kernel-ark/include/asm-parisc/atomic.h
Ingo Molnar fb1c8f93d8 [PATCH] spinlock consolidation
This patch (written by me and also containing many suggestions of Arjan van
de Ven) does a major cleanup of the spinlock code.  It does the following
things:

 - consolidates and enhances the spinlock/rwlock debugging code

 - simplifies the asm/spinlock.h files

 - encapsulates the raw spinlock type and moves generic spinlock
   features (such as ->break_lock) into the generic code.

 - cleans up the spinlock code hierarchy to get rid of the spaghetti.

Most notably there's now only a single variant of the debugging code,
located in lib/spinlock_debug.c.  (previously we had one SMP debugging
variant per architecture, plus a separate generic one for UP builds)

Also, i've enhanced the rwlock debugging facility, it will now track
write-owners.  There is new spinlock-owner/CPU-tracking on SMP builds too.
All locks have lockup detection now, which will work for both soft and hard
spin/rwlock lockups.

The arch-level include files now only contain the minimally necessary
subset of the spinlock code - all the rest that can be generalized now
lives in the generic headers:

 include/asm-i386/spinlock_types.h       |   16
 include/asm-x86_64/spinlock_types.h     |   16

I have also split up the various spinlock variants into separate files,
making it easier to see which does what. The new layout is:

   SMP                         |  UP
   ----------------------------|-----------------------------------
   asm/spinlock_types_smp.h    |  linux/spinlock_types_up.h
   linux/spinlock_types.h      |  linux/spinlock_types.h
   asm/spinlock_smp.h          |  linux/spinlock_up.h
   linux/spinlock_api_smp.h    |  linux/spinlock_api_up.h
   linux/spinlock.h            |  linux/spinlock.h

/*
 * here's the role of the various spinlock/rwlock related include files:
 *
 * on SMP builds:
 *
 *  asm/spinlock_types.h: contains the raw_spinlock_t/raw_rwlock_t and the
 *                        initializers
 *
 *  linux/spinlock_types.h:
 *                        defines the generic type and initializers
 *
 *  asm/spinlock.h:       contains the __raw_spin_*()/etc. lowlevel
 *                        implementations, mostly inline assembly code
 *
 *   (also included on UP-debug builds:)
 *
 *  linux/spinlock_api_smp.h:
 *                        contains the prototypes for the _spin_*() APIs.
 *
 *  linux/spinlock.h:     builds the final spin_*() APIs.
 *
 * on UP builds:
 *
 *  linux/spinlock_type_up.h:
 *                        contains the generic, simplified UP spinlock type.
 *                        (which is an empty structure on non-debug builds)
 *
 *  linux/spinlock_types.h:
 *                        defines the generic type and initializers
 *
 *  linux/spinlock_up.h:
 *                        contains the __raw_spin_*()/etc. version of UP
 *                        builds. (which are NOPs on non-debug, non-preempt
 *                        builds)
 *
 *   (included on UP-non-debug builds:)
 *
 *  linux/spinlock_api_up.h:
 *                        builds the _spin_*() APIs.
 *
 *  linux/spinlock.h:     builds the final spin_*() APIs.
 */

All SMP and UP architectures are converted by this patch.

arm, i386, ia64, ppc, ppc64, s390/s390x, x64 was build-tested via
crosscompilers.  m32r, mips, sh, sparc, have not been tested yet, but should
be mostly fine.

From: Grant Grundler <grundler@parisc-linux.org>

  Booted and lightly tested on a500-44 (64-bit, SMP kernel, dual CPU).
  Builds 32-bit SMP kernel (not booted or tested).  I did not try to build
  non-SMP kernels.  That should be trivial to fix up later if necessary.

  I converted bit ops atomic_hash lock to raw_spinlock_t.  Doing so avoids
  some ugly nesting of linux/*.h and asm/*.h files.  Those particular locks
  are well tested and contained entirely inside arch specific code.  I do NOT
  expect any new issues to arise with them.

 If someone does ever need to use debug/metrics with them, then they will
  need to unravel this hairball between spinlocks, atomic ops, and bit ops
  that exist only because parisc has exactly one atomic instruction: LDCW
  (load and clear word).

From: "Luck, Tony" <tony.luck@intel.com>

   ia64 fix

Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjanv@infradead.org>
Signed-off-by: Grant Grundler <grundler@parisc-linux.org>
Cc: Matthew Wilcox <willy@debian.org>
Signed-off-by: Hirokazu Takata <takata@linux-m32r.org>
Signed-off-by: Mikael Pettersson <mikpe@csd.uu.se>
Signed-off-by: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-09-10 10:06:21 -07:00

200 lines
5.7 KiB
C

#ifndef _ASM_PARISC_ATOMIC_H_
#define _ASM_PARISC_ATOMIC_H_
#include <linux/config.h>
#include <asm/system.h>
/* Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>. */
/*
* Atomic operations that C can't guarantee us. Useful for
* resource counting etc..
*
* And probably incredibly slow on parisc. OTOH, we don't
* have to write any serious assembly. prumpf
*/
#ifdef CONFIG_SMP
#include <asm/spinlock.h>
#include <asm/cache.h> /* we use L1_CACHE_BYTES */
/* Use an array of spinlocks for our atomic_ts.
* Hash function to index into a different SPINLOCK.
* Since "a" is usually an address, use one spinlock per cacheline.
*/
# define ATOMIC_HASH_SIZE 4
# define ATOMIC_HASH(a) (&(__atomic_hash[ (((unsigned long) a)/L1_CACHE_BYTES) & (ATOMIC_HASH_SIZE-1) ]))
extern raw_spinlock_t __atomic_hash[ATOMIC_HASH_SIZE] __lock_aligned;
/* Can't use raw_spin_lock_irq because of #include problems, so
* this is the substitute */
#define _atomic_spin_lock_irqsave(l,f) do { \
raw_spinlock_t *s = ATOMIC_HASH(l); \
local_irq_save(f); \
__raw_spin_lock(s); \
} while(0)
#define _atomic_spin_unlock_irqrestore(l,f) do { \
raw_spinlock_t *s = ATOMIC_HASH(l); \
__raw_spin_unlock(s); \
local_irq_restore(f); \
} while(0)
#else
# define _atomic_spin_lock_irqsave(l,f) do { local_irq_save(f); } while (0)
# define _atomic_spin_unlock_irqrestore(l,f) do { local_irq_restore(f); } while (0)
#endif
/* Note that we need not lock read accesses - aligned word writes/reads
* are atomic, so a reader never sees unconsistent values.
*
* Cache-line alignment would conflict with, for example, linux/module.h
*/
typedef struct { volatile int counter; } atomic_t;
/* This should get optimized out since it's never called.
** Or get a link error if xchg is used "wrong".
*/
extern void __xchg_called_with_bad_pointer(void);
/* __xchg32/64 defined in arch/parisc/lib/bitops.c */
extern unsigned long __xchg8(char, char *);
extern unsigned long __xchg32(int, int *);
#ifdef __LP64__
extern unsigned long __xchg64(unsigned long, unsigned long *);
#endif
/* optimizer better get rid of switch since size is a constant */
static __inline__ unsigned long __xchg(unsigned long x, __volatile__ void * ptr,
int size)
{
switch(size) {
#ifdef __LP64__
case 8: return __xchg64(x,(unsigned long *) ptr);
#endif
case 4: return __xchg32((int) x, (int *) ptr);
case 1: return __xchg8((char) x, (char *) ptr);
}
__xchg_called_with_bad_pointer();
return x;
}
/*
** REVISIT - Abandoned use of LDCW in xchg() for now:
** o need to test sizeof(*ptr) to avoid clearing adjacent bytes
** o and while we are at it, could __LP64__ code use LDCD too?
**
** if (__builtin_constant_p(x) && (x == NULL))
** if (((unsigned long)p & 0xf) == 0)
** return __ldcw(p);
*/
#define xchg(ptr,x) \
((__typeof__(*(ptr)))__xchg((unsigned long)(x),(ptr),sizeof(*(ptr))))
#define __HAVE_ARCH_CMPXCHG 1
/* bug catcher for when unsupported size is used - won't link */
extern void __cmpxchg_called_with_bad_pointer(void);
/* __cmpxchg_u32/u64 defined in arch/parisc/lib/bitops.c */
extern unsigned long __cmpxchg_u32(volatile unsigned int *m, unsigned int old, unsigned int new_);
extern unsigned long __cmpxchg_u64(volatile unsigned long *ptr, unsigned long old, unsigned long new_);
/* don't worry...optimizer will get rid of most of this */
static __inline__ unsigned long
__cmpxchg(volatile void *ptr, unsigned long old, unsigned long new_, int size)
{
switch(size) {
#ifdef __LP64__
case 8: return __cmpxchg_u64((unsigned long *)ptr, old, new_);
#endif
case 4: return __cmpxchg_u32((unsigned int *)ptr, (unsigned int) old, (unsigned int) new_);
}
__cmpxchg_called_with_bad_pointer();
return old;
}
#define cmpxchg(ptr,o,n) \
({ \
__typeof__(*(ptr)) _o_ = (o); \
__typeof__(*(ptr)) _n_ = (n); \
(__typeof__(*(ptr))) __cmpxchg((ptr), (unsigned long)_o_, \
(unsigned long)_n_, sizeof(*(ptr))); \
})
/* It's possible to reduce all atomic operations to either
* __atomic_add_return, atomic_set and atomic_read (the latter
* is there only for consistency).
*/
static __inline__ int __atomic_add_return(int i, atomic_t *v)
{
int ret;
unsigned long flags;
_atomic_spin_lock_irqsave(v, flags);
ret = (v->counter += i);
_atomic_spin_unlock_irqrestore(v, flags);
return ret;
}
static __inline__ void atomic_set(atomic_t *v, int i)
{
unsigned long flags;
_atomic_spin_lock_irqsave(v, flags);
v->counter = i;
_atomic_spin_unlock_irqrestore(v, flags);
}
static __inline__ int atomic_read(const atomic_t *v)
{
return v->counter;
}
/* exported interface */
#define atomic_add(i,v) ((void)(__atomic_add_return( ((int)i),(v))))
#define atomic_sub(i,v) ((void)(__atomic_add_return(-((int)i),(v))))
#define atomic_inc(v) ((void)(__atomic_add_return( 1,(v))))
#define atomic_dec(v) ((void)(__atomic_add_return( -1,(v))))
#define atomic_add_return(i,v) (__atomic_add_return( ((int)i),(v)))
#define atomic_sub_return(i,v) (__atomic_add_return(-((int)i),(v)))
#define atomic_inc_return(v) (__atomic_add_return( 1,(v)))
#define atomic_dec_return(v) (__atomic_add_return( -1,(v)))
#define atomic_add_negative(a, v) (atomic_add_return((a), (v)) < 0)
/*
* atomic_inc_and_test - increment and test
* @v: pointer of type atomic_t
*
* Atomically increments @v by 1
* and returns true if the result is zero, or false for all
* other cases.
*/
#define atomic_inc_and_test(v) (atomic_inc_return(v) == 0)
#define atomic_dec_and_test(v) (atomic_dec_return(v) == 0)
#define ATOMIC_INIT(i) { (i) }
#define smp_mb__before_atomic_dec() smp_mb()
#define smp_mb__after_atomic_dec() smp_mb()
#define smp_mb__before_atomic_inc() smp_mb()
#define smp_mb__after_atomic_inc() smp_mb()
#endif