kernel-ark/arch/sparc64/kernel/sbus.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

1244 lines
35 KiB
C

/* $Id: sbus.c,v 1.19 2002/01/23 11:27:32 davem Exp $
* sbus.c: UltraSparc SBUS controller support.
*
* Copyright (C) 1999 David S. Miller (davem@redhat.com)
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <asm/page.h>
#include <asm/sbus.h>
#include <asm/io.h>
#include <asm/upa.h>
#include <asm/cache.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <asm/starfire.h>
#include "iommu_common.h"
/* These should be allocated on an SMP_CACHE_BYTES
* aligned boundary for optimal performance.
*
* On SYSIO, using an 8K page size we have 1GB of SBUS
* DMA space mapped. We divide this space into equally
* sized clusters. We allocate a DMA mapping from the
* cluster that matches the order of the allocation, or
* if the order is greater than the number of clusters,
* we try to allocate from the last cluster.
*/
#define NCLUSTERS 8UL
#define ONE_GIG (1UL * 1024UL * 1024UL * 1024UL)
#define CLUSTER_SIZE (ONE_GIG / NCLUSTERS)
#define CLUSTER_MASK (CLUSTER_SIZE - 1)
#define CLUSTER_NPAGES (CLUSTER_SIZE >> IO_PAGE_SHIFT)
#define MAP_BASE ((u32)0xc0000000)
struct sbus_iommu {
/*0x00*/spinlock_t lock;
/*0x08*/iopte_t *page_table;
/*0x10*/unsigned long strbuf_regs;
/*0x18*/unsigned long iommu_regs;
/*0x20*/unsigned long sbus_control_reg;
/*0x28*/volatile unsigned long strbuf_flushflag;
/* If NCLUSTERS is ever decresed to 4 or lower,
* you must increase the size of the type of
* these counters. You have been duly warned. -DaveM
*/
/*0x30*/struct {
u16 next;
u16 flush;
} alloc_info[NCLUSTERS];
/* The lowest used consistent mapping entry. Since
* we allocate consistent maps out of cluster 0 this
* is relative to the beginning of closter 0.
*/
/*0x50*/u32 lowest_consistent_map;
};
/* Offsets from iommu_regs */
#define SYSIO_IOMMUREG_BASE 0x2400UL
#define IOMMU_CONTROL (0x2400UL - 0x2400UL) /* IOMMU control register */
#define IOMMU_TSBBASE (0x2408UL - 0x2400UL) /* TSB base address register */
#define IOMMU_FLUSH (0x2410UL - 0x2400UL) /* IOMMU flush register */
#define IOMMU_VADIAG (0x4400UL - 0x2400UL) /* SBUS virtual address diagnostic */
#define IOMMU_TAGCMP (0x4408UL - 0x2400UL) /* TLB tag compare diagnostics */
#define IOMMU_LRUDIAG (0x4500UL - 0x2400UL) /* IOMMU LRU queue diagnostics */
#define IOMMU_TAGDIAG (0x4580UL - 0x2400UL) /* TLB tag diagnostics */
#define IOMMU_DRAMDIAG (0x4600UL - 0x2400UL) /* TLB data RAM diagnostics */
#define IOMMU_DRAM_VALID (1UL << 30UL)
static void __iommu_flushall(struct sbus_iommu *iommu)
{
unsigned long tag = iommu->iommu_regs + IOMMU_TAGDIAG;
int entry;
for (entry = 0; entry < 16; entry++) {
upa_writeq(0, tag);
tag += 8UL;
}
upa_readq(iommu->sbus_control_reg);
for (entry = 0; entry < NCLUSTERS; entry++) {
iommu->alloc_info[entry].flush =
iommu->alloc_info[entry].next;
}
}
static void iommu_flush(struct sbus_iommu *iommu, u32 base, unsigned long npages)
{
while (npages--)
upa_writeq(base + (npages << IO_PAGE_SHIFT),
iommu->iommu_regs + IOMMU_FLUSH);
upa_readq(iommu->sbus_control_reg);
}
/* Offsets from strbuf_regs */
#define SYSIO_STRBUFREG_BASE 0x2800UL
#define STRBUF_CONTROL (0x2800UL - 0x2800UL) /* Control */
#define STRBUF_PFLUSH (0x2808UL - 0x2800UL) /* Page flush/invalidate */
#define STRBUF_FSYNC (0x2810UL - 0x2800UL) /* Flush synchronization */
#define STRBUF_DRAMDIAG (0x5000UL - 0x2800UL) /* data RAM diagnostic */
#define STRBUF_ERRDIAG (0x5400UL - 0x2800UL) /* error status diagnostics */
#define STRBUF_PTAGDIAG (0x5800UL - 0x2800UL) /* Page tag diagnostics */
#define STRBUF_LTAGDIAG (0x5900UL - 0x2800UL) /* Line tag diagnostics */
#define STRBUF_TAG_VALID 0x02UL
static void strbuf_flush(struct sbus_iommu *iommu, u32 base, unsigned long npages)
{
iommu->strbuf_flushflag = 0UL;
while (npages--)
upa_writeq(base + (npages << IO_PAGE_SHIFT),
iommu->strbuf_regs + STRBUF_PFLUSH);
/* Whoopee cushion! */
upa_writeq(__pa(&iommu->strbuf_flushflag),
iommu->strbuf_regs + STRBUF_FSYNC);
upa_readq(iommu->sbus_control_reg);
while (iommu->strbuf_flushflag == 0UL)
membar("#LoadLoad");
}
static iopte_t *alloc_streaming_cluster(struct sbus_iommu *iommu, unsigned long npages)
{
iopte_t *iopte, *limit, *first, *cluster;
unsigned long cnum, ent, nent, flush_point, found;
cnum = 0;
nent = 1;
while ((1UL << cnum) < npages)
cnum++;
if(cnum >= NCLUSTERS) {
nent = 1UL << (cnum - NCLUSTERS);
cnum = NCLUSTERS - 1;
}
iopte = iommu->page_table + (cnum * CLUSTER_NPAGES);
if (cnum == 0)
limit = (iommu->page_table +
iommu->lowest_consistent_map);
else
limit = (iopte + CLUSTER_NPAGES);
iopte += ((ent = iommu->alloc_info[cnum].next) << cnum);
flush_point = iommu->alloc_info[cnum].flush;
first = iopte;
cluster = NULL;
found = 0;
for (;;) {
if (iopte_val(*iopte) == 0UL) {
found++;
if (!cluster)
cluster = iopte;
} else {
/* Used cluster in the way */
cluster = NULL;
found = 0;
}
if (found == nent)
break;
iopte += (1 << cnum);
ent++;
if (iopte >= limit) {
iopte = (iommu->page_table + (cnum * CLUSTER_NPAGES));
ent = 0;
/* Multiple cluster allocations must not wrap */
cluster = NULL;
found = 0;
}
if (ent == flush_point)
__iommu_flushall(iommu);
if (iopte == first)
goto bad;
}
/* ent/iopte points to the last cluster entry we're going to use,
* so save our place for the next allocation.
*/
if ((iopte + (1 << cnum)) >= limit)
ent = 0;
else
ent = ent + 1;
iommu->alloc_info[cnum].next = ent;
if (ent == flush_point)
__iommu_flushall(iommu);
/* I've got your streaming cluster right here buddy boy... */
return cluster;
bad:
printk(KERN_EMERG "sbus: alloc_streaming_cluster of npages(%ld) failed!\n",
npages);
return NULL;
}
static void free_streaming_cluster(struct sbus_iommu *iommu, u32 base, unsigned long npages)
{
unsigned long cnum, ent, nent;
iopte_t *iopte;
cnum = 0;
nent = 1;
while ((1UL << cnum) < npages)
cnum++;
if(cnum >= NCLUSTERS) {
nent = 1UL << (cnum - NCLUSTERS);
cnum = NCLUSTERS - 1;
}
ent = (base & CLUSTER_MASK) >> (IO_PAGE_SHIFT + cnum);
iopte = iommu->page_table + ((base - MAP_BASE) >> IO_PAGE_SHIFT);
do {
iopte_val(*iopte) = 0UL;
iopte += 1 << cnum;
} while(--nent);
/* If the global flush might not have caught this entry,
* adjust the flush point such that we will flush before
* ever trying to reuse it.
*/
#define between(X,Y,Z) (((Z) - (Y)) >= ((X) - (Y)))
if (between(ent, iommu->alloc_info[cnum].next, iommu->alloc_info[cnum].flush))
iommu->alloc_info[cnum].flush = ent;
#undef between
}
/* We allocate consistent mappings from the end of cluster zero. */
static iopte_t *alloc_consistent_cluster(struct sbus_iommu *iommu, unsigned long npages)
{
iopte_t *iopte;
iopte = iommu->page_table + (1 * CLUSTER_NPAGES);
while (iopte > iommu->page_table) {
iopte--;
if (!(iopte_val(*iopte) & IOPTE_VALID)) {
unsigned long tmp = npages;
while (--tmp) {
iopte--;
if (iopte_val(*iopte) & IOPTE_VALID)
break;
}
if (tmp == 0) {
u32 entry = (iopte - iommu->page_table);
if (entry < iommu->lowest_consistent_map)
iommu->lowest_consistent_map = entry;
return iopte;
}
}
}
return NULL;
}
static void free_consistent_cluster(struct sbus_iommu *iommu, u32 base, unsigned long npages)
{
iopte_t *iopte = iommu->page_table + ((base - MAP_BASE) >> IO_PAGE_SHIFT);
if ((iopte - iommu->page_table) == iommu->lowest_consistent_map) {
iopte_t *walk = iopte + npages;
iopte_t *limit;
limit = iommu->page_table + CLUSTER_NPAGES;
while (walk < limit) {
if (iopte_val(*walk) != 0UL)
break;
walk++;
}
iommu->lowest_consistent_map =
(walk - iommu->page_table);
}
while (npages--)
*iopte++ = __iopte(0UL);
}
void *sbus_alloc_consistent(struct sbus_dev *sdev, size_t size, dma_addr_t *dvma_addr)
{
unsigned long order, first_page, flags;
struct sbus_iommu *iommu;
iopte_t *iopte;
void *ret;
int npages;
if (size <= 0 || sdev == NULL || dvma_addr == NULL)
return NULL;
size = IO_PAGE_ALIGN(size);
order = get_order(size);
if (order >= 10)
return NULL;
first_page = __get_free_pages(GFP_KERNEL, order);
if (first_page == 0UL)
return NULL;
memset((char *)first_page, 0, PAGE_SIZE << order);
iommu = sdev->bus->iommu;
spin_lock_irqsave(&iommu->lock, flags);
iopte = alloc_consistent_cluster(iommu, size >> IO_PAGE_SHIFT);
if (iopte == NULL) {
spin_unlock_irqrestore(&iommu->lock, flags);
free_pages(first_page, order);
return NULL;
}
/* Ok, we're committed at this point. */
*dvma_addr = MAP_BASE + ((iopte - iommu->page_table) << IO_PAGE_SHIFT);
ret = (void *) first_page;
npages = size >> IO_PAGE_SHIFT;
while (npages--) {
*iopte++ = __iopte(IOPTE_VALID | IOPTE_CACHE | IOPTE_WRITE |
(__pa(first_page) & IOPTE_PAGE));
first_page += IO_PAGE_SIZE;
}
iommu_flush(iommu, *dvma_addr, size >> IO_PAGE_SHIFT);
spin_unlock_irqrestore(&iommu->lock, flags);
return ret;
}
void sbus_free_consistent(struct sbus_dev *sdev, size_t size, void *cpu, dma_addr_t dvma)
{
unsigned long order, npages;
struct sbus_iommu *iommu;
if (size <= 0 || sdev == NULL || cpu == NULL)
return;
npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
iommu = sdev->bus->iommu;
spin_lock_irq(&iommu->lock);
free_consistent_cluster(iommu, dvma, npages);
iommu_flush(iommu, dvma, npages);
spin_unlock_irq(&iommu->lock);
order = get_order(size);
if (order < 10)
free_pages((unsigned long)cpu, order);
}
dma_addr_t sbus_map_single(struct sbus_dev *sdev, void *ptr, size_t size, int dir)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
unsigned long npages, pbase, flags;
iopte_t *iopte;
u32 dma_base, offset;
unsigned long iopte_bits;
if (dir == SBUS_DMA_NONE)
BUG();
pbase = (unsigned long) ptr;
offset = (u32) (pbase & ~IO_PAGE_MASK);
size = (IO_PAGE_ALIGN(pbase + size) - (pbase & IO_PAGE_MASK));
pbase = (unsigned long) __pa(pbase & IO_PAGE_MASK);
spin_lock_irqsave(&iommu->lock, flags);
npages = size >> IO_PAGE_SHIFT;
iopte = alloc_streaming_cluster(iommu, npages);
if (iopte == NULL)
goto bad;
dma_base = MAP_BASE + ((iopte - iommu->page_table) << IO_PAGE_SHIFT);
npages = size >> IO_PAGE_SHIFT;
iopte_bits = IOPTE_VALID | IOPTE_STBUF | IOPTE_CACHE;
if (dir != SBUS_DMA_TODEVICE)
iopte_bits |= IOPTE_WRITE;
while (npages--) {
*iopte++ = __iopte(iopte_bits | (pbase & IOPTE_PAGE));
pbase += IO_PAGE_SIZE;
}
npages = size >> IO_PAGE_SHIFT;
spin_unlock_irqrestore(&iommu->lock, flags);
return (dma_base | offset);
bad:
spin_unlock_irqrestore(&iommu->lock, flags);
BUG();
return 0;
}
void sbus_unmap_single(struct sbus_dev *sdev, dma_addr_t dma_addr, size_t size, int direction)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
u32 dma_base = dma_addr & IO_PAGE_MASK;
unsigned long flags;
size = (IO_PAGE_ALIGN(dma_addr + size) - dma_base);
spin_lock_irqsave(&iommu->lock, flags);
free_streaming_cluster(iommu, dma_base, size >> IO_PAGE_SHIFT);
strbuf_flush(iommu, dma_base, size >> IO_PAGE_SHIFT);
spin_unlock_irqrestore(&iommu->lock, flags);
}
#define SG_ENT_PHYS_ADDRESS(SG) \
(__pa(page_address((SG)->page)) + (SG)->offset)
static inline void fill_sg(iopte_t *iopte, struct scatterlist *sg, int nused, int nelems, unsigned long iopte_bits)
{
struct scatterlist *dma_sg = sg;
struct scatterlist *sg_end = sg + nelems;
int i;
for (i = 0; i < nused; i++) {
unsigned long pteval = ~0UL;
u32 dma_npages;
dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
dma_sg->dma_length +
((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
do {
unsigned long offset;
signed int len;
/* If we are here, we know we have at least one
* more page to map. So walk forward until we
* hit a page crossing, and begin creating new
* mappings from that spot.
*/
for (;;) {
unsigned long tmp;
tmp = (unsigned long) SG_ENT_PHYS_ADDRESS(sg);
len = sg->length;
if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
pteval = tmp & IO_PAGE_MASK;
offset = tmp & (IO_PAGE_SIZE - 1UL);
break;
}
if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
offset = 0UL;
len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
break;
}
sg++;
}
pteval = ((pteval & IOPTE_PAGE) | iopte_bits);
while (len > 0) {
*iopte++ = __iopte(pteval);
pteval += IO_PAGE_SIZE;
len -= (IO_PAGE_SIZE - offset);
offset = 0;
dma_npages--;
}
pteval = (pteval & IOPTE_PAGE) + len;
sg++;
/* Skip over any tail mappings we've fully mapped,
* adjusting pteval along the way. Stop when we
* detect a page crossing event.
*/
while (sg < sg_end &&
(pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
(pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
((pteval ^
(SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
pteval += sg->length;
sg++;
}
if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
pteval = ~0UL;
} while (dma_npages != 0);
dma_sg++;
}
}
int sbus_map_sg(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int dir)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
unsigned long flags, npages;
iopte_t *iopte;
u32 dma_base;
struct scatterlist *sgtmp;
int used;
unsigned long iopte_bits;
if (dir == SBUS_DMA_NONE)
BUG();
/* Fast path single entry scatterlists. */
if (nents == 1) {
sg->dma_address =
sbus_map_single(sdev,
(page_address(sg->page) + sg->offset),
sg->length, dir);
sg->dma_length = sg->length;
return 1;
}
npages = prepare_sg(sg, nents);
spin_lock_irqsave(&iommu->lock, flags);
iopte = alloc_streaming_cluster(iommu, npages);
if (iopte == NULL)
goto bad;
dma_base = MAP_BASE + ((iopte - iommu->page_table) << IO_PAGE_SHIFT);
/* Normalize DVMA addresses. */
sgtmp = sg;
used = nents;
while (used && sgtmp->dma_length) {
sgtmp->dma_address += dma_base;
sgtmp++;
used--;
}
used = nents - used;
iopte_bits = IOPTE_VALID | IOPTE_STBUF | IOPTE_CACHE;
if (dir != SBUS_DMA_TODEVICE)
iopte_bits |= IOPTE_WRITE;
fill_sg(iopte, sg, used, nents, iopte_bits);
#ifdef VERIFY_SG
verify_sglist(sg, nents, iopte, npages);
#endif
spin_unlock_irqrestore(&iommu->lock, flags);
return used;
bad:
spin_unlock_irqrestore(&iommu->lock, flags);
BUG();
return 0;
}
void sbus_unmap_sg(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int direction)
{
unsigned long size, flags;
struct sbus_iommu *iommu;
u32 dvma_base;
int i;
/* Fast path single entry scatterlists. */
if (nents == 1) {
sbus_unmap_single(sdev, sg->dma_address, sg->dma_length, direction);
return;
}
dvma_base = sg[0].dma_address & IO_PAGE_MASK;
for (i = 0; i < nents; i++) {
if (sg[i].dma_length == 0)
break;
}
i--;
size = IO_PAGE_ALIGN(sg[i].dma_address + sg[i].dma_length) - dvma_base;
iommu = sdev->bus->iommu;
spin_lock_irqsave(&iommu->lock, flags);
free_streaming_cluster(iommu, dvma_base, size >> IO_PAGE_SHIFT);
strbuf_flush(iommu, dvma_base, size >> IO_PAGE_SHIFT);
spin_unlock_irqrestore(&iommu->lock, flags);
}
void sbus_dma_sync_single_for_cpu(struct sbus_dev *sdev, dma_addr_t base, size_t size, int direction)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
unsigned long flags;
size = (IO_PAGE_ALIGN(base + size) - (base & IO_PAGE_MASK));
spin_lock_irqsave(&iommu->lock, flags);
strbuf_flush(iommu, base & IO_PAGE_MASK, size >> IO_PAGE_SHIFT);
spin_unlock_irqrestore(&iommu->lock, flags);
}
void sbus_dma_sync_single_for_device(struct sbus_dev *sdev, dma_addr_t base, size_t size, int direction)
{
}
void sbus_dma_sync_sg_for_cpu(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int direction)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
unsigned long flags, size;
u32 base;
int i;
base = sg[0].dma_address & IO_PAGE_MASK;
for (i = 0; i < nents; i++) {
if (sg[i].dma_length == 0)
break;
}
i--;
size = IO_PAGE_ALIGN(sg[i].dma_address + sg[i].dma_length) - base;
spin_lock_irqsave(&iommu->lock, flags);
strbuf_flush(iommu, base, size >> IO_PAGE_SHIFT);
spin_unlock_irqrestore(&iommu->lock, flags);
}
void sbus_dma_sync_sg_for_device(struct sbus_dev *sdev, struct scatterlist *sg, int nents, int direction)
{
}
/* Enable 64-bit DVMA mode for the given device. */
void sbus_set_sbus64(struct sbus_dev *sdev, int bursts)
{
struct sbus_iommu *iommu = sdev->bus->iommu;
int slot = sdev->slot;
unsigned long cfg_reg;
u64 val;
cfg_reg = iommu->sbus_control_reg;
switch (slot) {
case 0:
cfg_reg += 0x20UL;
break;
case 1:
cfg_reg += 0x28UL;
break;
case 2:
cfg_reg += 0x30UL;
break;
case 3:
cfg_reg += 0x38UL;
break;
case 13:
cfg_reg += 0x40UL;
break;
case 14:
cfg_reg += 0x48UL;
break;
case 15:
cfg_reg += 0x50UL;
break;
default:
return;
};
val = upa_readq(cfg_reg);
if (val & (1UL << 14UL)) {
/* Extended transfer mode already enabled. */
return;
}
val |= (1UL << 14UL);
if (bursts & DMA_BURST8)
val |= (1UL << 1UL);
if (bursts & DMA_BURST16)
val |= (1UL << 2UL);
if (bursts & DMA_BURST32)
val |= (1UL << 3UL);
if (bursts & DMA_BURST64)
val |= (1UL << 4UL);
upa_writeq(val, cfg_reg);
}
/* SBUS SYSIO INO number to Sparc PIL level. */
static unsigned char sysio_ino_to_pil[] = {
0, 4, 4, 7, 5, 7, 8, 9, /* SBUS slot 0 */
0, 4, 4, 7, 5, 7, 8, 9, /* SBUS slot 1 */
0, 4, 4, 7, 5, 7, 8, 9, /* SBUS slot 2 */
0, 4, 4, 7, 5, 7, 8, 9, /* SBUS slot 3 */
4, /* Onboard SCSI */
5, /* Onboard Ethernet */
/*XXX*/ 8, /* Onboard BPP */
0, /* Bogon */
13, /* Audio */
/*XXX*/15, /* PowerFail */
0, /* Bogon */
0, /* Bogon */
12, /* Zilog Serial Channels (incl. Keyboard/Mouse lines) */
11, /* Floppy */
0, /* Spare Hardware (bogon for now) */
0, /* Keyboard (bogon for now) */
0, /* Mouse (bogon for now) */
0, /* Serial (bogon for now) */
0, 0, /* Bogon, Bogon */
10, /* Timer 0 */
11, /* Timer 1 */
0, 0, /* Bogon, Bogon */
15, /* Uncorrectable SBUS Error */
15, /* Correctable SBUS Error */
15, /* SBUS Error */
/*XXX*/ 0, /* Power Management (bogon for now) */
};
/* INO number to IMAP register offset for SYSIO external IRQ's.
* This should conform to both Sunfire/Wildfire server and Fusion
* desktop designs.
*/
#define SYSIO_IMAP_SLOT0 0x2c04UL
#define SYSIO_IMAP_SLOT1 0x2c0cUL
#define SYSIO_IMAP_SLOT2 0x2c14UL
#define SYSIO_IMAP_SLOT3 0x2c1cUL
#define SYSIO_IMAP_SCSI 0x3004UL
#define SYSIO_IMAP_ETH 0x300cUL
#define SYSIO_IMAP_BPP 0x3014UL
#define SYSIO_IMAP_AUDIO 0x301cUL
#define SYSIO_IMAP_PFAIL 0x3024UL
#define SYSIO_IMAP_KMS 0x302cUL
#define SYSIO_IMAP_FLPY 0x3034UL
#define SYSIO_IMAP_SHW 0x303cUL
#define SYSIO_IMAP_KBD 0x3044UL
#define SYSIO_IMAP_MS 0x304cUL
#define SYSIO_IMAP_SER 0x3054UL
#define SYSIO_IMAP_TIM0 0x3064UL
#define SYSIO_IMAP_TIM1 0x306cUL
#define SYSIO_IMAP_UE 0x3074UL
#define SYSIO_IMAP_CE 0x307cUL
#define SYSIO_IMAP_SBERR 0x3084UL
#define SYSIO_IMAP_PMGMT 0x308cUL
#define SYSIO_IMAP_GFX 0x3094UL
#define SYSIO_IMAP_EUPA 0x309cUL
#define bogon ((unsigned long) -1)
static unsigned long sysio_irq_offsets[] = {
/* SBUS Slot 0 --> 3, level 1 --> 7 */
SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0,
SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1,
SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2,
SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3,
/* Onboard devices (not relevant/used on SunFire). */
SYSIO_IMAP_SCSI,
SYSIO_IMAP_ETH,
SYSIO_IMAP_BPP,
bogon,
SYSIO_IMAP_AUDIO,
SYSIO_IMAP_PFAIL,
bogon,
bogon,
SYSIO_IMAP_KMS,
SYSIO_IMAP_FLPY,
SYSIO_IMAP_SHW,
SYSIO_IMAP_KBD,
SYSIO_IMAP_MS,
SYSIO_IMAP_SER,
bogon,
bogon,
SYSIO_IMAP_TIM0,
SYSIO_IMAP_TIM1,
bogon,
bogon,
SYSIO_IMAP_UE,
SYSIO_IMAP_CE,
SYSIO_IMAP_SBERR,
SYSIO_IMAP_PMGMT,
};
#undef bogon
#define NUM_SYSIO_OFFSETS (sizeof(sysio_irq_offsets) / sizeof(sysio_irq_offsets[0]))
/* Convert Interrupt Mapping register pointer to associated
* Interrupt Clear register pointer, SYSIO specific version.
*/
#define SYSIO_ICLR_UNUSED0 0x3400UL
#define SYSIO_ICLR_SLOT0 0x340cUL
#define SYSIO_ICLR_SLOT1 0x344cUL
#define SYSIO_ICLR_SLOT2 0x348cUL
#define SYSIO_ICLR_SLOT3 0x34ccUL
static unsigned long sysio_imap_to_iclr(unsigned long imap)
{
unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0;
return imap + diff;
}
unsigned int sbus_build_irq(void *buscookie, unsigned int ino)
{
struct sbus_bus *sbus = (struct sbus_bus *)buscookie;
struct sbus_iommu *iommu = sbus->iommu;
unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL;
unsigned long imap, iclr;
int pil, sbus_level = 0;
pil = sysio_ino_to_pil[ino];
if (!pil) {
printk("sbus_irq_build: Bad SYSIO INO[%x]\n", ino);
panic("Bad SYSIO IRQ translations...");
}
if (PIL_RESERVED(pil))
BUG();
imap = sysio_irq_offsets[ino];
if (imap == ((unsigned long)-1)) {
prom_printf("get_irq_translations: Bad SYSIO INO[%x] cpu[%d]\n",
ino, pil);
prom_halt();
}
imap += reg_base;
/* SYSIO inconsistency. For external SLOTS, we have to select
* the right ICLR register based upon the lower SBUS irq level
* bits.
*/
if (ino >= 0x20) {
iclr = sysio_imap_to_iclr(imap);
} else {
int sbus_slot = (ino & 0x18)>>3;
sbus_level = ino & 0x7;
switch(sbus_slot) {
case 0:
iclr = reg_base + SYSIO_ICLR_SLOT0;
break;
case 1:
iclr = reg_base + SYSIO_ICLR_SLOT1;
break;
case 2:
iclr = reg_base + SYSIO_ICLR_SLOT2;
break;
default:
case 3:
iclr = reg_base + SYSIO_ICLR_SLOT3;
break;
};
iclr += ((unsigned long)sbus_level - 1UL) * 8UL;
}
return build_irq(pil, sbus_level, iclr, imap);
}
/* Error interrupt handling. */
#define SYSIO_UE_AFSR 0x0030UL
#define SYSIO_UE_AFAR 0x0038UL
#define SYSIO_UEAFSR_PPIO 0x8000000000000000UL /* Primary PIO cause */
#define SYSIO_UEAFSR_PDRD 0x4000000000000000UL /* Primary DVMA read cause */
#define SYSIO_UEAFSR_PDWR 0x2000000000000000UL /* Primary DVMA write cause */
#define SYSIO_UEAFSR_SPIO 0x1000000000000000UL /* Secondary PIO is cause */
#define SYSIO_UEAFSR_SDRD 0x0800000000000000UL /* Secondary DVMA read cause */
#define SYSIO_UEAFSR_SDWR 0x0400000000000000UL /* Secondary DVMA write cause*/
#define SYSIO_UEAFSR_RESV1 0x03ff000000000000UL /* Reserved */
#define SYSIO_UEAFSR_DOFF 0x0000e00000000000UL /* Doubleword Offset */
#define SYSIO_UEAFSR_SIZE 0x00001c0000000000UL /* Bad transfer size 2^SIZE */
#define SYSIO_UEAFSR_MID 0x000003e000000000UL /* UPA MID causing the fault */
#define SYSIO_UEAFSR_RESV2 0x0000001fffffffffUL /* Reserved */
static irqreturn_t sysio_ue_handler(int irq, void *dev_id, struct pt_regs *regs)
{
struct sbus_bus *sbus = dev_id;
struct sbus_iommu *iommu = sbus->iommu;
unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL;
unsigned long afsr_reg, afar_reg;
unsigned long afsr, afar, error_bits;
int reported;
afsr_reg = reg_base + SYSIO_UE_AFSR;
afar_reg = reg_base + SYSIO_UE_AFAR;
/* Latch error status. */
afsr = upa_readq(afsr_reg);
afar = upa_readq(afar_reg);
/* Clear primary/secondary error status bits. */
error_bits = afsr &
(SYSIO_UEAFSR_PPIO | SYSIO_UEAFSR_PDRD | SYSIO_UEAFSR_PDWR |
SYSIO_UEAFSR_SPIO | SYSIO_UEAFSR_SDRD | SYSIO_UEAFSR_SDWR);
upa_writeq(error_bits, afsr_reg);
/* Log the error. */
printk("SYSIO[%x]: Uncorrectable ECC Error, primary error type[%s]\n",
sbus->portid,
(((error_bits & SYSIO_UEAFSR_PPIO) ?
"PIO" :
((error_bits & SYSIO_UEAFSR_PDRD) ?
"DVMA Read" :
((error_bits & SYSIO_UEAFSR_PDWR) ?
"DVMA Write" : "???")))));
printk("SYSIO[%x]: DOFF[%lx] SIZE[%lx] MID[%lx]\n",
sbus->portid,
(afsr & SYSIO_UEAFSR_DOFF) >> 45UL,
(afsr & SYSIO_UEAFSR_SIZE) >> 42UL,
(afsr & SYSIO_UEAFSR_MID) >> 37UL);
printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar);
printk("SYSIO[%x]: Secondary UE errors [", sbus->portid);
reported = 0;
if (afsr & SYSIO_UEAFSR_SPIO) {
reported++;
printk("(PIO)");
}
if (afsr & SYSIO_UEAFSR_SDRD) {
reported++;
printk("(DVMA Read)");
}
if (afsr & SYSIO_UEAFSR_SDWR) {
reported++;
printk("(DVMA Write)");
}
if (!reported)
printk("(none)");
printk("]\n");
return IRQ_HANDLED;
}
#define SYSIO_CE_AFSR 0x0040UL
#define SYSIO_CE_AFAR 0x0048UL
#define SYSIO_CEAFSR_PPIO 0x8000000000000000UL /* Primary PIO cause */
#define SYSIO_CEAFSR_PDRD 0x4000000000000000UL /* Primary DVMA read cause */
#define SYSIO_CEAFSR_PDWR 0x2000000000000000UL /* Primary DVMA write cause */
#define SYSIO_CEAFSR_SPIO 0x1000000000000000UL /* Secondary PIO cause */
#define SYSIO_CEAFSR_SDRD 0x0800000000000000UL /* Secondary DVMA read cause */
#define SYSIO_CEAFSR_SDWR 0x0400000000000000UL /* Secondary DVMA write cause*/
#define SYSIO_CEAFSR_RESV1 0x0300000000000000UL /* Reserved */
#define SYSIO_CEAFSR_ESYND 0x00ff000000000000UL /* Syndrome Bits */
#define SYSIO_CEAFSR_DOFF 0x0000e00000000000UL /* Double Offset */
#define SYSIO_CEAFSR_SIZE 0x00001c0000000000UL /* Bad transfer size 2^SIZE */
#define SYSIO_CEAFSR_MID 0x000003e000000000UL /* UPA MID causing the fault */
#define SYSIO_CEAFSR_RESV2 0x0000001fffffffffUL /* Reserved */
static irqreturn_t sysio_ce_handler(int irq, void *dev_id, struct pt_regs *regs)
{
struct sbus_bus *sbus = dev_id;
struct sbus_iommu *iommu = sbus->iommu;
unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL;
unsigned long afsr_reg, afar_reg;
unsigned long afsr, afar, error_bits;
int reported;
afsr_reg = reg_base + SYSIO_CE_AFSR;
afar_reg = reg_base + SYSIO_CE_AFAR;
/* Latch error status. */
afsr = upa_readq(afsr_reg);
afar = upa_readq(afar_reg);
/* Clear primary/secondary error status bits. */
error_bits = afsr &
(SYSIO_CEAFSR_PPIO | SYSIO_CEAFSR_PDRD | SYSIO_CEAFSR_PDWR |
SYSIO_CEAFSR_SPIO | SYSIO_CEAFSR_SDRD | SYSIO_CEAFSR_SDWR);
upa_writeq(error_bits, afsr_reg);
printk("SYSIO[%x]: Correctable ECC Error, primary error type[%s]\n",
sbus->portid,
(((error_bits & SYSIO_CEAFSR_PPIO) ?
"PIO" :
((error_bits & SYSIO_CEAFSR_PDRD) ?
"DVMA Read" :
((error_bits & SYSIO_CEAFSR_PDWR) ?
"DVMA Write" : "???")))));
/* XXX Use syndrome and afar to print out module string just like
* XXX UDB CE trap handler does... -DaveM
*/
printk("SYSIO[%x]: DOFF[%lx] ECC Syndrome[%lx] Size[%lx] MID[%lx]\n",
sbus->portid,
(afsr & SYSIO_CEAFSR_DOFF) >> 45UL,
(afsr & SYSIO_CEAFSR_ESYND) >> 48UL,
(afsr & SYSIO_CEAFSR_SIZE) >> 42UL,
(afsr & SYSIO_CEAFSR_MID) >> 37UL);
printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar);
printk("SYSIO[%x]: Secondary CE errors [", sbus->portid);
reported = 0;
if (afsr & SYSIO_CEAFSR_SPIO) {
reported++;
printk("(PIO)");
}
if (afsr & SYSIO_CEAFSR_SDRD) {
reported++;
printk("(DVMA Read)");
}
if (afsr & SYSIO_CEAFSR_SDWR) {
reported++;
printk("(DVMA Write)");
}
if (!reported)
printk("(none)");
printk("]\n");
return IRQ_HANDLED;
}
#define SYSIO_SBUS_AFSR 0x2010UL
#define SYSIO_SBUS_AFAR 0x2018UL
#define SYSIO_SBAFSR_PLE 0x8000000000000000UL /* Primary Late PIO Error */
#define SYSIO_SBAFSR_PTO 0x4000000000000000UL /* Primary SBUS Timeout */
#define SYSIO_SBAFSR_PBERR 0x2000000000000000UL /* Primary SBUS Error ACK */
#define SYSIO_SBAFSR_SLE 0x1000000000000000UL /* Secondary Late PIO Error */
#define SYSIO_SBAFSR_STO 0x0800000000000000UL /* Secondary SBUS Timeout */
#define SYSIO_SBAFSR_SBERR 0x0400000000000000UL /* Secondary SBUS Error ACK */
#define SYSIO_SBAFSR_RESV1 0x03ff000000000000UL /* Reserved */
#define SYSIO_SBAFSR_RD 0x0000800000000000UL /* Primary was late PIO read */
#define SYSIO_SBAFSR_RESV2 0x0000600000000000UL /* Reserved */
#define SYSIO_SBAFSR_SIZE 0x00001c0000000000UL /* Size of transfer */
#define SYSIO_SBAFSR_MID 0x000003e000000000UL /* MID causing the error */
#define SYSIO_SBAFSR_RESV3 0x0000001fffffffffUL /* Reserved */
static irqreturn_t sysio_sbus_error_handler(int irq, void *dev_id, struct pt_regs *regs)
{
struct sbus_bus *sbus = dev_id;
struct sbus_iommu *iommu = sbus->iommu;
unsigned long afsr_reg, afar_reg, reg_base;
unsigned long afsr, afar, error_bits;
int reported;
reg_base = iommu->sbus_control_reg - 0x2000UL;
afsr_reg = reg_base + SYSIO_SBUS_AFSR;
afar_reg = reg_base + SYSIO_SBUS_AFAR;
afsr = upa_readq(afsr_reg);
afar = upa_readq(afar_reg);
/* Clear primary/secondary error status bits. */
error_bits = afsr &
(SYSIO_SBAFSR_PLE | SYSIO_SBAFSR_PTO | SYSIO_SBAFSR_PBERR |
SYSIO_SBAFSR_SLE | SYSIO_SBAFSR_STO | SYSIO_SBAFSR_SBERR);
upa_writeq(error_bits, afsr_reg);
/* Log the error. */
printk("SYSIO[%x]: SBUS Error, primary error type[%s] read(%d)\n",
sbus->portid,
(((error_bits & SYSIO_SBAFSR_PLE) ?
"Late PIO Error" :
((error_bits & SYSIO_SBAFSR_PTO) ?
"Time Out" :
((error_bits & SYSIO_SBAFSR_PBERR) ?
"Error Ack" : "???")))),
(afsr & SYSIO_SBAFSR_RD) ? 1 : 0);
printk("SYSIO[%x]: size[%lx] MID[%lx]\n",
sbus->portid,
(afsr & SYSIO_SBAFSR_SIZE) >> 42UL,
(afsr & SYSIO_SBAFSR_MID) >> 37UL);
printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar);
printk("SYSIO[%x]: Secondary SBUS errors [", sbus->portid);
reported = 0;
if (afsr & SYSIO_SBAFSR_SLE) {
reported++;
printk("(Late PIO Error)");
}
if (afsr & SYSIO_SBAFSR_STO) {
reported++;
printk("(Time Out)");
}
if (afsr & SYSIO_SBAFSR_SBERR) {
reported++;
printk("(Error Ack)");
}
if (!reported)
printk("(none)");
printk("]\n");
/* XXX check iommu/strbuf for further error status XXX */
return IRQ_HANDLED;
}
#define ECC_CONTROL 0x0020UL
#define SYSIO_ECNTRL_ECCEN 0x8000000000000000UL /* Enable ECC Checking */
#define SYSIO_ECNTRL_UEEN 0x4000000000000000UL /* Enable UE Interrupts */
#define SYSIO_ECNTRL_CEEN 0x2000000000000000UL /* Enable CE Interrupts */
#define SYSIO_UE_INO 0x34
#define SYSIO_CE_INO 0x35
#define SYSIO_SBUSERR_INO 0x36
static void __init sysio_register_error_handlers(struct sbus_bus *sbus)
{
struct sbus_iommu *iommu = sbus->iommu;
unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL;
unsigned int irq;
u64 control;
irq = sbus_build_irq(sbus, SYSIO_UE_INO);
if (request_irq(irq, sysio_ue_handler,
SA_SHIRQ, "SYSIO UE", sbus) < 0) {
prom_printf("SYSIO[%x]: Cannot register UE interrupt.\n",
sbus->portid);
prom_halt();
}
irq = sbus_build_irq(sbus, SYSIO_CE_INO);
if (request_irq(irq, sysio_ce_handler,
SA_SHIRQ, "SYSIO CE", sbus) < 0) {
prom_printf("SYSIO[%x]: Cannot register CE interrupt.\n",
sbus->portid);
prom_halt();
}
irq = sbus_build_irq(sbus, SYSIO_SBUSERR_INO);
if (request_irq(irq, sysio_sbus_error_handler,
SA_SHIRQ, "SYSIO SBUS Error", sbus) < 0) {
prom_printf("SYSIO[%x]: Cannot register SBUS Error interrupt.\n",
sbus->portid);
prom_halt();
}
/* Now turn the error interrupts on and also enable ECC checking. */
upa_writeq((SYSIO_ECNTRL_ECCEN |
SYSIO_ECNTRL_UEEN |
SYSIO_ECNTRL_CEEN),
reg_base + ECC_CONTROL);
control = upa_readq(iommu->sbus_control_reg);
control |= 0x100UL; /* SBUS Error Interrupt Enable */
upa_writeq(control, iommu->sbus_control_reg);
}
/* Boot time initialization. */
void __init sbus_iommu_init(int prom_node, struct sbus_bus *sbus)
{
struct linux_prom64_registers rprop;
struct sbus_iommu *iommu;
unsigned long regs, tsb_base;
u64 control;
int err, i;
sbus->portid = prom_getintdefault(sbus->prom_node,
"upa-portid", -1);
err = prom_getproperty(prom_node, "reg",
(char *)&rprop, sizeof(rprop));
if (err < 0) {
prom_printf("sbus_iommu_init: Cannot map SYSIO control registers.\n");
prom_halt();
}
regs = rprop.phys_addr;
iommu = kmalloc(sizeof(*iommu) + SMP_CACHE_BYTES, GFP_ATOMIC);
if (iommu == NULL) {
prom_printf("sbus_iommu_init: Fatal error, kmalloc(iommu) failed\n");
prom_halt();
}
/* Align on E$ line boundary. */
iommu = (struct sbus_iommu *)
(((unsigned long)iommu + (SMP_CACHE_BYTES - 1UL)) &
~(SMP_CACHE_BYTES - 1UL));
memset(iommu, 0, sizeof(*iommu));
/* We start with no consistent mappings. */
iommu->lowest_consistent_map = CLUSTER_NPAGES;
for (i = 0; i < NCLUSTERS; i++) {
iommu->alloc_info[i].flush = 0;
iommu->alloc_info[i].next = 0;
}
/* Setup spinlock. */
spin_lock_init(&iommu->lock);
/* Init register offsets. */
iommu->iommu_regs = regs + SYSIO_IOMMUREG_BASE;
iommu->strbuf_regs = regs + SYSIO_STRBUFREG_BASE;
/* The SYSIO SBUS control register is used for dummy reads
* in order to ensure write completion.
*/
iommu->sbus_control_reg = regs + 0x2000UL;
/* Link into SYSIO software state. */
sbus->iommu = iommu;
printk("SYSIO: UPA portID %x, at %016lx\n",
sbus->portid, regs);
/* Setup for TSB_SIZE=7, TBW_SIZE=0, MMU_DE=1, MMU_EN=1 */
control = upa_readq(iommu->iommu_regs + IOMMU_CONTROL);
control = ((7UL << 16UL) |
(0UL << 2UL) |
(1UL << 1UL) |
(1UL << 0UL));
/* Using the above configuration we need 1MB iommu page
* table (128K ioptes * 8 bytes per iopte). This is
* page order 7 on UltraSparc.
*/
tsb_base = __get_free_pages(GFP_ATOMIC, get_order(IO_TSB_SIZE));
if (tsb_base == 0UL) {
prom_printf("sbus_iommu_init: Fatal error, cannot alloc TSB table.\n");
prom_halt();
}
iommu->page_table = (iopte_t *) tsb_base;
memset(iommu->page_table, 0, IO_TSB_SIZE);
upa_writeq(control, iommu->iommu_regs + IOMMU_CONTROL);
/* Clean out any cruft in the IOMMU using
* diagnostic accesses.
*/
for (i = 0; i < 16; i++) {
unsigned long dram = iommu->iommu_regs + IOMMU_DRAMDIAG;
unsigned long tag = iommu->iommu_regs + IOMMU_TAGDIAG;
dram += (unsigned long)i * 8UL;
tag += (unsigned long)i * 8UL;
upa_writeq(0, dram);
upa_writeq(0, tag);
}
upa_readq(iommu->sbus_control_reg);
/* Give the TSB to SYSIO. */
upa_writeq(__pa(tsb_base), iommu->iommu_regs + IOMMU_TSBBASE);
/* Setup streaming buffer, DE=1 SB_EN=1 */
control = (1UL << 1UL) | (1UL << 0UL);
upa_writeq(control, iommu->strbuf_regs + STRBUF_CONTROL);
/* Clear out the tags using diagnostics. */
for (i = 0; i < 16; i++) {
unsigned long ptag, ltag;
ptag = iommu->strbuf_regs + STRBUF_PTAGDIAG;
ltag = iommu->strbuf_regs + STRBUF_LTAGDIAG;
ptag += (unsigned long)i * 8UL;
ltag += (unsigned long)i * 8UL;
upa_writeq(0UL, ptag);
upa_writeq(0UL, ltag);
}
/* Enable DVMA arbitration for all devices/slots. */
control = upa_readq(iommu->sbus_control_reg);
control |= 0x3fUL;
upa_writeq(control, iommu->sbus_control_reg);
/* Now some Xfire specific grot... */
if (this_is_starfire)
sbus->starfire_cookie = starfire_hookup(sbus->portid);
else
sbus->starfire_cookie = NULL;
sysio_register_error_handlers(sbus);
}