kernel-ark/arch/powerpc/sysdev/qe_lib/qe.c
Timur Tabi 4c35630ccd [POWERPC] Change rheap functions to use ulongs instead of pointers
The rheap allocation functions return a pointer, but the actual value is based
on how the heap was initialized, and so it can be anything, e.g. an offset
into a buffer.  A ulong is a better representation of the value returned by
the allocation functions.

This patch changes all of the relevant rheap functions to use a unsigned long
integers instead of a pointer.  In case of an error, the value returned is
a negative error code that has been cast to an unsigned long.  The caller can
use the IS_ERR_VALUE() macro to check for this.

All code which calls the rheap functions is updated accordingly.  Macros
IS_MURAM_ERR() and IS_DPERR(), have been deleted in favor of IS_ERR_VALUE().

Also added error checking to rh_attach_region().

Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2007-05-09 23:01:43 -05:00

351 lines
8.0 KiB
C

/*
* Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
*
* Authors: Shlomi Gridish <gridish@freescale.com>
* Li Yang <leoli@freescale.com>
* Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
*
* Description:
* General Purpose functions for the global management of the
* QUICC Engine (QE).
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <asm/irq.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/immap_qe.h>
#include <asm/qe.h>
#include <asm/prom.h>
#include <asm/rheap.h>
static void qe_snums_init(void);
static void qe_muram_init(void);
static int qe_sdma_init(void);
static DEFINE_SPINLOCK(qe_lock);
/* QE snum state */
enum qe_snum_state {
QE_SNUM_STATE_USED,
QE_SNUM_STATE_FREE
};
/* QE snum */
struct qe_snum {
u8 num;
enum qe_snum_state state;
};
/* We allocate this here because it is used almost exclusively for
* the communication processor devices.
*/
struct qe_immap *qe_immr = NULL;
EXPORT_SYMBOL(qe_immr);
static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */
static phys_addr_t qebase = -1;
phys_addr_t get_qe_base(void)
{
struct device_node *qe;
if (qebase != -1)
return qebase;
qe = of_find_node_by_type(NULL, "qe");
if (qe) {
unsigned int size;
const void *prop = of_get_property(qe, "reg", &size);
qebase = of_translate_address(qe, prop);
of_node_put(qe);
};
return qebase;
}
EXPORT_SYMBOL(get_qe_base);
void qe_reset(void)
{
if (qe_immr == NULL)
qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);
qe_snums_init();
qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
QE_CR_PROTOCOL_UNSPECIFIED, 0);
/* Reclaim the MURAM memory for our use. */
qe_muram_init();
if (qe_sdma_init())
panic("sdma init failed!");
}
int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
{
unsigned long flags;
u8 mcn_shift = 0, dev_shift = 0;
spin_lock_irqsave(&qe_lock, flags);
if (cmd == QE_RESET) {
out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG));
} else {
if (cmd == QE_ASSIGN_PAGE) {
/* Here device is the SNUM, not sub-block */
dev_shift = QE_CR_SNUM_SHIFT;
} else if (cmd == QE_ASSIGN_RISC) {
/* Here device is the SNUM, and mcnProtocol is
* e_QeCmdRiscAssignment value */
dev_shift = QE_CR_SNUM_SHIFT;
mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
} else {
if (device == QE_CR_SUBBLOCK_USB)
mcn_shift = QE_CR_MCN_USB_SHIFT;
else
mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
}
out_be32(&qe_immr->cp.cecdr, cmd_input);
out_be32(&qe_immr->cp.cecr,
(cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32)
mcn_protocol << mcn_shift));
}
/* wait for the QE_CR_FLG to clear */
while(in_be32(&qe_immr->cp.cecr) & QE_CR_FLG)
cpu_relax();
spin_unlock_irqrestore(&qe_lock, flags);
return 0;
}
EXPORT_SYMBOL(qe_issue_cmd);
/* Set a baud rate generator. This needs lots of work. There are
* 16 BRGs, which can be connected to the QE channels or output
* as clocks. The BRGs are in two different block of internal
* memory mapped space.
* The baud rate clock is the system clock divided by something.
* It was set up long ago during the initial boot phase and is
* is given to us.
* Baud rate clocks are zero-based in the driver code (as that maps
* to port numbers). Documentation uses 1-based numbering.
*/
static unsigned int brg_clk = 0;
unsigned int get_brg_clk(void)
{
struct device_node *qe;
if (brg_clk)
return brg_clk;
qe = of_find_node_by_type(NULL, "qe");
if (qe) {
unsigned int size;
const u32 *prop = of_get_property(qe, "brg-frequency", &size);
brg_clk = *prop;
of_node_put(qe);
};
return brg_clk;
}
/* This function is used by UARTS, or anything else that uses a 16x
* oversampled clock.
*/
void qe_setbrg(u32 brg, u32 rate)
{
volatile u32 *bp;
u32 divisor, tempval;
int div16 = 0;
bp = &qe_immr->brg.brgc[brg];
divisor = (get_brg_clk() / rate);
if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
div16 = 1;
divisor /= 16;
}
tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) | QE_BRGC_ENABLE;
if (div16)
tempval |= QE_BRGC_DIV16;
out_be32(bp, tempval);
}
/* Initialize SNUMs (thread serial numbers) according to
* QE Module Control chapter, SNUM table
*/
static void qe_snums_init(void)
{
int i;
static const u8 snum_init[] = {
0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
0xD8, 0xD9, 0xE8, 0xE9,
};
for (i = 0; i < QE_NUM_OF_SNUM; i++) {
snums[i].num = snum_init[i];
snums[i].state = QE_SNUM_STATE_FREE;
}
}
int qe_get_snum(void)
{
unsigned long flags;
int snum = -EBUSY;
int i;
spin_lock_irqsave(&qe_lock, flags);
for (i = 0; i < QE_NUM_OF_SNUM; i++) {
if (snums[i].state == QE_SNUM_STATE_FREE) {
snums[i].state = QE_SNUM_STATE_USED;
snum = snums[i].num;
break;
}
}
spin_unlock_irqrestore(&qe_lock, flags);
return snum;
}
EXPORT_SYMBOL(qe_get_snum);
void qe_put_snum(u8 snum)
{
int i;
for (i = 0; i < QE_NUM_OF_SNUM; i++) {
if (snums[i].num == snum) {
snums[i].state = QE_SNUM_STATE_FREE;
break;
}
}
}
EXPORT_SYMBOL(qe_put_snum);
static int qe_sdma_init(void)
{
struct sdma *sdma = &qe_immr->sdma;
unsigned long sdma_buf_offset;
if (!sdma)
return -ENODEV;
/* allocate 2 internal temporary buffers (512 bytes size each) for
* the SDMA */
sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
if (IS_ERR_VALUE(sdma_buf_offset))
return -ENOMEM;
out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK);
out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK |
(0x1 << QE_SDMR_CEN_SHIFT)));
return 0;
}
/*
* muram_alloc / muram_free bits.
*/
static DEFINE_SPINLOCK(qe_muram_lock);
/* 16 blocks should be enough to satisfy all requests
* until the memory subsystem goes up... */
static rh_block_t qe_boot_muram_rh_block[16];
static rh_info_t qe_muram_info;
static void qe_muram_init(void)
{
struct device_node *np;
u32 address;
u64 size;
unsigned int flags;
/* initialize the info header */
rh_init(&qe_muram_info, 1,
sizeof(qe_boot_muram_rh_block) /
sizeof(qe_boot_muram_rh_block[0]), qe_boot_muram_rh_block);
/* Attach the usable muram area */
/* XXX: This is a subset of the available muram. It
* varies with the processor and the microcode patches activated.
*/
if ((np = of_find_node_by_name(NULL, "data-only")) != NULL) {
address = *of_get_address(np, 0, &size, &flags);
of_node_put(np);
rh_attach_region(&qe_muram_info, address, (int) size);
}
}
/* This function returns an index into the MURAM area.
*/
unsigned long qe_muram_alloc(int size, int align)
{
unsigned long start;
unsigned long flags;
spin_lock_irqsave(&qe_muram_lock, flags);
start = rh_alloc_align(&qe_muram_info, size, align, "QE");
spin_unlock_irqrestore(&qe_muram_lock, flags);
return start;
}
EXPORT_SYMBOL(qe_muram_alloc);
int qe_muram_free(unsigned long offset)
{
int ret;
unsigned long flags;
spin_lock_irqsave(&qe_muram_lock, flags);
ret = rh_free(&qe_muram_info, offset);
spin_unlock_irqrestore(&qe_muram_lock, flags);
return ret;
}
EXPORT_SYMBOL(qe_muram_free);
/* not sure if this is ever needed */
unsigned long qe_muram_alloc_fixed(unsigned long offset, int size)
{
unsigned long start;
unsigned long flags;
spin_lock_irqsave(&qe_muram_lock, flags);
start = rh_alloc_fixed(&qe_muram_info, offset, size, "commproc");
spin_unlock_irqrestore(&qe_muram_lock, flags);
return start;
}
EXPORT_SYMBOL(qe_muram_alloc_fixed);
void qe_muram_dump(void)
{
rh_dump(&qe_muram_info);
}
EXPORT_SYMBOL(qe_muram_dump);
void *qe_muram_addr(unsigned long offset)
{
return (void *)&qe_immr->muram[offset];
}
EXPORT_SYMBOL(qe_muram_addr);