kernel-ark/drivers/scsi/scsi_lib.c
Linus Torvalds 5f85942c2e SCSI misc on 20180610
This is mostly updates to the usual drivers: ufs, qedf, mpt3sas, lpfc,
 xfcp, hisi_sas, cxlflash, qla2xxx.  In the absence of Nic, we're also
 taking target updates which are mostly minor except for the tcmu
 refactor. The only real core change to worry about is the removal of
 high page bouncing (in sas, storvsc and iscsi).  This has been well
 tested and no problems have shown up so far.
 
 Signed-off-by: James E.J. Bottomley <jejb@linux.vnet.ibm.com>
 -----BEGIN PGP SIGNATURE-----
 
 iJwEABMIAEQWIQTnYEDbdso9F2cI+arnQslM7pishQUCWx1pbCYcamFtZXMuYm90
 dG9tbGV5QGhhbnNlbnBhcnRuZXJzaGlwLmNvbQAKCRDnQslM7pishUucAP42pccS
 ziKyiOizuxv9fZ4Q+nXd1A9zhI5tqqpkHjcQegEA40qiZSi3EKGKR8W0UpX7Ntmo
 tqrZJGojx9lnrAM2RbQ=
 =NMXg
 -----END PGP SIGNATURE-----

Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi

Pull SCSI updates from James Bottomley:
 "This is mostly updates to the usual drivers: ufs, qedf, mpt3sas, lpfc,
  xfcp, hisi_sas, cxlflash, qla2xxx.

  In the absence of Nic, we're also taking target updates which are
  mostly minor except for the tcmu refactor.

  The only real core change to worry about is the removal of high page
  bouncing (in sas, storvsc and iscsi). This has been well tested and no
  problems have shown up so far"

* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (268 commits)
  scsi: lpfc: update driver version to 12.0.0.4
  scsi: lpfc: Fix port initialization failure.
  scsi: lpfc: Fix 16gb hbas failing cq create.
  scsi: lpfc: Fix crash in blk_mq layer when executing modprobe -r lpfc
  scsi: lpfc: correct oversubscription of nvme io requests for an adapter
  scsi: lpfc: Fix MDS diagnostics failure (Rx < Tx)
  scsi: hisi_sas: Mark PHY as in reset for nexus reset
  scsi: hisi_sas: Fix return value when get_free_slot() failed
  scsi: hisi_sas: Terminate STP reject quickly for v2 hw
  scsi: hisi_sas: Add v2 hw force PHY function for internal ATA command
  scsi: hisi_sas: Include TMF elements in struct hisi_sas_slot
  scsi: hisi_sas: Try wait commands before before controller reset
  scsi: hisi_sas: Init disks after controller reset
  scsi: hisi_sas: Create a scsi_host_template per HW module
  scsi: hisi_sas: Reset disks when discovered
  scsi: hisi_sas: Add LED feature for v3 hw
  scsi: hisi_sas: Change common allocation mode of device id
  scsi: hisi_sas: change slot index allocation mode
  scsi: hisi_sas: Introduce hisi_sas_phy_set_linkrate()
  scsi: hisi_sas: fix a typo in hisi_sas_task_prep()
  ...
2018-06-10 13:01:12 -07:00

3570 lines
93 KiB
C

/*
* Copyright (C) 1999 Eric Youngdale
* Copyright (C) 2014 Christoph Hellwig
*
* SCSI queueing library.
* Initial versions: Eric Youngdale (eric@andante.org).
* Based upon conversations with large numbers
* of people at Linux Expo.
*/
#include <linux/bio.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <linux/completion.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/hardirq.h>
#include <linux/scatterlist.h>
#include <linux/blk-mq.h>
#include <linux/ratelimit.h>
#include <asm/unaligned.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_driver.h>
#include <scsi/scsi_eh.h>
#include <scsi/scsi_host.h>
#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
#include <scsi/scsi_dh.h>
#include <trace/events/scsi.h>
#include "scsi_debugfs.h"
#include "scsi_priv.h"
#include "scsi_logging.h"
static struct kmem_cache *scsi_sdb_cache;
static struct kmem_cache *scsi_sense_cache;
static struct kmem_cache *scsi_sense_isadma_cache;
static DEFINE_MUTEX(scsi_sense_cache_mutex);
static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
static inline struct kmem_cache *
scsi_select_sense_cache(bool unchecked_isa_dma)
{
return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
}
static void scsi_free_sense_buffer(bool unchecked_isa_dma,
unsigned char *sense_buffer)
{
kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
sense_buffer);
}
static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
gfp_t gfp_mask, int numa_node)
{
return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
gfp_mask, numa_node);
}
int scsi_init_sense_cache(struct Scsi_Host *shost)
{
struct kmem_cache *cache;
int ret = 0;
cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
if (cache)
return 0;
mutex_lock(&scsi_sense_cache_mutex);
if (shost->unchecked_isa_dma) {
scsi_sense_isadma_cache =
kmem_cache_create("scsi_sense_cache(DMA)",
SCSI_SENSE_BUFFERSIZE, 0,
SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
if (!scsi_sense_isadma_cache)
ret = -ENOMEM;
} else {
scsi_sense_cache =
kmem_cache_create_usercopy("scsi_sense_cache",
SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
0, SCSI_SENSE_BUFFERSIZE, NULL);
if (!scsi_sense_cache)
ret = -ENOMEM;
}
mutex_unlock(&scsi_sense_cache_mutex);
return ret;
}
/*
* When to reinvoke queueing after a resource shortage. It's 3 msecs to
* not change behaviour from the previous unplug mechanism, experimentation
* may prove this needs changing.
*/
#define SCSI_QUEUE_DELAY 3
static void
scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
{
struct Scsi_Host *host = cmd->device->host;
struct scsi_device *device = cmd->device;
struct scsi_target *starget = scsi_target(device);
/*
* Set the appropriate busy bit for the device/host.
*
* If the host/device isn't busy, assume that something actually
* completed, and that we should be able to queue a command now.
*
* Note that the prior mid-layer assumption that any host could
* always queue at least one command is now broken. The mid-layer
* will implement a user specifiable stall (see
* scsi_host.max_host_blocked and scsi_device.max_device_blocked)
* if a command is requeued with no other commands outstanding
* either for the device or for the host.
*/
switch (reason) {
case SCSI_MLQUEUE_HOST_BUSY:
atomic_set(&host->host_blocked, host->max_host_blocked);
break;
case SCSI_MLQUEUE_DEVICE_BUSY:
case SCSI_MLQUEUE_EH_RETRY:
atomic_set(&device->device_blocked,
device->max_device_blocked);
break;
case SCSI_MLQUEUE_TARGET_BUSY:
atomic_set(&starget->target_blocked,
starget->max_target_blocked);
break;
}
}
static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
{
struct scsi_device *sdev = cmd->device;
if (cmd->request->rq_flags & RQF_DONTPREP) {
cmd->request->rq_flags &= ~RQF_DONTPREP;
scsi_mq_uninit_cmd(cmd);
} else {
WARN_ON_ONCE(true);
}
blk_mq_requeue_request(cmd->request, true);
put_device(&sdev->sdev_gendev);
}
/**
* __scsi_queue_insert - private queue insertion
* @cmd: The SCSI command being requeued
* @reason: The reason for the requeue
* @unbusy: Whether the queue should be unbusied
*
* This is a private queue insertion. The public interface
* scsi_queue_insert() always assumes the queue should be unbusied
* because it's always called before the completion. This function is
* for a requeue after completion, which should only occur in this
* file.
*/
static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
{
struct scsi_device *device = cmd->device;
struct request_queue *q = device->request_queue;
unsigned long flags;
SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
"Inserting command %p into mlqueue\n", cmd));
scsi_set_blocked(cmd, reason);
/*
* Decrement the counters, since these commands are no longer
* active on the host/device.
*/
if (unbusy)
scsi_device_unbusy(device);
/*
* Requeue this command. It will go before all other commands
* that are already in the queue. Schedule requeue work under
* lock such that the kblockd_schedule_work() call happens
* before blk_cleanup_queue() finishes.
*/
cmd->result = 0;
if (q->mq_ops) {
/*
* Before a SCSI command is dispatched,
* get_device(&sdev->sdev_gendev) is called and the host,
* target and device busy counters are increased. Since
* requeuing a request causes these actions to be repeated and
* since scsi_device_unbusy() has already been called,
* put_device(&device->sdev_gendev) must still be called. Call
* put_device() after blk_mq_requeue_request() to avoid that
* removal of the SCSI device can start before requeueing has
* happened.
*/
blk_mq_requeue_request(cmd->request, true);
put_device(&device->sdev_gendev);
return;
}
spin_lock_irqsave(q->queue_lock, flags);
blk_requeue_request(q, cmd->request);
kblockd_schedule_work(&device->requeue_work);
spin_unlock_irqrestore(q->queue_lock, flags);
}
/*
* Function: scsi_queue_insert()
*
* Purpose: Insert a command in the midlevel queue.
*
* Arguments: cmd - command that we are adding to queue.
* reason - why we are inserting command to queue.
*
* Lock status: Assumed that lock is not held upon entry.
*
* Returns: Nothing.
*
* Notes: We do this for one of two cases. Either the host is busy
* and it cannot accept any more commands for the time being,
* or the device returned QUEUE_FULL and can accept no more
* commands.
* Notes: This could be called either from an interrupt context or a
* normal process context.
*/
void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
{
__scsi_queue_insert(cmd, reason, true);
}
/**
* scsi_execute - insert request and wait for the result
* @sdev: scsi device
* @cmd: scsi command
* @data_direction: data direction
* @buffer: data buffer
* @bufflen: len of buffer
* @sense: optional sense buffer
* @sshdr: optional decoded sense header
* @timeout: request timeout in seconds
* @retries: number of times to retry request
* @flags: flags for ->cmd_flags
* @rq_flags: flags for ->rq_flags
* @resid: optional residual length
*
* Returns the scsi_cmnd result field if a command was executed, or a negative
* Linux error code if we didn't get that far.
*/
int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
int data_direction, void *buffer, unsigned bufflen,
unsigned char *sense, struct scsi_sense_hdr *sshdr,
int timeout, int retries, u64 flags, req_flags_t rq_flags,
int *resid)
{
struct request *req;
struct scsi_request *rq;
int ret = DRIVER_ERROR << 24;
req = blk_get_request(sdev->request_queue,
data_direction == DMA_TO_DEVICE ?
REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
if (IS_ERR(req))
return ret;
rq = scsi_req(req);
if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
buffer, bufflen, GFP_NOIO))
goto out;
rq->cmd_len = COMMAND_SIZE(cmd[0]);
memcpy(rq->cmd, cmd, rq->cmd_len);
rq->retries = retries;
req->timeout = timeout;
req->cmd_flags |= flags;
req->rq_flags |= rq_flags | RQF_QUIET;
/*
* head injection *required* here otherwise quiesce won't work
*/
blk_execute_rq(req->q, NULL, req, 1);
/*
* Some devices (USB mass-storage in particular) may transfer
* garbage data together with a residue indicating that the data
* is invalid. Prevent the garbage from being misinterpreted
* and prevent security leaks by zeroing out the excess data.
*/
if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
if (resid)
*resid = rq->resid_len;
if (sense && rq->sense_len)
memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
if (sshdr)
scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
ret = rq->result;
out:
blk_put_request(req);
return ret;
}
EXPORT_SYMBOL(scsi_execute);
/*
* Function: scsi_init_cmd_errh()
*
* Purpose: Initialize cmd fields related to error handling.
*
* Arguments: cmd - command that is ready to be queued.
*
* Notes: This function has the job of initializing a number of
* fields related to error handling. Typically this will
* be called once for each command, as required.
*/
static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
{
cmd->serial_number = 0;
scsi_set_resid(cmd, 0);
memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
if (cmd->cmd_len == 0)
cmd->cmd_len = scsi_command_size(cmd->cmnd);
}
/*
* Decrement the host_busy counter and wake up the error handler if necessary.
* Avoid as follows that the error handler is not woken up if shost->host_busy
* == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
* with an RCU read lock in this function to ensure that this function in its
* entirety either finishes before scsi_eh_scmd_add() increases the
* host_failed counter or that it notices the shost state change made by
* scsi_eh_scmd_add().
*/
static void scsi_dec_host_busy(struct Scsi_Host *shost)
{
unsigned long flags;
rcu_read_lock();
atomic_dec(&shost->host_busy);
if (unlikely(scsi_host_in_recovery(shost))) {
spin_lock_irqsave(shost->host_lock, flags);
if (shost->host_failed || shost->host_eh_scheduled)
scsi_eh_wakeup(shost);
spin_unlock_irqrestore(shost->host_lock, flags);
}
rcu_read_unlock();
}
void scsi_device_unbusy(struct scsi_device *sdev)
{
struct Scsi_Host *shost = sdev->host;
struct scsi_target *starget = scsi_target(sdev);
scsi_dec_host_busy(shost);
if (starget->can_queue > 0)
atomic_dec(&starget->target_busy);
atomic_dec(&sdev->device_busy);
}
static void scsi_kick_queue(struct request_queue *q)
{
if (q->mq_ops)
blk_mq_start_hw_queues(q);
else
blk_run_queue(q);
}
/*
* Called for single_lun devices on IO completion. Clear starget_sdev_user,
* and call blk_run_queue for all the scsi_devices on the target -
* including current_sdev first.
*
* Called with *no* scsi locks held.
*/
static void scsi_single_lun_run(struct scsi_device *current_sdev)
{
struct Scsi_Host *shost = current_sdev->host;
struct scsi_device *sdev, *tmp;
struct scsi_target *starget = scsi_target(current_sdev);
unsigned long flags;
spin_lock_irqsave(shost->host_lock, flags);
starget->starget_sdev_user = NULL;
spin_unlock_irqrestore(shost->host_lock, flags);
/*
* Call blk_run_queue for all LUNs on the target, starting with
* current_sdev. We race with others (to set starget_sdev_user),
* but in most cases, we will be first. Ideally, each LU on the
* target would get some limited time or requests on the target.
*/
scsi_kick_queue(current_sdev->request_queue);
spin_lock_irqsave(shost->host_lock, flags);
if (starget->starget_sdev_user)
goto out;
list_for_each_entry_safe(sdev, tmp, &starget->devices,
same_target_siblings) {
if (sdev == current_sdev)
continue;
if (scsi_device_get(sdev))
continue;
spin_unlock_irqrestore(shost->host_lock, flags);
scsi_kick_queue(sdev->request_queue);
spin_lock_irqsave(shost->host_lock, flags);
scsi_device_put(sdev);
}
out:
spin_unlock_irqrestore(shost->host_lock, flags);
}
static inline bool scsi_device_is_busy(struct scsi_device *sdev)
{
if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
return true;
if (atomic_read(&sdev->device_blocked) > 0)
return true;
return false;
}
static inline bool scsi_target_is_busy(struct scsi_target *starget)
{
if (starget->can_queue > 0) {
if (atomic_read(&starget->target_busy) >= starget->can_queue)
return true;
if (atomic_read(&starget->target_blocked) > 0)
return true;
}
return false;
}
static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
{
if (shost->can_queue > 0 &&
atomic_read(&shost->host_busy) >= shost->can_queue)
return true;
if (atomic_read(&shost->host_blocked) > 0)
return true;
if (shost->host_self_blocked)
return true;
return false;
}
static void scsi_starved_list_run(struct Scsi_Host *shost)
{
LIST_HEAD(starved_list);
struct scsi_device *sdev;
unsigned long flags;
spin_lock_irqsave(shost->host_lock, flags);
list_splice_init(&shost->starved_list, &starved_list);
while (!list_empty(&starved_list)) {
struct request_queue *slq;
/*
* As long as shost is accepting commands and we have
* starved queues, call blk_run_queue. scsi_request_fn
* drops the queue_lock and can add us back to the
* starved_list.
*
* host_lock protects the starved_list and starved_entry.
* scsi_request_fn must get the host_lock before checking
* or modifying starved_list or starved_entry.
*/
if (scsi_host_is_busy(shost))
break;
sdev = list_entry(starved_list.next,
struct scsi_device, starved_entry);
list_del_init(&sdev->starved_entry);
if (scsi_target_is_busy(scsi_target(sdev))) {
list_move_tail(&sdev->starved_entry,
&shost->starved_list);
continue;
}
/*
* Once we drop the host lock, a racing scsi_remove_device()
* call may remove the sdev from the starved list and destroy
* it and the queue. Mitigate by taking a reference to the
* queue and never touching the sdev again after we drop the
* host lock. Note: if __scsi_remove_device() invokes
* blk_cleanup_queue() before the queue is run from this
* function then blk_run_queue() will return immediately since
* blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
*/
slq = sdev->request_queue;
if (!blk_get_queue(slq))
continue;
spin_unlock_irqrestore(shost->host_lock, flags);
scsi_kick_queue(slq);
blk_put_queue(slq);
spin_lock_irqsave(shost->host_lock, flags);
}
/* put any unprocessed entries back */
list_splice(&starved_list, &shost->starved_list);
spin_unlock_irqrestore(shost->host_lock, flags);
}
/*
* Function: scsi_run_queue()
*
* Purpose: Select a proper request queue to serve next
*
* Arguments: q - last request's queue
*
* Returns: Nothing
*
* Notes: The previous command was completely finished, start
* a new one if possible.
*/
static void scsi_run_queue(struct request_queue *q)
{
struct scsi_device *sdev = q->queuedata;
if (scsi_target(sdev)->single_lun)
scsi_single_lun_run(sdev);
if (!list_empty(&sdev->host->starved_list))
scsi_starved_list_run(sdev->host);
if (q->mq_ops)
blk_mq_run_hw_queues(q, false);
else
blk_run_queue(q);
}
void scsi_requeue_run_queue(struct work_struct *work)
{
struct scsi_device *sdev;
struct request_queue *q;
sdev = container_of(work, struct scsi_device, requeue_work);
q = sdev->request_queue;
scsi_run_queue(q);
}
/*
* Function: scsi_requeue_command()
*
* Purpose: Handle post-processing of completed commands.
*
* Arguments: q - queue to operate on
* cmd - command that may need to be requeued.
*
* Returns: Nothing
*
* Notes: After command completion, there may be blocks left
* over which weren't finished by the previous command
* this can be for a number of reasons - the main one is
* I/O errors in the middle of the request, in which case
* we need to request the blocks that come after the bad
* sector.
* Notes: Upon return, cmd is a stale pointer.
*/
static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
{
struct scsi_device *sdev = cmd->device;
struct request *req = cmd->request;
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
blk_unprep_request(req);
req->special = NULL;
scsi_put_command(cmd);
blk_requeue_request(q, req);
spin_unlock_irqrestore(q->queue_lock, flags);
scsi_run_queue(q);
put_device(&sdev->sdev_gendev);
}
void scsi_run_host_queues(struct Scsi_Host *shost)
{
struct scsi_device *sdev;
shost_for_each_device(sdev, shost)
scsi_run_queue(sdev->request_queue);
}
static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
{
if (!blk_rq_is_passthrough(cmd->request)) {
struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
if (drv->uninit_command)
drv->uninit_command(cmd);
}
}
static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
{
struct scsi_data_buffer *sdb;
if (cmd->sdb.table.nents)
sg_free_table_chained(&cmd->sdb.table, true);
if (cmd->request->next_rq) {
sdb = cmd->request->next_rq->special;
if (sdb)
sg_free_table_chained(&sdb->table, true);
}
if (scsi_prot_sg_count(cmd))
sg_free_table_chained(&cmd->prot_sdb->table, true);
}
static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
{
scsi_mq_free_sgtables(cmd);
scsi_uninit_cmd(cmd);
scsi_del_cmd_from_list(cmd);
}
/*
* Function: scsi_release_buffers()
*
* Purpose: Free resources allocate for a scsi_command.
*
* Arguments: cmd - command that we are bailing.
*
* Lock status: Assumed that no lock is held upon entry.
*
* Returns: Nothing
*
* Notes: In the event that an upper level driver rejects a
* command, we must release resources allocated during
* the __init_io() function. Primarily this would involve
* the scatter-gather table.
*/
static void scsi_release_buffers(struct scsi_cmnd *cmd)
{
if (cmd->sdb.table.nents)
sg_free_table_chained(&cmd->sdb.table, false);
memset(&cmd->sdb, 0, sizeof(cmd->sdb));
if (scsi_prot_sg_count(cmd))
sg_free_table_chained(&cmd->prot_sdb->table, false);
}
static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
{
struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
sg_free_table_chained(&bidi_sdb->table, false);
kmem_cache_free(scsi_sdb_cache, bidi_sdb);
cmd->request->next_rq->special = NULL;
}
static bool scsi_end_request(struct request *req, blk_status_t error,
unsigned int bytes, unsigned int bidi_bytes)
{
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
struct scsi_device *sdev = cmd->device;
struct request_queue *q = sdev->request_queue;
if (blk_update_request(req, error, bytes))
return true;
/* Bidi request must be completed as a whole */
if (unlikely(bidi_bytes) &&
blk_update_request(req->next_rq, error, bidi_bytes))
return true;
if (blk_queue_add_random(q))
add_disk_randomness(req->rq_disk);
if (!blk_rq_is_scsi(req)) {
WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
cmd->flags &= ~SCMD_INITIALIZED;
destroy_rcu_head(&cmd->rcu);
}
if (req->mq_ctx) {
/*
* In the MQ case the command gets freed by __blk_mq_end_request,
* so we have to do all cleanup that depends on it earlier.
*
* We also can't kick the queues from irq context, so we
* will have to defer it to a workqueue.
*/
scsi_mq_uninit_cmd(cmd);
__blk_mq_end_request(req, error);
if (scsi_target(sdev)->single_lun ||
!list_empty(&sdev->host->starved_list))
kblockd_schedule_work(&sdev->requeue_work);
else
blk_mq_run_hw_queues(q, true);
} else {
unsigned long flags;
if (bidi_bytes)
scsi_release_bidi_buffers(cmd);
scsi_release_buffers(cmd);
scsi_put_command(cmd);
spin_lock_irqsave(q->queue_lock, flags);
blk_finish_request(req, error);
spin_unlock_irqrestore(q->queue_lock, flags);
scsi_run_queue(q);
}
put_device(&sdev->sdev_gendev);
return false;
}
/**
* scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
* @cmd: SCSI command
* @result: scsi error code
*
* Translate a SCSI result code into a blk_status_t value. May reset the host
* byte of @cmd->result.
*/
static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
{
switch (host_byte(result)) {
case DID_OK:
/*
* Also check the other bytes than the status byte in result
* to handle the case when a SCSI LLD sets result to
* DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
*/
if (scsi_status_is_good(result) && (result & ~0xff) == 0)
return BLK_STS_OK;
return BLK_STS_IOERR;
case DID_TRANSPORT_FAILFAST:
return BLK_STS_TRANSPORT;
case DID_TARGET_FAILURE:
set_host_byte(cmd, DID_OK);
return BLK_STS_TARGET;
case DID_NEXUS_FAILURE:
return BLK_STS_NEXUS;
case DID_ALLOC_FAILURE:
set_host_byte(cmd, DID_OK);
return BLK_STS_NOSPC;
case DID_MEDIUM_ERROR:
set_host_byte(cmd, DID_OK);
return BLK_STS_MEDIUM;
default:
return BLK_STS_IOERR;
}
}
/*
* Function: scsi_io_completion()
*
* Purpose: Completion processing for block device I/O requests.
*
* Arguments: cmd - command that is finished.
*
* Lock status: Assumed that no lock is held upon entry.
*
* Returns: Nothing
*
* Notes: We will finish off the specified number of sectors. If we
* are done, the command block will be released and the queue
* function will be goosed. If we are not done then we have to
* figure out what to do next:
*
* a) We can call scsi_requeue_command(). The request
* will be unprepared and put back on the queue. Then
* a new command will be created for it. This should
* be used if we made forward progress, or if we want
* to switch from READ(10) to READ(6) for example.
*
* b) We can call __scsi_queue_insert(). The request will
* be put back on the queue and retried using the same
* command as before, possibly after a delay.
*
* c) We can call scsi_end_request() with -EIO to fail
* the remainder of the request.
*/
void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
{
int result = cmd->result;
struct request_queue *q = cmd->device->request_queue;
struct request *req = cmd->request;
blk_status_t error = BLK_STS_OK;
struct scsi_sense_hdr sshdr;
bool sense_valid = false;
int sense_deferred = 0, level = 0;
enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
ACTION_DELAYED_RETRY} action;
unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
if (result) {
sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
if (sense_valid)
sense_deferred = scsi_sense_is_deferred(&sshdr);
}
if (blk_rq_is_passthrough(req)) {
if (result) {
if (sense_valid) {
/*
* SG_IO wants current and deferred errors
*/
scsi_req(req)->sense_len =
min(8 + cmd->sense_buffer[7],
SCSI_SENSE_BUFFERSIZE);
}
if (!sense_deferred)
error = scsi_result_to_blk_status(cmd, result);
}
/*
* scsi_result_to_blk_status may have reset the host_byte
*/
scsi_req(req)->result = cmd->result;
scsi_req(req)->resid_len = scsi_get_resid(cmd);
if (scsi_bidi_cmnd(cmd)) {
/*
* Bidi commands Must be complete as a whole,
* both sides at once.
*/
scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
blk_rq_bytes(req->next_rq)))
BUG();
return;
}
} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
/*
* Flush commands do not transfers any data, and thus cannot use
* good_bytes != blk_rq_bytes(req) as the signal for an error.
* This sets the error explicitly for the problem case.
*/
error = scsi_result_to_blk_status(cmd, result);
}
/* no bidi support for !blk_rq_is_passthrough yet */
BUG_ON(blk_bidi_rq(req));
/*
* Next deal with any sectors which we were able to correctly
* handle.
*/
SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
"%u sectors total, %d bytes done.\n",
blk_rq_sectors(req), good_bytes));
/*
* Recovered errors need reporting, but they're always treated as
* success, so fiddle the result code here. For passthrough requests
* we already took a copy of the original into sreq->result which
* is what gets returned to the user
*/
if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
* print since caller wants ATA registers. Only occurs on
* SCSI ATA PASS_THROUGH commands when CK_COND=1
*/
if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
;
else if (!(req->rq_flags & RQF_QUIET))
scsi_print_sense(cmd);
result = 0;
/* for passthrough error may be set */
error = BLK_STS_OK;
}
/*
* Another corner case: the SCSI status byte is non-zero but 'good'.
* Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
* it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
* if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
* intermediate statuses (both obsolete in SAM-4) as good.
*/
if (status_byte(result) && scsi_status_is_good(result)) {
result = 0;
error = BLK_STS_OK;
}
/*
* special case: failed zero length commands always need to
* drop down into the retry code. Otherwise, if we finished
* all bytes in the request we are done now.
*/
if (!(blk_rq_bytes(req) == 0 && error) &&
!scsi_end_request(req, error, good_bytes, 0))
return;
/*
* Kill remainder if no retrys.
*/
if (error && scsi_noretry_cmd(cmd)) {
if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
BUG();
return;
}
/*
* If there had been no error, but we have leftover bytes in the
* requeues just queue the command up again.
*/
if (result == 0)
goto requeue;
error = scsi_result_to_blk_status(cmd, result);
if (host_byte(result) == DID_RESET) {
/* Third party bus reset or reset for error recovery
* reasons. Just retry the command and see what
* happens.
*/
action = ACTION_RETRY;
} else if (sense_valid && !sense_deferred) {
switch (sshdr.sense_key) {
case UNIT_ATTENTION:
if (cmd->device->removable) {
/* Detected disc change. Set a bit
* and quietly refuse further access.
*/
cmd->device->changed = 1;
action = ACTION_FAIL;
} else {
/* Must have been a power glitch, or a
* bus reset. Could not have been a
* media change, so we just retry the
* command and see what happens.
*/
action = ACTION_RETRY;
}
break;
case ILLEGAL_REQUEST:
/* If we had an ILLEGAL REQUEST returned, then
* we may have performed an unsupported
* command. The only thing this should be
* would be a ten byte read where only a six
* byte read was supported. Also, on a system
* where READ CAPACITY failed, we may have
* read past the end of the disk.
*/
if ((cmd->device->use_10_for_rw &&
sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
(cmd->cmnd[0] == READ_10 ||
cmd->cmnd[0] == WRITE_10)) {
/* This will issue a new 6-byte command. */
cmd->device->use_10_for_rw = 0;
action = ACTION_REPREP;
} else if (sshdr.asc == 0x10) /* DIX */ {
action = ACTION_FAIL;
error = BLK_STS_PROTECTION;
/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
action = ACTION_FAIL;
error = BLK_STS_TARGET;
} else
action = ACTION_FAIL;
break;
case ABORTED_COMMAND:
action = ACTION_FAIL;
if (sshdr.asc == 0x10) /* DIF */
error = BLK_STS_PROTECTION;
break;
case NOT_READY:
/* If the device is in the process of becoming
* ready, or has a temporary blockage, retry.
*/
if (sshdr.asc == 0x04) {
switch (sshdr.ascq) {
case 0x01: /* becoming ready */
case 0x04: /* format in progress */
case 0x05: /* rebuild in progress */
case 0x06: /* recalculation in progress */
case 0x07: /* operation in progress */
case 0x08: /* Long write in progress */
case 0x09: /* self test in progress */
case 0x14: /* space allocation in progress */
case 0x1a: /* start stop unit in progress */
case 0x1b: /* sanitize in progress */
case 0x1d: /* configuration in progress */
case 0x24: /* depopulation in progress */
action = ACTION_DELAYED_RETRY;
break;
default:
action = ACTION_FAIL;
break;
}
} else
action = ACTION_FAIL;
break;
case VOLUME_OVERFLOW:
/* See SSC3rXX or current. */
action = ACTION_FAIL;
break;
default:
action = ACTION_FAIL;
break;
}
} else
action = ACTION_FAIL;
if (action != ACTION_FAIL &&
time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
action = ACTION_FAIL;
switch (action) {
case ACTION_FAIL:
/* Give up and fail the remainder of the request */
if (!(req->rq_flags & RQF_QUIET)) {
static DEFINE_RATELIMIT_STATE(_rs,
DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
if (unlikely(scsi_logging_level))
level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
SCSI_LOG_MLCOMPLETE_BITS);
/*
* if logging is enabled the failure will be printed
* in scsi_log_completion(), so avoid duplicate messages
*/
if (!level && __ratelimit(&_rs)) {
scsi_print_result(cmd, NULL, FAILED);
if (driver_byte(result) & DRIVER_SENSE)
scsi_print_sense(cmd);
scsi_print_command(cmd);
}
}
if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
return;
/*FALLTHRU*/
case ACTION_REPREP:
requeue:
/* Unprep the request and put it back at the head of the queue.
* A new command will be prepared and issued.
*/
if (q->mq_ops) {
scsi_mq_requeue_cmd(cmd);
} else {
scsi_release_buffers(cmd);
scsi_requeue_command(q, cmd);
}
break;
case ACTION_RETRY:
/* Retry the same command immediately */
__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
break;
case ACTION_DELAYED_RETRY:
/* Retry the same command after a delay */
__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
break;
}
}
static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
{
int count;
/*
* If sg table allocation fails, requeue request later.
*/
if (unlikely(sg_alloc_table_chained(&sdb->table,
blk_rq_nr_phys_segments(req), sdb->table.sgl)))
return BLKPREP_DEFER;
/*
* Next, walk the list, and fill in the addresses and sizes of
* each segment.
*/
count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
BUG_ON(count > sdb->table.nents);
sdb->table.nents = count;
sdb->length = blk_rq_payload_bytes(req);
return BLKPREP_OK;
}
/*
* Function: scsi_init_io()
*
* Purpose: SCSI I/O initialize function.
*
* Arguments: cmd - Command descriptor we wish to initialize
*
* Returns: 0 on success
* BLKPREP_DEFER if the failure is retryable
* BLKPREP_KILL if the failure is fatal
*/
int scsi_init_io(struct scsi_cmnd *cmd)
{
struct scsi_device *sdev = cmd->device;
struct request *rq = cmd->request;
bool is_mq = (rq->mq_ctx != NULL);
int error = BLKPREP_KILL;
if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
goto err_exit;
error = scsi_init_sgtable(rq, &cmd->sdb);
if (error)
goto err_exit;
if (blk_bidi_rq(rq)) {
if (!rq->q->mq_ops) {
struct scsi_data_buffer *bidi_sdb =
kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
if (!bidi_sdb) {
error = BLKPREP_DEFER;
goto err_exit;
}
rq->next_rq->special = bidi_sdb;
}
error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
if (error)
goto err_exit;
}
if (blk_integrity_rq(rq)) {
struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
int ivecs, count;
if (prot_sdb == NULL) {
/*
* This can happen if someone (e.g. multipath)
* queues a command to a device on an adapter
* that does not support DIX.
*/
WARN_ON_ONCE(1);
error = BLKPREP_KILL;
goto err_exit;
}
ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
prot_sdb->table.sgl)) {
error = BLKPREP_DEFER;
goto err_exit;
}
count = blk_rq_map_integrity_sg(rq->q, rq->bio,
prot_sdb->table.sgl);
BUG_ON(unlikely(count > ivecs));
BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
cmd->prot_sdb = prot_sdb;
cmd->prot_sdb->table.nents = count;
}
return BLKPREP_OK;
err_exit:
if (is_mq) {
scsi_mq_free_sgtables(cmd);
} else {
scsi_release_buffers(cmd);
cmd->request->special = NULL;
scsi_put_command(cmd);
put_device(&sdev->sdev_gendev);
}
return error;
}
EXPORT_SYMBOL(scsi_init_io);
/**
* scsi_initialize_rq - initialize struct scsi_cmnd partially
* @rq: Request associated with the SCSI command to be initialized.
*
* This function initializes the members of struct scsi_cmnd that must be
* initialized before request processing starts and that won't be
* reinitialized if a SCSI command is requeued.
*
* Called from inside blk_get_request() for pass-through requests and from
* inside scsi_init_command() for filesystem requests.
*/
static void scsi_initialize_rq(struct request *rq)
{
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
scsi_req_init(&cmd->req);
init_rcu_head(&cmd->rcu);
cmd->jiffies_at_alloc = jiffies;
cmd->retries = 0;
}
/* Add a command to the list used by the aacraid and dpt_i2o drivers */
void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
{
struct scsi_device *sdev = cmd->device;
struct Scsi_Host *shost = sdev->host;
unsigned long flags;
if (shost->use_cmd_list) {
spin_lock_irqsave(&sdev->list_lock, flags);
list_add_tail(&cmd->list, &sdev->cmd_list);
spin_unlock_irqrestore(&sdev->list_lock, flags);
}
}
/* Remove a command from the list used by the aacraid and dpt_i2o drivers */
void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
{
struct scsi_device *sdev = cmd->device;
struct Scsi_Host *shost = sdev->host;
unsigned long flags;
if (shost->use_cmd_list) {
spin_lock_irqsave(&sdev->list_lock, flags);
BUG_ON(list_empty(&cmd->list));
list_del_init(&cmd->list);
spin_unlock_irqrestore(&sdev->list_lock, flags);
}
}
/* Called after a request has been started. */
void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
{
void *buf = cmd->sense_buffer;
void *prot = cmd->prot_sdb;
struct request *rq = blk_mq_rq_from_pdu(cmd);
unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
unsigned long jiffies_at_alloc;
int retries;
if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
flags |= SCMD_INITIALIZED;
scsi_initialize_rq(rq);
}
jiffies_at_alloc = cmd->jiffies_at_alloc;
retries = cmd->retries;
/* zero out the cmd, except for the embedded scsi_request */
memset((char *)cmd + sizeof(cmd->req), 0,
sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
cmd->device = dev;
cmd->sense_buffer = buf;
cmd->prot_sdb = prot;
cmd->flags = flags;
INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
cmd->jiffies_at_alloc = jiffies_at_alloc;
cmd->retries = retries;
scsi_add_cmd_to_list(cmd);
}
static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
{
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
/*
* Passthrough requests may transfer data, in which case they must
* a bio attached to them. Or they might contain a SCSI command
* that does not transfer data, in which case they may optionally
* submit a request without an attached bio.
*/
if (req->bio) {
int ret = scsi_init_io(cmd);
if (unlikely(ret))
return ret;
} else {
BUG_ON(blk_rq_bytes(req));
memset(&cmd->sdb, 0, sizeof(cmd->sdb));
}
cmd->cmd_len = scsi_req(req)->cmd_len;
cmd->cmnd = scsi_req(req)->cmd;
cmd->transfersize = blk_rq_bytes(req);
cmd->allowed = scsi_req(req)->retries;
return BLKPREP_OK;
}
/*
* Setup a normal block command. These are simple request from filesystems
* that still need to be translated to SCSI CDBs from the ULD.
*/
static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
{
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
int ret = sdev->handler->prep_fn(sdev, req);
if (ret != BLKPREP_OK)
return ret;
}
cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
memset(cmd->cmnd, 0, BLK_MAX_CDB);
return scsi_cmd_to_driver(cmd)->init_command(cmd);
}
static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
{
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
if (!blk_rq_bytes(req))
cmd->sc_data_direction = DMA_NONE;
else if (rq_data_dir(req) == WRITE)
cmd->sc_data_direction = DMA_TO_DEVICE;
else
cmd->sc_data_direction = DMA_FROM_DEVICE;
if (blk_rq_is_scsi(req))
return scsi_setup_scsi_cmnd(sdev, req);
else
return scsi_setup_fs_cmnd(sdev, req);
}
static int
scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
{
int ret = BLKPREP_OK;
/*
* If the device is not in running state we will reject some
* or all commands.
*/
if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
switch (sdev->sdev_state) {
case SDEV_OFFLINE:
case SDEV_TRANSPORT_OFFLINE:
/*
* If the device is offline we refuse to process any
* commands. The device must be brought online
* before trying any recovery commands.
*/
sdev_printk(KERN_ERR, sdev,
"rejecting I/O to offline device\n");
ret = BLKPREP_KILL;
break;
case SDEV_DEL:
/*
* If the device is fully deleted, we refuse to
* process any commands as well.
*/
sdev_printk(KERN_ERR, sdev,
"rejecting I/O to dead device\n");
ret = BLKPREP_KILL;
break;
case SDEV_BLOCK:
case SDEV_CREATED_BLOCK:
ret = BLKPREP_DEFER;
break;
case SDEV_QUIESCE:
/*
* If the devices is blocked we defer normal commands.
*/
if (req && !(req->rq_flags & RQF_PREEMPT))
ret = BLKPREP_DEFER;
break;
default:
/*
* For any other not fully online state we only allow
* special commands. In particular any user initiated
* command is not allowed.
*/
if (req && !(req->rq_flags & RQF_PREEMPT))
ret = BLKPREP_KILL;
break;
}
}
return ret;
}
static int
scsi_prep_return(struct request_queue *q, struct request *req, int ret)
{
struct scsi_device *sdev = q->queuedata;
switch (ret) {
case BLKPREP_KILL:
case BLKPREP_INVALID:
scsi_req(req)->result = DID_NO_CONNECT << 16;
/* release the command and kill it */
if (req->special) {
struct scsi_cmnd *cmd = req->special;
scsi_release_buffers(cmd);
scsi_put_command(cmd);
put_device(&sdev->sdev_gendev);
req->special = NULL;
}
break;
case BLKPREP_DEFER:
/*
* If we defer, the blk_peek_request() returns NULL, but the
* queue must be restarted, so we schedule a callback to happen
* shortly.
*/
if (atomic_read(&sdev->device_busy) == 0)
blk_delay_queue(q, SCSI_QUEUE_DELAY);
break;
default:
req->rq_flags |= RQF_DONTPREP;
}
return ret;
}
static int scsi_prep_fn(struct request_queue *q, struct request *req)
{
struct scsi_device *sdev = q->queuedata;
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
int ret;
ret = scsi_prep_state_check(sdev, req);
if (ret != BLKPREP_OK)
goto out;
if (!req->special) {
/* Bail if we can't get a reference to the device */
if (unlikely(!get_device(&sdev->sdev_gendev))) {
ret = BLKPREP_DEFER;
goto out;
}
scsi_init_command(sdev, cmd);
req->special = cmd;
}
cmd->tag = req->tag;
cmd->request = req;
cmd->prot_op = SCSI_PROT_NORMAL;
ret = scsi_setup_cmnd(sdev, req);
out:
return scsi_prep_return(q, req, ret);
}
static void scsi_unprep_fn(struct request_queue *q, struct request *req)
{
scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
}
/*
* scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
* return 0.
*
* Called with the queue_lock held.
*/
static inline int scsi_dev_queue_ready(struct request_queue *q,
struct scsi_device *sdev)
{
unsigned int busy;
busy = atomic_inc_return(&sdev->device_busy) - 1;
if (atomic_read(&sdev->device_blocked)) {
if (busy)
goto out_dec;
/*
* unblock after device_blocked iterates to zero
*/
if (atomic_dec_return(&sdev->device_blocked) > 0) {
/*
* For the MQ case we take care of this in the caller.
*/
if (!q->mq_ops)
blk_delay_queue(q, SCSI_QUEUE_DELAY);
goto out_dec;
}
SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
"unblocking device at zero depth\n"));
}
if (busy >= sdev->queue_depth)
goto out_dec;
return 1;
out_dec:
atomic_dec(&sdev->device_busy);
return 0;
}
/*
* scsi_target_queue_ready: checks if there we can send commands to target
* @sdev: scsi device on starget to check.
*/
static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
struct scsi_device *sdev)
{
struct scsi_target *starget = scsi_target(sdev);
unsigned int busy;
if (starget->single_lun) {
spin_lock_irq(shost->host_lock);
if (starget->starget_sdev_user &&
starget->starget_sdev_user != sdev) {
spin_unlock_irq(shost->host_lock);
return 0;
}
starget->starget_sdev_user = sdev;
spin_unlock_irq(shost->host_lock);
}
if (starget->can_queue <= 0)
return 1;
busy = atomic_inc_return(&starget->target_busy) - 1;
if (atomic_read(&starget->target_blocked) > 0) {
if (busy)
goto starved;
/*
* unblock after target_blocked iterates to zero
*/
if (atomic_dec_return(&starget->target_blocked) > 0)
goto out_dec;
SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
"unblocking target at zero depth\n"));
}
if (busy >= starget->can_queue)
goto starved;
return 1;
starved:
spin_lock_irq(shost->host_lock);
list_move_tail(&sdev->starved_entry, &shost->starved_list);
spin_unlock_irq(shost->host_lock);
out_dec:
if (starget->can_queue > 0)
atomic_dec(&starget->target_busy);
return 0;
}
/*
* scsi_host_queue_ready: if we can send requests to shost, return 1 else
* return 0. We must end up running the queue again whenever 0 is
* returned, else IO can hang.
*/
static inline int scsi_host_queue_ready(struct request_queue *q,
struct Scsi_Host *shost,
struct scsi_device *sdev)
{
unsigned int busy;
if (scsi_host_in_recovery(shost))
return 0;
busy = atomic_inc_return(&shost->host_busy) - 1;
if (atomic_read(&shost->host_blocked) > 0) {
if (busy)
goto starved;
/*
* unblock after host_blocked iterates to zero
*/
if (atomic_dec_return(&shost->host_blocked) > 0)
goto out_dec;
SCSI_LOG_MLQUEUE(3,
shost_printk(KERN_INFO, shost,
"unblocking host at zero depth\n"));
}
if (shost->can_queue > 0 && busy >= shost->can_queue)
goto starved;
if (shost->host_self_blocked)
goto starved;
/* We're OK to process the command, so we can't be starved */
if (!list_empty(&sdev->starved_entry)) {
spin_lock_irq(shost->host_lock);
if (!list_empty(&sdev->starved_entry))
list_del_init(&sdev->starved_entry);
spin_unlock_irq(shost->host_lock);
}
return 1;
starved:
spin_lock_irq(shost->host_lock);
if (list_empty(&sdev->starved_entry))
list_add_tail(&sdev->starved_entry, &shost->starved_list);
spin_unlock_irq(shost->host_lock);
out_dec:
scsi_dec_host_busy(shost);
return 0;
}
/*
* Busy state exporting function for request stacking drivers.
*
* For efficiency, no lock is taken to check the busy state of
* shost/starget/sdev, since the returned value is not guaranteed and
* may be changed after request stacking drivers call the function,
* regardless of taking lock or not.
*
* When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
* needs to return 'not busy'. Otherwise, request stacking drivers
* may hold requests forever.
*/
static int scsi_lld_busy(struct request_queue *q)
{
struct scsi_device *sdev = q->queuedata;
struct Scsi_Host *shost;
if (blk_queue_dying(q))
return 0;
shost = sdev->host;
/*
* Ignore host/starget busy state.
* Since block layer does not have a concept of fairness across
* multiple queues, congestion of host/starget needs to be handled
* in SCSI layer.
*/
if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
return 1;
return 0;
}
/*
* Kill a request for a dead device
*/
static void scsi_kill_request(struct request *req, struct request_queue *q)
{
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
struct scsi_device *sdev;
struct scsi_target *starget;
struct Scsi_Host *shost;
blk_start_request(req);
scmd_printk(KERN_INFO, cmd, "killing request\n");
sdev = cmd->device;
starget = scsi_target(sdev);
shost = sdev->host;
scsi_init_cmd_errh(cmd);
cmd->result = DID_NO_CONNECT << 16;
atomic_inc(&cmd->device->iorequest_cnt);
/*
* SCSI request completion path will do scsi_device_unbusy(),
* bump busy counts. To bump the counters, we need to dance
* with the locks as normal issue path does.
*/
atomic_inc(&sdev->device_busy);
atomic_inc(&shost->host_busy);
if (starget->can_queue > 0)
atomic_inc(&starget->target_busy);
blk_complete_request(req);
}
static void scsi_softirq_done(struct request *rq)
{
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
int disposition;
INIT_LIST_HEAD(&cmd->eh_entry);
atomic_inc(&cmd->device->iodone_cnt);
if (cmd->result)
atomic_inc(&cmd->device->ioerr_cnt);
disposition = scsi_decide_disposition(cmd);
if (disposition != SUCCESS &&
time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
sdev_printk(KERN_ERR, cmd->device,
"timing out command, waited %lus\n",
wait_for/HZ);
disposition = SUCCESS;
}
scsi_log_completion(cmd, disposition);
switch (disposition) {
case SUCCESS:
scsi_finish_command(cmd);
break;
case NEEDS_RETRY:
scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
break;
case ADD_TO_MLQUEUE:
scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
break;
default:
scsi_eh_scmd_add(cmd);
break;
}
}
/**
* scsi_dispatch_command - Dispatch a command to the low-level driver.
* @cmd: command block we are dispatching.
*
* Return: nonzero return request was rejected and device's queue needs to be
* plugged.
*/
static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
{
struct Scsi_Host *host = cmd->device->host;
int rtn = 0;
atomic_inc(&cmd->device->iorequest_cnt);
/* check if the device is still usable */
if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
/* in SDEV_DEL we error all commands. DID_NO_CONNECT
* returns an immediate error upwards, and signals
* that the device is no longer present */
cmd->result = DID_NO_CONNECT << 16;
goto done;
}
/* Check to see if the scsi lld made this device blocked. */
if (unlikely(scsi_device_blocked(cmd->device))) {
/*
* in blocked state, the command is just put back on
* the device queue. The suspend state has already
* blocked the queue so future requests should not
* occur until the device transitions out of the
* suspend state.
*/
SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
"queuecommand : device blocked\n"));
return SCSI_MLQUEUE_DEVICE_BUSY;
}
/* Store the LUN value in cmnd, if needed. */
if (cmd->device->lun_in_cdb)
cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
(cmd->device->lun << 5 & 0xe0);
scsi_log_send(cmd);
/*
* Before we queue this command, check if the command
* length exceeds what the host adapter can handle.
*/
if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
"queuecommand : command too long. "
"cdb_size=%d host->max_cmd_len=%d\n",
cmd->cmd_len, cmd->device->host->max_cmd_len));
cmd->result = (DID_ABORT << 16);
goto done;
}
if (unlikely(host->shost_state == SHOST_DEL)) {
cmd->result = (DID_NO_CONNECT << 16);
goto done;
}
trace_scsi_dispatch_cmd_start(cmd);
rtn = host->hostt->queuecommand(host, cmd);
if (rtn) {
trace_scsi_dispatch_cmd_error(cmd, rtn);
if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
rtn != SCSI_MLQUEUE_TARGET_BUSY)
rtn = SCSI_MLQUEUE_HOST_BUSY;
SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
"queuecommand : request rejected\n"));
}
return rtn;
done:
cmd->scsi_done(cmd);
return 0;
}
/**
* scsi_done - Invoke completion on finished SCSI command.
* @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
* ownership back to SCSI Core -- i.e. the LLDD has finished with it.
*
* Description: This function is the mid-level's (SCSI Core) interrupt routine,
* which regains ownership of the SCSI command (de facto) from a LLDD, and
* calls blk_complete_request() for further processing.
*
* This function is interrupt context safe.
*/
static void scsi_done(struct scsi_cmnd *cmd)
{
trace_scsi_dispatch_cmd_done(cmd);
blk_complete_request(cmd->request);
}
/*
* Function: scsi_request_fn()
*
* Purpose: Main strategy routine for SCSI.
*
* Arguments: q - Pointer to actual queue.
*
* Returns: Nothing
*
* Lock status: request queue lock assumed to be held when called.
*
* Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
* protection for ZBC disks.
*/
static void scsi_request_fn(struct request_queue *q)
__releases(q->queue_lock)
__acquires(q->queue_lock)
{
struct scsi_device *sdev = q->queuedata;
struct Scsi_Host *shost;
struct scsi_cmnd *cmd;
struct request *req;
/*
* To start with, we keep looping until the queue is empty, or until
* the host is no longer able to accept any more requests.
*/
shost = sdev->host;
for (;;) {
int rtn;
/*
* get next queueable request. We do this early to make sure
* that the request is fully prepared even if we cannot
* accept it.
*/
req = blk_peek_request(q);
if (!req)
break;
if (unlikely(!scsi_device_online(sdev))) {
sdev_printk(KERN_ERR, sdev,
"rejecting I/O to offline device\n");
scsi_kill_request(req, q);
continue;
}
if (!scsi_dev_queue_ready(q, sdev))
break;
/*
* Remove the request from the request list.
*/
if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
blk_start_request(req);
spin_unlock_irq(q->queue_lock);
cmd = blk_mq_rq_to_pdu(req);
if (cmd != req->special) {
printk(KERN_CRIT "impossible request in %s.\n"
"please mail a stack trace to "
"linux-scsi@vger.kernel.org\n",
__func__);
blk_dump_rq_flags(req, "foo");
BUG();
}
/*
* We hit this when the driver is using a host wide
* tag map. For device level tag maps the queue_depth check
* in the device ready fn would prevent us from trying
* to allocate a tag. Since the map is a shared host resource
* we add the dev to the starved list so it eventually gets
* a run when a tag is freed.
*/
if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
spin_lock_irq(shost->host_lock);
if (list_empty(&sdev->starved_entry))
list_add_tail(&sdev->starved_entry,
&shost->starved_list);
spin_unlock_irq(shost->host_lock);
goto not_ready;
}
if (!scsi_target_queue_ready(shost, sdev))
goto not_ready;
if (!scsi_host_queue_ready(q, shost, sdev))
goto host_not_ready;
if (sdev->simple_tags)
cmd->flags |= SCMD_TAGGED;
else
cmd->flags &= ~SCMD_TAGGED;
/*
* Finally, initialize any error handling parameters, and set up
* the timers for timeouts.
*/
scsi_init_cmd_errh(cmd);
/*
* Dispatch the command to the low-level driver.
*/
cmd->scsi_done = scsi_done;
rtn = scsi_dispatch_cmd(cmd);
if (rtn) {
scsi_queue_insert(cmd, rtn);
spin_lock_irq(q->queue_lock);
goto out_delay;
}
spin_lock_irq(q->queue_lock);
}
return;
host_not_ready:
if (scsi_target(sdev)->can_queue > 0)
atomic_dec(&scsi_target(sdev)->target_busy);
not_ready:
/*
* lock q, handle tag, requeue req, and decrement device_busy. We
* must return with queue_lock held.
*
* Decrementing device_busy without checking it is OK, as all such
* cases (host limits or settings) should run the queue at some
* later time.
*/
spin_lock_irq(q->queue_lock);
blk_requeue_request(q, req);
atomic_dec(&sdev->device_busy);
out_delay:
if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
blk_delay_queue(q, SCSI_QUEUE_DELAY);
}
static inline blk_status_t prep_to_mq(int ret)
{
switch (ret) {
case BLKPREP_OK:
return BLK_STS_OK;
case BLKPREP_DEFER:
return BLK_STS_RESOURCE;
default:
return BLK_STS_IOERR;
}
}
/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
{
return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
sizeof(struct scatterlist);
}
static int scsi_mq_prep_fn(struct request *req)
{
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
struct scsi_device *sdev = req->q->queuedata;
struct Scsi_Host *shost = sdev->host;
struct scatterlist *sg;
scsi_init_command(sdev, cmd);
req->special = cmd;
cmd->request = req;
cmd->tag = req->tag;
cmd->prot_op = SCSI_PROT_NORMAL;
sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
cmd->sdb.table.sgl = sg;
if (scsi_host_get_prot(shost)) {
memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
cmd->prot_sdb->table.sgl =
(struct scatterlist *)(cmd->prot_sdb + 1);
}
if (blk_bidi_rq(req)) {
struct request *next_rq = req->next_rq;
struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
bidi_sdb->table.sgl =
(struct scatterlist *)(bidi_sdb + 1);
next_rq->special = bidi_sdb;
}
blk_mq_start_request(req);
return scsi_setup_cmnd(sdev, req);
}
static void scsi_mq_done(struct scsi_cmnd *cmd)
{
trace_scsi_dispatch_cmd_done(cmd);
blk_mq_complete_request(cmd->request);
}
static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
struct scsi_device *sdev = q->queuedata;
atomic_dec(&sdev->device_busy);
put_device(&sdev->sdev_gendev);
}
static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
{
struct request_queue *q = hctx->queue;
struct scsi_device *sdev = q->queuedata;
if (!get_device(&sdev->sdev_gendev))
goto out;
if (!scsi_dev_queue_ready(q, sdev))
goto out_put_device;
return true;
out_put_device:
put_device(&sdev->sdev_gendev);
out:
if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
return false;
}
static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct request *req = bd->rq;
struct request_queue *q = req->q;
struct scsi_device *sdev = q->queuedata;
struct Scsi_Host *shost = sdev->host;
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
blk_status_t ret;
int reason;
ret = prep_to_mq(scsi_prep_state_check(sdev, req));
if (ret != BLK_STS_OK)
goto out_put_budget;
ret = BLK_STS_RESOURCE;
if (!scsi_target_queue_ready(shost, sdev))
goto out_put_budget;
if (!scsi_host_queue_ready(q, shost, sdev))
goto out_dec_target_busy;
if (!(req->rq_flags & RQF_DONTPREP)) {
ret = prep_to_mq(scsi_mq_prep_fn(req));
if (ret != BLK_STS_OK)
goto out_dec_host_busy;
req->rq_flags |= RQF_DONTPREP;
} else {
blk_mq_start_request(req);
}
if (sdev->simple_tags)
cmd->flags |= SCMD_TAGGED;
else
cmd->flags &= ~SCMD_TAGGED;
scsi_init_cmd_errh(cmd);
cmd->scsi_done = scsi_mq_done;
reason = scsi_dispatch_cmd(cmd);
if (reason) {
scsi_set_blocked(cmd, reason);
ret = BLK_STS_RESOURCE;
goto out_dec_host_busy;
}
return BLK_STS_OK;
out_dec_host_busy:
scsi_dec_host_busy(shost);
out_dec_target_busy:
if (scsi_target(sdev)->can_queue > 0)
atomic_dec(&scsi_target(sdev)->target_busy);
out_put_budget:
scsi_mq_put_budget(hctx);
switch (ret) {
case BLK_STS_OK:
break;
case BLK_STS_RESOURCE:
if (atomic_read(&sdev->device_busy) ||
scsi_device_blocked(sdev))
ret = BLK_STS_DEV_RESOURCE;
break;
default:
/*
* Make sure to release all allocated ressources when
* we hit an error, as we will never see this command
* again.
*/
if (req->rq_flags & RQF_DONTPREP)
scsi_mq_uninit_cmd(cmd);
break;
}
return ret;
}
static enum blk_eh_timer_return scsi_timeout(struct request *req,
bool reserved)
{
if (reserved)
return BLK_EH_RESET_TIMER;
return scsi_times_out(req);
}
static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
unsigned int hctx_idx, unsigned int numa_node)
{
struct Scsi_Host *shost = set->driver_data;
const bool unchecked_isa_dma = shost->unchecked_isa_dma;
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
struct scatterlist *sg;
if (unchecked_isa_dma)
cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
GFP_KERNEL, numa_node);
if (!cmd->sense_buffer)
return -ENOMEM;
cmd->req.sense = cmd->sense_buffer;
if (scsi_host_get_prot(shost)) {
sg = (void *)cmd + sizeof(struct scsi_cmnd) +
shost->hostt->cmd_size;
cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
}
return 0;
}
static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
unsigned int hctx_idx)
{
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
cmd->sense_buffer);
}
static int scsi_map_queues(struct blk_mq_tag_set *set)
{
struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
if (shost->hostt->map_queues)
return shost->hostt->map_queues(shost);
return blk_mq_map_queues(set);
}
void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
{
struct device *dev = shost->dma_dev;
/*
* this limit is imposed by hardware restrictions
*/
blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
SG_MAX_SEGMENTS));
if (scsi_host_prot_dma(shost)) {
shost->sg_prot_tablesize =
min_not_zero(shost->sg_prot_tablesize,
(unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
}
blk_queue_max_hw_sectors(q, shost->max_sectors);
if (shost->unchecked_isa_dma)
blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
blk_queue_segment_boundary(q, shost->dma_boundary);
dma_set_seg_boundary(dev, shost->dma_boundary);
blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
if (!shost->use_clustering)
q->limits.cluster = 0;
/*
* Set a reasonable default alignment: The larger of 32-byte (dword),
* which is a common minimum for HBAs, and the minimum DMA alignment,
* which is set by the platform.
*
* Devices that require a bigger alignment can increase it later.
*/
blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
}
EXPORT_SYMBOL_GPL(__scsi_init_queue);
static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
gfp_t gfp)
{
struct Scsi_Host *shost = q->rq_alloc_data;
const bool unchecked_isa_dma = shost->unchecked_isa_dma;
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
memset(cmd, 0, sizeof(*cmd));
if (unchecked_isa_dma)
cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
NUMA_NO_NODE);
if (!cmd->sense_buffer)
goto fail;
cmd->req.sense = cmd->sense_buffer;
if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
if (!cmd->prot_sdb)
goto fail_free_sense;
}
return 0;
fail_free_sense:
scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
fail:
return -ENOMEM;
}
static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
{
struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
if (cmd->prot_sdb)
kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
cmd->sense_buffer);
}
struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
{
struct Scsi_Host *shost = sdev->host;
struct request_queue *q;
q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
if (!q)
return NULL;
q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
q->rq_alloc_data = shost;
q->request_fn = scsi_request_fn;
q->init_rq_fn = scsi_old_init_rq;
q->exit_rq_fn = scsi_old_exit_rq;
q->initialize_rq_fn = scsi_initialize_rq;
if (blk_init_allocated_queue(q) < 0) {
blk_cleanup_queue(q);
return NULL;
}
__scsi_init_queue(shost, q);
blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
blk_queue_prep_rq(q, scsi_prep_fn);
blk_queue_unprep_rq(q, scsi_unprep_fn);
blk_queue_softirq_done(q, scsi_softirq_done);
blk_queue_rq_timed_out(q, scsi_times_out);
blk_queue_lld_busy(q, scsi_lld_busy);
return q;
}
static const struct blk_mq_ops scsi_mq_ops = {
.get_budget = scsi_mq_get_budget,
.put_budget = scsi_mq_put_budget,
.queue_rq = scsi_queue_rq,
.complete = scsi_softirq_done,
.timeout = scsi_timeout,
#ifdef CONFIG_BLK_DEBUG_FS
.show_rq = scsi_show_rq,
#endif
.init_request = scsi_mq_init_request,
.exit_request = scsi_mq_exit_request,
.initialize_rq_fn = scsi_initialize_rq,
.map_queues = scsi_map_queues,
};
struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
{
sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
if (IS_ERR(sdev->request_queue))
return NULL;
sdev->request_queue->queuedata = sdev;
__scsi_init_queue(sdev->host, sdev->request_queue);
blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
return sdev->request_queue;
}
int scsi_mq_setup_tags(struct Scsi_Host *shost)
{
unsigned int cmd_size, sgl_size;
sgl_size = scsi_mq_sgl_size(shost);
cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
if (scsi_host_get_prot(shost))
cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
memset(&shost->tag_set, 0, sizeof(shost->tag_set));
shost->tag_set.ops = &scsi_mq_ops;
shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
shost->tag_set.queue_depth = shost->can_queue;
shost->tag_set.cmd_size = cmd_size;
shost->tag_set.numa_node = NUMA_NO_NODE;
shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
shost->tag_set.flags |=
BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
shost->tag_set.driver_data = shost;
return blk_mq_alloc_tag_set(&shost->tag_set);
}
void scsi_mq_destroy_tags(struct Scsi_Host *shost)
{
blk_mq_free_tag_set(&shost->tag_set);
}
/**
* scsi_device_from_queue - return sdev associated with a request_queue
* @q: The request queue to return the sdev from
*
* Return the sdev associated with a request queue or NULL if the
* request_queue does not reference a SCSI device.
*/
struct scsi_device *scsi_device_from_queue(struct request_queue *q)
{
struct scsi_device *sdev = NULL;
if (q->mq_ops) {
if (q->mq_ops == &scsi_mq_ops)
sdev = q->queuedata;
} else if (q->request_fn == scsi_request_fn)
sdev = q->queuedata;
if (!sdev || !get_device(&sdev->sdev_gendev))
sdev = NULL;
return sdev;
}
EXPORT_SYMBOL_GPL(scsi_device_from_queue);
/*
* Function: scsi_block_requests()
*
* Purpose: Utility function used by low-level drivers to prevent further
* commands from being queued to the device.
*
* Arguments: shost - Host in question
*
* Returns: Nothing
*
* Lock status: No locks are assumed held.
*
* Notes: There is no timer nor any other means by which the requests
* get unblocked other than the low-level driver calling
* scsi_unblock_requests().
*/
void scsi_block_requests(struct Scsi_Host *shost)
{
shost->host_self_blocked = 1;
}
EXPORT_SYMBOL(scsi_block_requests);
/*
* Function: scsi_unblock_requests()
*
* Purpose: Utility function used by low-level drivers to allow further
* commands from being queued to the device.
*
* Arguments: shost - Host in question
*
* Returns: Nothing
*
* Lock status: No locks are assumed held.
*
* Notes: There is no timer nor any other means by which the requests
* get unblocked other than the low-level driver calling
* scsi_unblock_requests().
*
* This is done as an API function so that changes to the
* internals of the scsi mid-layer won't require wholesale
* changes to drivers that use this feature.
*/
void scsi_unblock_requests(struct Scsi_Host *shost)
{
shost->host_self_blocked = 0;
scsi_run_host_queues(shost);
}
EXPORT_SYMBOL(scsi_unblock_requests);
int __init scsi_init_queue(void)
{
scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
sizeof(struct scsi_data_buffer),
0, 0, NULL);
if (!scsi_sdb_cache) {
printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
return -ENOMEM;
}
return 0;
}
void scsi_exit_queue(void)
{
kmem_cache_destroy(scsi_sense_cache);
kmem_cache_destroy(scsi_sense_isadma_cache);
kmem_cache_destroy(scsi_sdb_cache);
}
/**
* scsi_mode_select - issue a mode select
* @sdev: SCSI device to be queried
* @pf: Page format bit (1 == standard, 0 == vendor specific)
* @sp: Save page bit (0 == don't save, 1 == save)
* @modepage: mode page being requested
* @buffer: request buffer (may not be smaller than eight bytes)
* @len: length of request buffer.
* @timeout: command timeout
* @retries: number of retries before failing
* @data: returns a structure abstracting the mode header data
* @sshdr: place to put sense data (or NULL if no sense to be collected).
* must be SCSI_SENSE_BUFFERSIZE big.
*
* Returns zero if successful; negative error number or scsi
* status on error
*
*/
int
scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
unsigned char *buffer, int len, int timeout, int retries,
struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
{
unsigned char cmd[10];
unsigned char *real_buffer;
int ret;
memset(cmd, 0, sizeof(cmd));
cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
if (sdev->use_10_for_ms) {
if (len > 65535)
return -EINVAL;
real_buffer = kmalloc(8 + len, GFP_KERNEL);
if (!real_buffer)
return -ENOMEM;
memcpy(real_buffer + 8, buffer, len);
len += 8;
real_buffer[0] = 0;
real_buffer[1] = 0;
real_buffer[2] = data->medium_type;
real_buffer[3] = data->device_specific;
real_buffer[4] = data->longlba ? 0x01 : 0;
real_buffer[5] = 0;
real_buffer[6] = data->block_descriptor_length >> 8;
real_buffer[7] = data->block_descriptor_length;
cmd[0] = MODE_SELECT_10;
cmd[7] = len >> 8;
cmd[8] = len;
} else {
if (len > 255 || data->block_descriptor_length > 255 ||
data->longlba)
return -EINVAL;
real_buffer = kmalloc(4 + len, GFP_KERNEL);
if (!real_buffer)
return -ENOMEM;
memcpy(real_buffer + 4, buffer, len);
len += 4;
real_buffer[0] = 0;
real_buffer[1] = data->medium_type;
real_buffer[2] = data->device_specific;
real_buffer[3] = data->block_descriptor_length;
cmd[0] = MODE_SELECT;
cmd[4] = len;
}
ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
sshdr, timeout, retries, NULL);
kfree(real_buffer);
return ret;
}
EXPORT_SYMBOL_GPL(scsi_mode_select);
/**
* scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
* @sdev: SCSI device to be queried
* @dbd: set if mode sense will allow block descriptors to be returned
* @modepage: mode page being requested
* @buffer: request buffer (may not be smaller than eight bytes)
* @len: length of request buffer.
* @timeout: command timeout
* @retries: number of retries before failing
* @data: returns a structure abstracting the mode header data
* @sshdr: place to put sense data (or NULL if no sense to be collected).
* must be SCSI_SENSE_BUFFERSIZE big.
*
* Returns zero if unsuccessful, or the header offset (either 4
* or 8 depending on whether a six or ten byte command was
* issued) if successful.
*/
int
scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
unsigned char *buffer, int len, int timeout, int retries,
struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
{
unsigned char cmd[12];
int use_10_for_ms;
int header_length;
int result, retry_count = retries;
struct scsi_sense_hdr my_sshdr;
memset(data, 0, sizeof(*data));
memset(&cmd[0], 0, 12);
cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
cmd[2] = modepage;
/* caller might not be interested in sense, but we need it */
if (!sshdr)
sshdr = &my_sshdr;
retry:
use_10_for_ms = sdev->use_10_for_ms;
if (use_10_for_ms) {
if (len < 8)
len = 8;
cmd[0] = MODE_SENSE_10;
cmd[8] = len;
header_length = 8;
} else {
if (len < 4)
len = 4;
cmd[0] = MODE_SENSE;
cmd[4] = len;
header_length = 4;
}
memset(buffer, 0, len);
result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
sshdr, timeout, retries, NULL);
/* This code looks awful: what it's doing is making sure an
* ILLEGAL REQUEST sense return identifies the actual command
* byte as the problem. MODE_SENSE commands can return
* ILLEGAL REQUEST if the code page isn't supported */
if (use_10_for_ms && !scsi_status_is_good(result) &&
(driver_byte(result) & DRIVER_SENSE)) {
if (scsi_sense_valid(sshdr)) {
if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
(sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
/*
* Invalid command operation code
*/
sdev->use_10_for_ms = 0;
goto retry;
}
}
}
if(scsi_status_is_good(result)) {
if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
(modepage == 6 || modepage == 8))) {
/* Initio breakage? */
header_length = 0;
data->length = 13;
data->medium_type = 0;
data->device_specific = 0;
data->longlba = 0;
data->block_descriptor_length = 0;
} else if(use_10_for_ms) {
data->length = buffer[0]*256 + buffer[1] + 2;
data->medium_type = buffer[2];
data->device_specific = buffer[3];
data->longlba = buffer[4] & 0x01;
data->block_descriptor_length = buffer[6]*256
+ buffer[7];
} else {
data->length = buffer[0] + 1;
data->medium_type = buffer[1];
data->device_specific = buffer[2];
data->block_descriptor_length = buffer[3];
}
data->header_length = header_length;
} else if ((status_byte(result) == CHECK_CONDITION) &&
scsi_sense_valid(sshdr) &&
sshdr->sense_key == UNIT_ATTENTION && retry_count) {
retry_count--;
goto retry;
}
return result;
}
EXPORT_SYMBOL(scsi_mode_sense);
/**
* scsi_test_unit_ready - test if unit is ready
* @sdev: scsi device to change the state of.
* @timeout: command timeout
* @retries: number of retries before failing
* @sshdr: outpout pointer for decoded sense information.
*
* Returns zero if unsuccessful or an error if TUR failed. For
* removable media, UNIT_ATTENTION sets ->changed flag.
**/
int
scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
struct scsi_sense_hdr *sshdr)
{
char cmd[] = {
TEST_UNIT_READY, 0, 0, 0, 0, 0,
};
int result;
/* try to eat the UNIT_ATTENTION if there are enough retries */
do {
result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
timeout, 1, NULL);
if (sdev->removable && scsi_sense_valid(sshdr) &&
sshdr->sense_key == UNIT_ATTENTION)
sdev->changed = 1;
} while (scsi_sense_valid(sshdr) &&
sshdr->sense_key == UNIT_ATTENTION && --retries);
return result;
}
EXPORT_SYMBOL(scsi_test_unit_ready);
/**
* scsi_device_set_state - Take the given device through the device state model.
* @sdev: scsi device to change the state of.
* @state: state to change to.
*
* Returns zero if successful or an error if the requested
* transition is illegal.
*/
int
scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
{
enum scsi_device_state oldstate = sdev->sdev_state;
if (state == oldstate)
return 0;
switch (state) {
case SDEV_CREATED:
switch (oldstate) {
case SDEV_CREATED_BLOCK:
break;
default:
goto illegal;
}
break;
case SDEV_RUNNING:
switch (oldstate) {
case SDEV_CREATED:
case SDEV_OFFLINE:
case SDEV_TRANSPORT_OFFLINE:
case SDEV_QUIESCE:
case SDEV_BLOCK:
break;
default:
goto illegal;
}
break;
case SDEV_QUIESCE:
switch (oldstate) {
case SDEV_RUNNING:
case SDEV_OFFLINE:
case SDEV_TRANSPORT_OFFLINE:
break;
default:
goto illegal;
}
break;
case SDEV_OFFLINE:
case SDEV_TRANSPORT_OFFLINE:
switch (oldstate) {
case SDEV_CREATED:
case SDEV_RUNNING:
case SDEV_QUIESCE:
case SDEV_BLOCK:
break;
default:
goto illegal;
}
break;
case SDEV_BLOCK:
switch (oldstate) {
case SDEV_RUNNING:
case SDEV_CREATED_BLOCK:
break;
default:
goto illegal;
}
break;
case SDEV_CREATED_BLOCK:
switch (oldstate) {
case SDEV_CREATED:
break;
default:
goto illegal;
}
break;
case SDEV_CANCEL:
switch (oldstate) {
case SDEV_CREATED:
case SDEV_RUNNING:
case SDEV_QUIESCE:
case SDEV_OFFLINE:
case SDEV_TRANSPORT_OFFLINE:
break;
default:
goto illegal;
}
break;
case SDEV_DEL:
switch (oldstate) {
case SDEV_CREATED:
case SDEV_RUNNING:
case SDEV_OFFLINE:
case SDEV_TRANSPORT_OFFLINE:
case SDEV_CANCEL:
case SDEV_BLOCK:
case SDEV_CREATED_BLOCK:
break;
default:
goto illegal;
}
break;
}
sdev->sdev_state = state;
return 0;
illegal:
SCSI_LOG_ERROR_RECOVERY(1,
sdev_printk(KERN_ERR, sdev,
"Illegal state transition %s->%s",
scsi_device_state_name(oldstate),
scsi_device_state_name(state))
);
return -EINVAL;
}
EXPORT_SYMBOL(scsi_device_set_state);
/**
* sdev_evt_emit - emit a single SCSI device uevent
* @sdev: associated SCSI device
* @evt: event to emit
*
* Send a single uevent (scsi_event) to the associated scsi_device.
*/
static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
{
int idx = 0;
char *envp[3];
switch (evt->evt_type) {
case SDEV_EVT_MEDIA_CHANGE:
envp[idx++] = "SDEV_MEDIA_CHANGE=1";
break;
case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
scsi_rescan_device(&sdev->sdev_gendev);
envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
break;
case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
break;
case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
break;
case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
break;
case SDEV_EVT_LUN_CHANGE_REPORTED:
envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
break;
case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
break;
case SDEV_EVT_POWER_ON_RESET_OCCURRED:
envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
break;
default:
/* do nothing */
break;
}
envp[idx++] = NULL;
kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
}
/**
* sdev_evt_thread - send a uevent for each scsi event
* @work: work struct for scsi_device
*
* Dispatch queued events to their associated scsi_device kobjects
* as uevents.
*/
void scsi_evt_thread(struct work_struct *work)
{
struct scsi_device *sdev;
enum scsi_device_event evt_type;
LIST_HEAD(event_list);
sdev = container_of(work, struct scsi_device, event_work);
for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
if (test_and_clear_bit(evt_type, sdev->pending_events))
sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
while (1) {
struct scsi_event *evt;
struct list_head *this, *tmp;
unsigned long flags;
spin_lock_irqsave(&sdev->list_lock, flags);
list_splice_init(&sdev->event_list, &event_list);
spin_unlock_irqrestore(&sdev->list_lock, flags);
if (list_empty(&event_list))
break;
list_for_each_safe(this, tmp, &event_list) {
evt = list_entry(this, struct scsi_event, node);
list_del(&evt->node);
scsi_evt_emit(sdev, evt);
kfree(evt);
}
}
}
/**
* sdev_evt_send - send asserted event to uevent thread
* @sdev: scsi_device event occurred on
* @evt: event to send
*
* Assert scsi device event asynchronously.
*/
void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
{
unsigned long flags;
#if 0
/* FIXME: currently this check eliminates all media change events
* for polled devices. Need to update to discriminate between AN
* and polled events */
if (!test_bit(evt->evt_type, sdev->supported_events)) {
kfree(evt);
return;
}
#endif
spin_lock_irqsave(&sdev->list_lock, flags);
list_add_tail(&evt->node, &sdev->event_list);
schedule_work(&sdev->event_work);
spin_unlock_irqrestore(&sdev->list_lock, flags);
}
EXPORT_SYMBOL_GPL(sdev_evt_send);
/**
* sdev_evt_alloc - allocate a new scsi event
* @evt_type: type of event to allocate
* @gfpflags: GFP flags for allocation
*
* Allocates and returns a new scsi_event.
*/
struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
gfp_t gfpflags)
{
struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
if (!evt)
return NULL;
evt->evt_type = evt_type;
INIT_LIST_HEAD(&evt->node);
/* evt_type-specific initialization, if any */
switch (evt_type) {
case SDEV_EVT_MEDIA_CHANGE:
case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
case SDEV_EVT_LUN_CHANGE_REPORTED:
case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
case SDEV_EVT_POWER_ON_RESET_OCCURRED:
default:
/* do nothing */
break;
}
return evt;
}
EXPORT_SYMBOL_GPL(sdev_evt_alloc);
/**
* sdev_evt_send_simple - send asserted event to uevent thread
* @sdev: scsi_device event occurred on
* @evt_type: type of event to send
* @gfpflags: GFP flags for allocation
*
* Assert scsi device event asynchronously, given an event type.
*/
void sdev_evt_send_simple(struct scsi_device *sdev,
enum scsi_device_event evt_type, gfp_t gfpflags)
{
struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
if (!evt) {
sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
evt_type);
return;
}
sdev_evt_send(sdev, evt);
}
EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
/**
* scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
* @sdev: SCSI device to count the number of scsi_request_fn() callers for.
*/
static int scsi_request_fn_active(struct scsi_device *sdev)
{
struct request_queue *q = sdev->request_queue;
int request_fn_active;
WARN_ON_ONCE(sdev->host->use_blk_mq);
spin_lock_irq(q->queue_lock);
request_fn_active = q->request_fn_active;
spin_unlock_irq(q->queue_lock);
return request_fn_active;
}
/**
* scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
* @sdev: SCSI device pointer.
*
* Wait until the ongoing shost->hostt->queuecommand() calls that are
* invoked from scsi_request_fn() have finished.
*/
static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
{
WARN_ON_ONCE(sdev->host->use_blk_mq);
while (scsi_request_fn_active(sdev))
msleep(20);
}
/**
* scsi_device_quiesce - Block user issued commands.
* @sdev: scsi device to quiesce.
*
* This works by trying to transition to the SDEV_QUIESCE state
* (which must be a legal transition). When the device is in this
* state, only special requests will be accepted, all others will
* be deferred. Since special requests may also be requeued requests,
* a successful return doesn't guarantee the device will be
* totally quiescent.
*
* Must be called with user context, may sleep.
*
* Returns zero if unsuccessful or an error if not.
*/
int
scsi_device_quiesce(struct scsi_device *sdev)
{
struct request_queue *q = sdev->request_queue;
int err;
/*
* It is allowed to call scsi_device_quiesce() multiple times from
* the same context but concurrent scsi_device_quiesce() calls are
* not allowed.
*/
WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
blk_set_preempt_only(q);
blk_mq_freeze_queue(q);
/*
* Ensure that the effect of blk_set_preempt_only() will be visible
* for percpu_ref_tryget() callers that occur after the queue
* unfreeze even if the queue was already frozen before this function
* was called. See also https://lwn.net/Articles/573497/.
*/
synchronize_rcu();
blk_mq_unfreeze_queue(q);
mutex_lock(&sdev->state_mutex);
err = scsi_device_set_state(sdev, SDEV_QUIESCE);
if (err == 0)
sdev->quiesced_by = current;
else
blk_clear_preempt_only(q);
mutex_unlock(&sdev->state_mutex);
return err;
}
EXPORT_SYMBOL(scsi_device_quiesce);
/**
* scsi_device_resume - Restart user issued commands to a quiesced device.
* @sdev: scsi device to resume.
*
* Moves the device from quiesced back to running and restarts the
* queues.
*
* Must be called with user context, may sleep.
*/
void scsi_device_resume(struct scsi_device *sdev)
{
/* check if the device state was mutated prior to resume, and if
* so assume the state is being managed elsewhere (for example
* device deleted during suspend)
*/
mutex_lock(&sdev->state_mutex);
WARN_ON_ONCE(!sdev->quiesced_by);
sdev->quiesced_by = NULL;
blk_clear_preempt_only(sdev->request_queue);
if (sdev->sdev_state == SDEV_QUIESCE)
scsi_device_set_state(sdev, SDEV_RUNNING);
mutex_unlock(&sdev->state_mutex);
}
EXPORT_SYMBOL(scsi_device_resume);
static void
device_quiesce_fn(struct scsi_device *sdev, void *data)
{
scsi_device_quiesce(sdev);
}
void
scsi_target_quiesce(struct scsi_target *starget)
{
starget_for_each_device(starget, NULL, device_quiesce_fn);
}
EXPORT_SYMBOL(scsi_target_quiesce);
static void
device_resume_fn(struct scsi_device *sdev, void *data)
{
scsi_device_resume(sdev);
}
void
scsi_target_resume(struct scsi_target *starget)
{
starget_for_each_device(starget, NULL, device_resume_fn);
}
EXPORT_SYMBOL(scsi_target_resume);
/**
* scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
* @sdev: device to block
*
* Pause SCSI command processing on the specified device. Does not sleep.
*
* Returns zero if successful or a negative error code upon failure.
*
* Notes:
* This routine transitions the device to the SDEV_BLOCK state (which must be
* a legal transition). When the device is in this state, command processing
* is paused until the device leaves the SDEV_BLOCK state. See also
* scsi_internal_device_unblock_nowait().
*/
int scsi_internal_device_block_nowait(struct scsi_device *sdev)
{
struct request_queue *q = sdev->request_queue;
unsigned long flags;
int err = 0;
err = scsi_device_set_state(sdev, SDEV_BLOCK);
if (err) {
err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
if (err)
return err;
}
/*
* The device has transitioned to SDEV_BLOCK. Stop the
* block layer from calling the midlayer with this device's
* request queue.
*/
if (q->mq_ops) {
blk_mq_quiesce_queue_nowait(q);
} else {
spin_lock_irqsave(q->queue_lock, flags);
blk_stop_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
return 0;
}
EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
/**
* scsi_internal_device_block - try to transition to the SDEV_BLOCK state
* @sdev: device to block
*
* Pause SCSI command processing on the specified device and wait until all
* ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
*
* Returns zero if successful or a negative error code upon failure.
*
* Note:
* This routine transitions the device to the SDEV_BLOCK state (which must be
* a legal transition). When the device is in this state, command processing
* is paused until the device leaves the SDEV_BLOCK state. See also
* scsi_internal_device_unblock().
*
* To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
* scsi_internal_device_block() has blocked a SCSI device and also
* remove the rport mutex lock and unlock calls from srp_queuecommand().
*/
static int scsi_internal_device_block(struct scsi_device *sdev)
{
struct request_queue *q = sdev->request_queue;
int err;
mutex_lock(&sdev->state_mutex);
err = scsi_internal_device_block_nowait(sdev);
if (err == 0) {
if (q->mq_ops)
blk_mq_quiesce_queue(q);
else
scsi_wait_for_queuecommand(sdev);
}
mutex_unlock(&sdev->state_mutex);
return err;
}
void scsi_start_queue(struct scsi_device *sdev)
{
struct request_queue *q = sdev->request_queue;
unsigned long flags;
if (q->mq_ops) {
blk_mq_unquiesce_queue(q);
} else {
spin_lock_irqsave(q->queue_lock, flags);
blk_start_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
}
/**
* scsi_internal_device_unblock_nowait - resume a device after a block request
* @sdev: device to resume
* @new_state: state to set the device to after unblocking
*
* Restart the device queue for a previously suspended SCSI device. Does not
* sleep.
*
* Returns zero if successful or a negative error code upon failure.
*
* Notes:
* This routine transitions the device to the SDEV_RUNNING state or to one of
* the offline states (which must be a legal transition) allowing the midlayer
* to goose the queue for this device.
*/
int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
enum scsi_device_state new_state)
{
/*
* Try to transition the scsi device to SDEV_RUNNING or one of the
* offlined states and goose the device queue if successful.
*/
switch (sdev->sdev_state) {
case SDEV_BLOCK:
case SDEV_TRANSPORT_OFFLINE:
sdev->sdev_state = new_state;
break;
case SDEV_CREATED_BLOCK:
if (new_state == SDEV_TRANSPORT_OFFLINE ||
new_state == SDEV_OFFLINE)
sdev->sdev_state = new_state;
else
sdev->sdev_state = SDEV_CREATED;
break;
case SDEV_CANCEL:
case SDEV_OFFLINE:
break;
default:
return -EINVAL;
}
scsi_start_queue(sdev);
return 0;
}
EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
/**
* scsi_internal_device_unblock - resume a device after a block request
* @sdev: device to resume
* @new_state: state to set the device to after unblocking
*
* Restart the device queue for a previously suspended SCSI device. May sleep.
*
* Returns zero if successful or a negative error code upon failure.
*
* Notes:
* This routine transitions the device to the SDEV_RUNNING state or to one of
* the offline states (which must be a legal transition) allowing the midlayer
* to goose the queue for this device.
*/
static int scsi_internal_device_unblock(struct scsi_device *sdev,
enum scsi_device_state new_state)
{
int ret;
mutex_lock(&sdev->state_mutex);
ret = scsi_internal_device_unblock_nowait(sdev, new_state);
mutex_unlock(&sdev->state_mutex);
return ret;
}
static void
device_block(struct scsi_device *sdev, void *data)
{
scsi_internal_device_block(sdev);
}
static int
target_block(struct device *dev, void *data)
{
if (scsi_is_target_device(dev))
starget_for_each_device(to_scsi_target(dev), NULL,
device_block);
return 0;
}
void
scsi_target_block(struct device *dev)
{
if (scsi_is_target_device(dev))
starget_for_each_device(to_scsi_target(dev), NULL,
device_block);
else
device_for_each_child(dev, NULL, target_block);
}
EXPORT_SYMBOL_GPL(scsi_target_block);
static void
device_unblock(struct scsi_device *sdev, void *data)
{
scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
}
static int
target_unblock(struct device *dev, void *data)
{
if (scsi_is_target_device(dev))
starget_for_each_device(to_scsi_target(dev), data,
device_unblock);
return 0;
}
void
scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
{
if (scsi_is_target_device(dev))
starget_for_each_device(to_scsi_target(dev), &new_state,
device_unblock);
else
device_for_each_child(dev, &new_state, target_unblock);
}
EXPORT_SYMBOL_GPL(scsi_target_unblock);
/**
* scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
* @sgl: scatter-gather list
* @sg_count: number of segments in sg
* @offset: offset in bytes into sg, on return offset into the mapped area
* @len: bytes to map, on return number of bytes mapped
*
* Returns virtual address of the start of the mapped page
*/
void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
size_t *offset, size_t *len)
{
int i;
size_t sg_len = 0, len_complete = 0;
struct scatterlist *sg;
struct page *page;
WARN_ON(!irqs_disabled());
for_each_sg(sgl, sg, sg_count, i) {
len_complete = sg_len; /* Complete sg-entries */
sg_len += sg->length;
if (sg_len > *offset)
break;
}
if (unlikely(i == sg_count)) {
printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
"elements %d\n",
__func__, sg_len, *offset, sg_count);
WARN_ON(1);
return NULL;
}
/* Offset starting from the beginning of first page in this sg-entry */
*offset = *offset - len_complete + sg->offset;
/* Assumption: contiguous pages can be accessed as "page + i" */
page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
*offset &= ~PAGE_MASK;
/* Bytes in this sg-entry from *offset to the end of the page */
sg_len = PAGE_SIZE - *offset;
if (*len > sg_len)
*len = sg_len;
return kmap_atomic(page);
}
EXPORT_SYMBOL(scsi_kmap_atomic_sg);
/**
* scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
* @virt: virtual address to be unmapped
*/
void scsi_kunmap_atomic_sg(void *virt)
{
kunmap_atomic(virt);
}
EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
void sdev_disable_disk_events(struct scsi_device *sdev)
{
atomic_inc(&sdev->disk_events_disable_depth);
}
EXPORT_SYMBOL(sdev_disable_disk_events);
void sdev_enable_disk_events(struct scsi_device *sdev)
{
if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
return;
atomic_dec(&sdev->disk_events_disable_depth);
}
EXPORT_SYMBOL(sdev_enable_disk_events);
/**
* scsi_vpd_lun_id - return a unique device identification
* @sdev: SCSI device
* @id: buffer for the identification
* @id_len: length of the buffer
*
* Copies a unique device identification into @id based
* on the information in the VPD page 0x83 of the device.
* The string will be formatted as a SCSI name string.
*
* Returns the length of the identification or error on failure.
* If the identifier is longer than the supplied buffer the actual
* identifier length is returned and the buffer is not zero-padded.
*/
int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
{
u8 cur_id_type = 0xff;
u8 cur_id_size = 0;
const unsigned char *d, *cur_id_str;
const struct scsi_vpd *vpd_pg83;
int id_size = -EINVAL;
rcu_read_lock();
vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
if (!vpd_pg83) {
rcu_read_unlock();
return -ENXIO;
}
/*
* Look for the correct descriptor.
* Order of preference for lun descriptor:
* - SCSI name string
* - NAA IEEE Registered Extended
* - EUI-64 based 16-byte
* - EUI-64 based 12-byte
* - NAA IEEE Registered
* - NAA IEEE Extended
* - T10 Vendor ID
* as longer descriptors reduce the likelyhood
* of identification clashes.
*/
/* The id string must be at least 20 bytes + terminating NULL byte */
if (id_len < 21) {
rcu_read_unlock();
return -EINVAL;
}
memset(id, 0, id_len);
d = vpd_pg83->data + 4;
while (d < vpd_pg83->data + vpd_pg83->len) {
/* Skip designators not referring to the LUN */
if ((d[1] & 0x30) != 0x00)
goto next_desig;
switch (d[1] & 0xf) {
case 0x1:
/* T10 Vendor ID */
if (cur_id_size > d[3])
break;
/* Prefer anything */
if (cur_id_type > 0x01 && cur_id_type != 0xff)
break;
cur_id_size = d[3];
if (cur_id_size + 4 > id_len)
cur_id_size = id_len - 4;
cur_id_str = d + 4;
cur_id_type = d[1] & 0xf;
id_size = snprintf(id, id_len, "t10.%*pE",
cur_id_size, cur_id_str);
break;
case 0x2:
/* EUI-64 */
if (cur_id_size > d[3])
break;
/* Prefer NAA IEEE Registered Extended */
if (cur_id_type == 0x3 &&
cur_id_size == d[3])
break;
cur_id_size = d[3];
cur_id_str = d + 4;
cur_id_type = d[1] & 0xf;
switch (cur_id_size) {
case 8:
id_size = snprintf(id, id_len,
"eui.%8phN",
cur_id_str);
break;
case 12:
id_size = snprintf(id, id_len,
"eui.%12phN",
cur_id_str);
break;
case 16:
id_size = snprintf(id, id_len,
"eui.%16phN",
cur_id_str);
break;
default:
cur_id_size = 0;
break;
}
break;
case 0x3:
/* NAA */
if (cur_id_size > d[3])
break;
cur_id_size = d[3];
cur_id_str = d + 4;
cur_id_type = d[1] & 0xf;
switch (cur_id_size) {
case 8:
id_size = snprintf(id, id_len,
"naa.%8phN",
cur_id_str);
break;
case 16:
id_size = snprintf(id, id_len,
"naa.%16phN",
cur_id_str);
break;
default:
cur_id_size = 0;
break;
}
break;
case 0x8:
/* SCSI name string */
if (cur_id_size + 4 > d[3])
break;
/* Prefer others for truncated descriptor */
if (cur_id_size && d[3] > id_len)
break;
cur_id_size = id_size = d[3];
cur_id_str = d + 4;
cur_id_type = d[1] & 0xf;
if (cur_id_size >= id_len)
cur_id_size = id_len - 1;
memcpy(id, cur_id_str, cur_id_size);
/* Decrease priority for truncated descriptor */
if (cur_id_size != id_size)
cur_id_size = 6;
break;
default:
break;
}
next_desig:
d += d[3] + 4;
}
rcu_read_unlock();
return id_size;
}
EXPORT_SYMBOL(scsi_vpd_lun_id);
/*
* scsi_vpd_tpg_id - return a target port group identifier
* @sdev: SCSI device
*
* Returns the Target Port Group identifier from the information
* froom VPD page 0x83 of the device.
*
* Returns the identifier or error on failure.
*/
int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
{
const unsigned char *d;
const struct scsi_vpd *vpd_pg83;
int group_id = -EAGAIN, rel_port = -1;
rcu_read_lock();
vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
if (!vpd_pg83) {
rcu_read_unlock();
return -ENXIO;
}
d = vpd_pg83->data + 4;
while (d < vpd_pg83->data + vpd_pg83->len) {
switch (d[1] & 0xf) {
case 0x4:
/* Relative target port */
rel_port = get_unaligned_be16(&d[6]);
break;
case 0x5:
/* Target port group */
group_id = get_unaligned_be16(&d[6]);
break;
default:
break;
}
d += d[3] + 4;
}
rcu_read_unlock();
if (group_id >= 0 && rel_id && rel_port != -1)
*rel_id = rel_port;
return group_id;
}
EXPORT_SYMBOL(scsi_vpd_tpg_id);