5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
411 lines
12 KiB
C
411 lines
12 KiB
C
/*
|
|
* IBM eServer eHCA Infiniband device driver for Linux on POWER
|
|
*
|
|
* HCA query functions
|
|
*
|
|
* Authors: Heiko J Schick <schickhj@de.ibm.com>
|
|
* Christoph Raisch <raisch@de.ibm.com>
|
|
*
|
|
* Copyright (c) 2005 IBM Corporation
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This source code is distributed under a dual license of GPL v2.0 and OpenIB
|
|
* BSD.
|
|
*
|
|
* OpenIB BSD License
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
|
|
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <linux/gfp.h>
|
|
|
|
#include "ehca_tools.h"
|
|
#include "ehca_iverbs.h"
|
|
#include "hcp_if.h"
|
|
|
|
static unsigned int limit_uint(unsigned int value)
|
|
{
|
|
return min_t(unsigned int, value, INT_MAX);
|
|
}
|
|
|
|
int ehca_query_device(struct ib_device *ibdev, struct ib_device_attr *props)
|
|
{
|
|
int i, ret = 0;
|
|
struct ehca_shca *shca = container_of(ibdev, struct ehca_shca,
|
|
ib_device);
|
|
struct hipz_query_hca *rblock;
|
|
|
|
static const u32 cap_mapping[] = {
|
|
IB_DEVICE_RESIZE_MAX_WR, HCA_CAP_WQE_RESIZE,
|
|
IB_DEVICE_BAD_PKEY_CNTR, HCA_CAP_BAD_P_KEY_CTR,
|
|
IB_DEVICE_BAD_QKEY_CNTR, HCA_CAP_Q_KEY_VIOL_CTR,
|
|
IB_DEVICE_RAW_MULTI, HCA_CAP_RAW_PACKET_MCAST,
|
|
IB_DEVICE_AUTO_PATH_MIG, HCA_CAP_AUTO_PATH_MIG,
|
|
IB_DEVICE_CHANGE_PHY_PORT, HCA_CAP_SQD_RTS_PORT_CHANGE,
|
|
IB_DEVICE_UD_AV_PORT_ENFORCE, HCA_CAP_AH_PORT_NR_CHECK,
|
|
IB_DEVICE_CURR_QP_STATE_MOD, HCA_CAP_CUR_QP_STATE_MOD,
|
|
IB_DEVICE_SHUTDOWN_PORT, HCA_CAP_SHUTDOWN_PORT,
|
|
IB_DEVICE_INIT_TYPE, HCA_CAP_INIT_TYPE,
|
|
IB_DEVICE_PORT_ACTIVE_EVENT, HCA_CAP_PORT_ACTIVE_EVENT,
|
|
};
|
|
|
|
rblock = ehca_alloc_fw_ctrlblock(GFP_KERNEL);
|
|
if (!rblock) {
|
|
ehca_err(&shca->ib_device, "Can't allocate rblock memory.");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (hipz_h_query_hca(shca->ipz_hca_handle, rblock) != H_SUCCESS) {
|
|
ehca_err(&shca->ib_device, "Can't query device properties");
|
|
ret = -EINVAL;
|
|
goto query_device1;
|
|
}
|
|
|
|
memset(props, 0, sizeof(struct ib_device_attr));
|
|
props->page_size_cap = shca->hca_cap_mr_pgsize;
|
|
props->fw_ver = rblock->hw_ver;
|
|
props->max_mr_size = rblock->max_mr_size;
|
|
props->vendor_id = rblock->vendor_id >> 8;
|
|
props->vendor_part_id = rblock->vendor_part_id >> 16;
|
|
props->hw_ver = rblock->hw_ver;
|
|
props->max_qp = limit_uint(rblock->max_qp);
|
|
props->max_qp_wr = limit_uint(rblock->max_wqes_wq);
|
|
props->max_sge = limit_uint(rblock->max_sge);
|
|
props->max_sge_rd = limit_uint(rblock->max_sge_rd);
|
|
props->max_cq = limit_uint(rblock->max_cq);
|
|
props->max_cqe = limit_uint(rblock->max_cqe);
|
|
props->max_mr = limit_uint(rblock->max_mr);
|
|
props->max_mw = limit_uint(rblock->max_mw);
|
|
props->max_pd = limit_uint(rblock->max_pd);
|
|
props->max_ah = limit_uint(rblock->max_ah);
|
|
props->max_ee = limit_uint(rblock->max_rd_ee_context);
|
|
props->max_rdd = limit_uint(rblock->max_rd_domain);
|
|
props->max_fmr = limit_uint(rblock->max_mr);
|
|
props->max_qp_rd_atom = limit_uint(rblock->max_rr_qp);
|
|
props->max_ee_rd_atom = limit_uint(rblock->max_rr_ee_context);
|
|
props->max_res_rd_atom = limit_uint(rblock->max_rr_hca);
|
|
props->max_qp_init_rd_atom = limit_uint(rblock->max_act_wqs_qp);
|
|
props->max_ee_init_rd_atom = limit_uint(rblock->max_act_wqs_ee_context);
|
|
|
|
if (EHCA_BMASK_GET(HCA_CAP_SRQ, shca->hca_cap)) {
|
|
props->max_srq = limit_uint(props->max_qp);
|
|
props->max_srq_wr = limit_uint(props->max_qp_wr);
|
|
props->max_srq_sge = 3;
|
|
}
|
|
|
|
props->max_pkeys = 16;
|
|
/* Some FW versions say 0 here; insert sensible value in that case */
|
|
props->local_ca_ack_delay = rblock->local_ca_ack_delay ?
|
|
min_t(u8, rblock->local_ca_ack_delay, 255) : 12;
|
|
props->max_raw_ipv6_qp = limit_uint(rblock->max_raw_ipv6_qp);
|
|
props->max_raw_ethy_qp = limit_uint(rblock->max_raw_ethy_qp);
|
|
props->max_mcast_grp = limit_uint(rblock->max_mcast_grp);
|
|
props->max_mcast_qp_attach = limit_uint(rblock->max_mcast_qp_attach);
|
|
props->max_total_mcast_qp_attach
|
|
= limit_uint(rblock->max_total_mcast_qp_attach);
|
|
|
|
/* translate device capabilities */
|
|
props->device_cap_flags = IB_DEVICE_SYS_IMAGE_GUID |
|
|
IB_DEVICE_RC_RNR_NAK_GEN | IB_DEVICE_N_NOTIFY_CQ;
|
|
for (i = 0; i < ARRAY_SIZE(cap_mapping); i += 2)
|
|
if (rblock->hca_cap_indicators & cap_mapping[i + 1])
|
|
props->device_cap_flags |= cap_mapping[i];
|
|
|
|
query_device1:
|
|
ehca_free_fw_ctrlblock(rblock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static enum ib_mtu map_mtu(struct ehca_shca *shca, u32 fw_mtu)
|
|
{
|
|
switch (fw_mtu) {
|
|
case 0x1:
|
|
return IB_MTU_256;
|
|
case 0x2:
|
|
return IB_MTU_512;
|
|
case 0x3:
|
|
return IB_MTU_1024;
|
|
case 0x4:
|
|
return IB_MTU_2048;
|
|
case 0x5:
|
|
return IB_MTU_4096;
|
|
default:
|
|
ehca_err(&shca->ib_device, "Unknown MTU size: %x.",
|
|
fw_mtu);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static u8 map_number_of_vls(struct ehca_shca *shca, u32 vl_cap)
|
|
{
|
|
switch (vl_cap) {
|
|
case 0x1:
|
|
return 1;
|
|
case 0x2:
|
|
return 2;
|
|
case 0x3:
|
|
return 4;
|
|
case 0x4:
|
|
return 8;
|
|
case 0x5:
|
|
return 15;
|
|
default:
|
|
ehca_err(&shca->ib_device, "invalid Vl Capability: %x.",
|
|
vl_cap);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
int ehca_query_port(struct ib_device *ibdev,
|
|
u8 port, struct ib_port_attr *props)
|
|
{
|
|
int ret = 0;
|
|
u64 h_ret;
|
|
struct ehca_shca *shca = container_of(ibdev, struct ehca_shca,
|
|
ib_device);
|
|
struct hipz_query_port *rblock;
|
|
|
|
rblock = ehca_alloc_fw_ctrlblock(GFP_KERNEL);
|
|
if (!rblock) {
|
|
ehca_err(&shca->ib_device, "Can't allocate rblock memory.");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
h_ret = hipz_h_query_port(shca->ipz_hca_handle, port, rblock);
|
|
if (h_ret != H_SUCCESS) {
|
|
ehca_err(&shca->ib_device, "Can't query port properties");
|
|
ret = -EINVAL;
|
|
goto query_port1;
|
|
}
|
|
|
|
memset(props, 0, sizeof(struct ib_port_attr));
|
|
|
|
props->active_mtu = props->max_mtu = map_mtu(shca, rblock->max_mtu);
|
|
props->port_cap_flags = rblock->capability_mask;
|
|
props->gid_tbl_len = rblock->gid_tbl_len;
|
|
if (rblock->max_msg_sz)
|
|
props->max_msg_sz = rblock->max_msg_sz;
|
|
else
|
|
props->max_msg_sz = 0x1 << 31;
|
|
props->bad_pkey_cntr = rblock->bad_pkey_cntr;
|
|
props->qkey_viol_cntr = rblock->qkey_viol_cntr;
|
|
props->pkey_tbl_len = rblock->pkey_tbl_len;
|
|
props->lid = rblock->lid;
|
|
props->sm_lid = rblock->sm_lid;
|
|
props->lmc = rblock->lmc;
|
|
props->sm_sl = rblock->sm_sl;
|
|
props->subnet_timeout = rblock->subnet_timeout;
|
|
props->init_type_reply = rblock->init_type_reply;
|
|
props->max_vl_num = map_number_of_vls(shca, rblock->vl_cap);
|
|
|
|
if (rblock->state && rblock->phys_width) {
|
|
props->phys_state = rblock->phys_pstate;
|
|
props->state = rblock->phys_state;
|
|
props->active_width = rblock->phys_width;
|
|
props->active_speed = rblock->phys_speed;
|
|
} else {
|
|
/* old firmware releases don't report physical
|
|
* port info, so use default values
|
|
*/
|
|
props->phys_state = 5;
|
|
props->state = rblock->state;
|
|
props->active_width = IB_WIDTH_12X;
|
|
props->active_speed = 0x1;
|
|
}
|
|
|
|
query_port1:
|
|
ehca_free_fw_ctrlblock(rblock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ehca_query_sma_attr(struct ehca_shca *shca,
|
|
u8 port, struct ehca_sma_attr *attr)
|
|
{
|
|
int ret = 0;
|
|
u64 h_ret;
|
|
struct hipz_query_port *rblock;
|
|
|
|
rblock = ehca_alloc_fw_ctrlblock(GFP_ATOMIC);
|
|
if (!rblock) {
|
|
ehca_err(&shca->ib_device, "Can't allocate rblock memory.");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
h_ret = hipz_h_query_port(shca->ipz_hca_handle, port, rblock);
|
|
if (h_ret != H_SUCCESS) {
|
|
ehca_err(&shca->ib_device, "Can't query port properties");
|
|
ret = -EINVAL;
|
|
goto query_sma_attr1;
|
|
}
|
|
|
|
memset(attr, 0, sizeof(struct ehca_sma_attr));
|
|
|
|
attr->lid = rblock->lid;
|
|
attr->lmc = rblock->lmc;
|
|
attr->sm_sl = rblock->sm_sl;
|
|
attr->sm_lid = rblock->sm_lid;
|
|
|
|
attr->pkey_tbl_len = rblock->pkey_tbl_len;
|
|
memcpy(attr->pkeys, rblock->pkey_entries, sizeof(attr->pkeys));
|
|
|
|
query_sma_attr1:
|
|
ehca_free_fw_ctrlblock(rblock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ehca_query_pkey(struct ib_device *ibdev, u8 port, u16 index, u16 *pkey)
|
|
{
|
|
int ret = 0;
|
|
u64 h_ret;
|
|
struct ehca_shca *shca;
|
|
struct hipz_query_port *rblock;
|
|
|
|
shca = container_of(ibdev, struct ehca_shca, ib_device);
|
|
if (index > 16) {
|
|
ehca_err(&shca->ib_device, "Invalid index: %x.", index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rblock = ehca_alloc_fw_ctrlblock(GFP_KERNEL);
|
|
if (!rblock) {
|
|
ehca_err(&shca->ib_device, "Can't allocate rblock memory.");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
h_ret = hipz_h_query_port(shca->ipz_hca_handle, port, rblock);
|
|
if (h_ret != H_SUCCESS) {
|
|
ehca_err(&shca->ib_device, "Can't query port properties");
|
|
ret = -EINVAL;
|
|
goto query_pkey1;
|
|
}
|
|
|
|
memcpy(pkey, &rblock->pkey_entries + index, sizeof(u16));
|
|
|
|
query_pkey1:
|
|
ehca_free_fw_ctrlblock(rblock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ehca_query_gid(struct ib_device *ibdev, u8 port,
|
|
int index, union ib_gid *gid)
|
|
{
|
|
int ret = 0;
|
|
u64 h_ret;
|
|
struct ehca_shca *shca = container_of(ibdev, struct ehca_shca,
|
|
ib_device);
|
|
struct hipz_query_port *rblock;
|
|
|
|
if (index < 0 || index > 255) {
|
|
ehca_err(&shca->ib_device, "Invalid index: %x.", index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rblock = ehca_alloc_fw_ctrlblock(GFP_KERNEL);
|
|
if (!rblock) {
|
|
ehca_err(&shca->ib_device, "Can't allocate rblock memory.");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
h_ret = hipz_h_query_port(shca->ipz_hca_handle, port, rblock);
|
|
if (h_ret != H_SUCCESS) {
|
|
ehca_err(&shca->ib_device, "Can't query port properties");
|
|
ret = -EINVAL;
|
|
goto query_gid1;
|
|
}
|
|
|
|
memcpy(&gid->raw[0], &rblock->gid_prefix, sizeof(u64));
|
|
memcpy(&gid->raw[8], &rblock->guid_entries[index], sizeof(u64));
|
|
|
|
query_gid1:
|
|
ehca_free_fw_ctrlblock(rblock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const u32 allowed_port_caps = (
|
|
IB_PORT_SM | IB_PORT_LED_INFO_SUP | IB_PORT_CM_SUP |
|
|
IB_PORT_SNMP_TUNNEL_SUP | IB_PORT_DEVICE_MGMT_SUP |
|
|
IB_PORT_VENDOR_CLASS_SUP);
|
|
|
|
int ehca_modify_port(struct ib_device *ibdev,
|
|
u8 port, int port_modify_mask,
|
|
struct ib_port_modify *props)
|
|
{
|
|
int ret = 0;
|
|
struct ehca_shca *shca;
|
|
struct hipz_query_port *rblock;
|
|
u32 cap;
|
|
u64 hret;
|
|
|
|
shca = container_of(ibdev, struct ehca_shca, ib_device);
|
|
if ((props->set_port_cap_mask | props->clr_port_cap_mask)
|
|
& ~allowed_port_caps) {
|
|
ehca_err(&shca->ib_device, "Non-changeable bits set in masks "
|
|
"set=%x clr=%x allowed=%x", props->set_port_cap_mask,
|
|
props->clr_port_cap_mask, allowed_port_caps);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (mutex_lock_interruptible(&shca->modify_mutex))
|
|
return -ERESTARTSYS;
|
|
|
|
rblock = ehca_alloc_fw_ctrlblock(GFP_KERNEL);
|
|
if (!rblock) {
|
|
ehca_err(&shca->ib_device, "Can't allocate rblock memory.");
|
|
ret = -ENOMEM;
|
|
goto modify_port1;
|
|
}
|
|
|
|
hret = hipz_h_query_port(shca->ipz_hca_handle, port, rblock);
|
|
if (hret != H_SUCCESS) {
|
|
ehca_err(&shca->ib_device, "Can't query port properties");
|
|
ret = -EINVAL;
|
|
goto modify_port2;
|
|
}
|
|
|
|
cap = (rblock->capability_mask | props->set_port_cap_mask)
|
|
& ~props->clr_port_cap_mask;
|
|
|
|
hret = hipz_h_modify_port(shca->ipz_hca_handle, port,
|
|
cap, props->init_type, port_modify_mask);
|
|
if (hret != H_SUCCESS) {
|
|
ehca_err(&shca->ib_device, "Modify port failed h_ret=%lli",
|
|
hret);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
modify_port2:
|
|
ehca_free_fw_ctrlblock(rblock);
|
|
|
|
modify_port1:
|
|
mutex_unlock(&shca->modify_mutex);
|
|
|
|
return ret;
|
|
}
|