return -EINVAL;
if (!netif_running(priv->ndev))
return 0;
utdm = priv->utdm;
ut_info = priv->ut_info;
uf_info = &ut_info->uf_info;
uf_regs = priv->uf_regs;
uccf = priv->uccf;
/* restore gumr guemr */
iowrite8(priv->guemr, &uf_regs->guemr);
iowrite32be(priv->gumr, &uf_regs->gumr);
/* Set Virtual Fifo registers */
iowrite16be(uf_info->urfs, &uf_regs->urfs);
iowrite16be(uf_info->urfet, &uf_regs->urfet);
iowrite16be(uf_info->urfset, &uf_regs->urfset);
iowrite16be(uf_info->utfs, &uf_regs->utfs);
iowrite16be(uf_info->utfet, &uf_regs->utfet);
iowrite16be(uf_info->utftt, &uf_regs->utftt);
/* utfb, urfb are offsets from MURAM base */
iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
/* Rx Tx and sync clock routing */
resume_clk_config(priv);
iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
iowrite32be(0xffffffff, &uf_regs->ucce);
ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
/* rebuild SIRAM */
if (priv->tsa)
ucc_tdm_init(priv->utdm, priv->ut_info);
/* Write to QE CECR, UCCx channel to Stop Transmission */
cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
(u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
/* Set UPSMR normal mode */
iowrite32be(0, &uf_regs->upsmr);
/* init parameter base */
cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
qe_muram_addr(priv->ucc_pram_offset);
/* restore ucc parameter */
memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
sizeof(struct ucc_hdlc_param));
kfree(priv->ucc_pram_bak);
/* rebuild BD entry */
for (i = 0; i < RX_BD_RING_LEN; i++) {
if (i < (RX_BD_RING_LEN - 1))
bd_status = R_E_S | R_I_S;
else
bd_status = R_E_S | R_I_S | R_W_S;
iowrite16be(bd_status, &priv->rx_bd_base[i].status);
iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
&priv->rx_bd_base[i].buf);
}
for (i = 0; i < TX_BD_RING_LEN; i++) {
if (i < (TX_BD_RING_LEN - 1))
bd_status = T_I_S | T_TC_S;
else
bd_status = T_I_S | T_TC_S | T_W_S;
iowrite16be(bd_status, &priv->tx_bd_base[i].status);
iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
&priv->tx_bd_base[i].buf);
}
/* if hdlc is busy enable TX and RX */
if (priv->hdlc_busy == 1) {
cecr_subblock = ucc_fast_get_qe_cr_subblock(
priv->ut_info->uf_info.ucc_num);
qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
(u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
/* Enable the TDM port */
if (priv->tsa)
utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
}
napi_enable(&priv->napi);
netif_device_attach(priv->ndev);
return 0;
}
static const struct dev_pm_ops uhdlc_pm_ops = {
.suspend = uhdlc_suspend,
.resume = uhdlc_resume,
.freeze = uhdlc_suspend,
.thaw = uhdlc_resume,
};
#define HDLC_PM_OPS (&uhdlc_pm_ops)
#else
#define HDLC_PM_OPS NULL
#endif
static const struct net_device_ops uhdlc_ops = {
.ndo_open = uhdlc_open,
.ndo_stop = uhdlc_close,
.ndo_change_mtu = hdlc_change_mtu,
.ndo_start_xmit = hdlc_start_xmit,
.ndo_do_ioctl = uhdlc_ioctl,
};
static int ucc_hdlc_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct ucc_hdlc_private *uhdlc_priv = NULL;
struct ucc_tdm_info *ut_info;
struct ucc_tdm *utdm;
struct resource res;
struct net_device *dev;
hdlc_device *hdlc;
int ucc_num;
const char *sprop;
int ret;
u32 val;
ret = of_property_read_u32_index(np, "cell-index", 0, &val);
if (ret) {
dev_err(&pdev->dev, "Invalid ucc property\n");
return -ENODEV;
}
ucc_num = val - 1;
if ((ucc_num > 3) || (ucc_num < 0)) {
dev_err(&pdev->dev, ": Invalid UCC num\n");
return -EINVAL;
}
memcpy(&utdm_info[ucc_num], &utdm_primary_info,
sizeof(utdm_primary_info));
ut_info = &utdm_info[ucc_num];
ut_info->uf_info.ucc_num = ucc_num;
sprop = of_get_property(np, "rx-clock-name", NULL);
if (sprop) {
ut_info->uf_info.rx_clock = qe_clock_source(sprop);
if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
(ut_info->uf_info.rx_clock > QE_CLK24)) {
dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
return -EINVAL;
}
} else {
dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
return -EINVAL;
}
sprop = of_get_property(np, "tx-clock-name", NULL);
if (sprop) {
ut_info->uf_info.tx_clock = qe_clock_source(sprop);
if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
(ut_info->uf_info.tx_clock > QE_CLK24)) {
dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
return -EINVAL;
}
} else {
dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
return -EINVAL;
}
/* use the same clock when work in loopback */
if (ut_info->uf_info.rx_clock == ut_info->uf_info.tx_clock)
qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
ret = of_address_to_resource(np, 0, &res);
if (ret)
return -EINVAL;
ut_info->uf_info.regs = res.start;
ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
if (!uhdlc_priv) {
return -ENOMEM;
}
dev_set_drvdata(&pdev->dev, uhdlc_priv);
uhdlc_priv->dev = &pdev->dev;
uhdlc_priv->ut_info = ut_info;
if (of_get_property(np, "fsl,tdm-interface", NULL))
uhdlc_priv->tsa = 1;
if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
uhdlc_priv->loopback = 1;
if (uhdlc_priv->tsa == 1) {
utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
if (!utdm) {
ret = -ENOMEM;
dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
goto free_uhdlc_priv;
}
uhdlc_priv->utdm = utdm;
ret = ucc_of_parse_tdm(np, utdm, ut_info);
if (ret)
goto free_utdm;
}
ret = uhdlc_init(uhdlc_priv);
if (ret) {
dev_err(&pdev->dev, "Failed to init uhdlc\n");
goto free_utdm;
}
dev = alloc_hdlcdev(uhdlc_priv);
if (!dev) {
ret = -ENOMEM;
pr_err("ucc_hdlc: unable to allocate memory\n");
goto undo_uhdlc_init;
}
uhdlc_priv->ndev = dev;
hdlc = dev_to_hdlc(dev);
dev->tx_queue_len = 16;
dev->netdev_ops = &uhdlc_ops;
hdlc->attach = ucc_hdlc_attach;
hdlc->xmit = ucc_hdlc_tx;
netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
if (register_hdlc_device(dev)) {
ret = -ENOBUFS;
pr_err("ucc_hdlc: unable to register hdlc device\n");
free_netdev(dev);
goto free_dev;
}
return 0;
free_dev:
free_netdev(dev);
undo_uhdlc_init:
free_utdm:
if (uhdlc_priv->tsa)
kfree(utdm);
free_uhdlc_priv:
kfree(uhdlc_priv);
return ret;
}
static int ucc_hdlc_remove(struct platform_device *pdev)
{
struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
uhdlc_memclean(priv);
if (priv->utdm->si_regs) {
iounmap(priv->utdm->si_regs);
priv->utdm->si_regs = NULL;
}
if (priv->utdm->siram) {
iounmap(priv->utdm->siram);
priv->utdm->siram = NULL;
}
kfree(priv);
dev_info(&pdev->dev, "UCC based hdlc module removed\n");
return 0;
}
static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
{
.compatible = "fsl,ucc-hdlc",
},
{},
};
MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
static struct platform_driver ucc_hdlc_driver = {
.probe = ucc_hdlc_probe,
.remove = ucc_hdlc_remove,
.driver = {
.name = DRV_NAME,
.pm = HDLC_PM_OPS,
.of_match_table = fsl_ucc_hdlc_of_match,
},
};
module_platform_driver(ucc_hdlc_driver);