kernel-ark/drivers/net/arm/ixp4xx_eth.c
David S. Miller babcda74e9 drivers/net: Kill now superfluous ->last_rx stores.
The generic packet receive code takes care of setting
netdev->last_rx when necessary, for the sake of the
bonding ARP monitor.

Drivers need not do it any more.

Some cases had to be skipped over because the drivers
were making use of the ->last_rx value themselves.

Signed-off-by: David S. Miller <davem@davemloft.net>
2008-11-03 21:11:17 -08:00

1264 lines
32 KiB
C

/*
* Intel IXP4xx Ethernet driver for Linux
*
* Copyright (C) 2007 Krzysztof Halasa <khc@pm.waw.pl>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*
* Ethernet port config (0x00 is not present on IXP42X):
*
* logical port 0x00 0x10 0x20
* NPE 0 (NPE-A) 1 (NPE-B) 2 (NPE-C)
* physical PortId 2 0 1
* TX queue 23 24 25
* RX-free queue 26 27 28
* TX-done queue is always 31, per-port RX and TX-ready queues are configurable
*
*
* Queue entries:
* bits 0 -> 1 - NPE ID (RX and TX-done)
* bits 0 -> 2 - priority (TX, per 802.1D)
* bits 3 -> 4 - port ID (user-set?)
* bits 5 -> 31 - physical descriptor address
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/etherdevice.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mii.h>
#include <linux/platform_device.h>
#include <mach/npe.h>
#include <mach/qmgr.h>
#define DEBUG_QUEUES 0
#define DEBUG_DESC 0
#define DEBUG_RX 0
#define DEBUG_TX 0
#define DEBUG_PKT_BYTES 0
#define DEBUG_MDIO 0
#define DEBUG_CLOSE 0
#define DRV_NAME "ixp4xx_eth"
#define MAX_NPES 3
#define RX_DESCS 64 /* also length of all RX queues */
#define TX_DESCS 16 /* also length of all TX queues */
#define TXDONE_QUEUE_LEN 64 /* dwords */
#define POOL_ALLOC_SIZE (sizeof(struct desc) * (RX_DESCS + TX_DESCS))
#define REGS_SIZE 0x1000
#define MAX_MRU 1536 /* 0x600 */
#define RX_BUFF_SIZE ALIGN((NET_IP_ALIGN) + MAX_MRU, 4)
#define NAPI_WEIGHT 16
#define MDIO_INTERVAL (3 * HZ)
#define MAX_MDIO_RETRIES 100 /* microseconds, typically 30 cycles */
#define MAX_MII_RESET_RETRIES 100 /* mdio_read() cycles, typically 4 */
#define MAX_CLOSE_WAIT 1000 /* microseconds, typically 2-3 cycles */
#define NPE_ID(port_id) ((port_id) >> 4)
#define PHYSICAL_ID(port_id) ((NPE_ID(port_id) + 2) % 3)
#define TX_QUEUE(port_id) (NPE_ID(port_id) + 23)
#define RXFREE_QUEUE(port_id) (NPE_ID(port_id) + 26)
#define TXDONE_QUEUE 31
/* TX Control Registers */
#define TX_CNTRL0_TX_EN 0x01
#define TX_CNTRL0_HALFDUPLEX 0x02
#define TX_CNTRL0_RETRY 0x04
#define TX_CNTRL0_PAD_EN 0x08
#define TX_CNTRL0_APPEND_FCS 0x10
#define TX_CNTRL0_2DEFER 0x20
#define TX_CNTRL0_RMII 0x40 /* reduced MII */
#define TX_CNTRL1_RETRIES 0x0F /* 4 bits */
/* RX Control Registers */
#define RX_CNTRL0_RX_EN 0x01
#define RX_CNTRL0_PADSTRIP_EN 0x02
#define RX_CNTRL0_SEND_FCS 0x04
#define RX_CNTRL0_PAUSE_EN 0x08
#define RX_CNTRL0_LOOP_EN 0x10
#define RX_CNTRL0_ADDR_FLTR_EN 0x20
#define RX_CNTRL0_RX_RUNT_EN 0x40
#define RX_CNTRL0_BCAST_DIS 0x80
#define RX_CNTRL1_DEFER_EN 0x01
/* Core Control Register */
#define CORE_RESET 0x01
#define CORE_RX_FIFO_FLUSH 0x02
#define CORE_TX_FIFO_FLUSH 0x04
#define CORE_SEND_JAM 0x08
#define CORE_MDC_EN 0x10 /* MDIO using NPE-B ETH-0 only */
#define DEFAULT_TX_CNTRL0 (TX_CNTRL0_TX_EN | TX_CNTRL0_RETRY | \
TX_CNTRL0_PAD_EN | TX_CNTRL0_APPEND_FCS | \
TX_CNTRL0_2DEFER)
#define DEFAULT_RX_CNTRL0 RX_CNTRL0_RX_EN
#define DEFAULT_CORE_CNTRL CORE_MDC_EN
/* NPE message codes */
#define NPE_GETSTATUS 0x00
#define NPE_EDB_SETPORTADDRESS 0x01
#define NPE_EDB_GETMACADDRESSDATABASE 0x02
#define NPE_EDB_SETMACADDRESSSDATABASE 0x03
#define NPE_GETSTATS 0x04
#define NPE_RESETSTATS 0x05
#define NPE_SETMAXFRAMELENGTHS 0x06
#define NPE_VLAN_SETRXTAGMODE 0x07
#define NPE_VLAN_SETDEFAULTRXVID 0x08
#define NPE_VLAN_SETPORTVLANTABLEENTRY 0x09
#define NPE_VLAN_SETPORTVLANTABLERANGE 0x0A
#define NPE_VLAN_SETRXQOSENTRY 0x0B
#define NPE_VLAN_SETPORTIDEXTRACTIONMODE 0x0C
#define NPE_STP_SETBLOCKINGSTATE 0x0D
#define NPE_FW_SETFIREWALLMODE 0x0E
#define NPE_PC_SETFRAMECONTROLDURATIONID 0x0F
#define NPE_PC_SETAPMACTABLE 0x11
#define NPE_SETLOOPBACK_MODE 0x12
#define NPE_PC_SETBSSIDTABLE 0x13
#define NPE_ADDRESS_FILTER_CONFIG 0x14
#define NPE_APPENDFCSCONFIG 0x15
#define NPE_NOTIFY_MAC_RECOVERY_DONE 0x16
#define NPE_MAC_RECOVERY_START 0x17
#ifdef __ARMEB__
typedef struct sk_buff buffer_t;
#define free_buffer dev_kfree_skb
#define free_buffer_irq dev_kfree_skb_irq
#else
typedef void buffer_t;
#define free_buffer kfree
#define free_buffer_irq kfree
#endif
struct eth_regs {
u32 tx_control[2], __res1[2]; /* 000 */
u32 rx_control[2], __res2[2]; /* 010 */
u32 random_seed, __res3[3]; /* 020 */
u32 partial_empty_threshold, __res4; /* 030 */
u32 partial_full_threshold, __res5; /* 038 */
u32 tx_start_bytes, __res6[3]; /* 040 */
u32 tx_deferral, rx_deferral, __res7[2];/* 050 */
u32 tx_2part_deferral[2], __res8[2]; /* 060 */
u32 slot_time, __res9[3]; /* 070 */
u32 mdio_command[4]; /* 080 */
u32 mdio_status[4]; /* 090 */
u32 mcast_mask[6], __res10[2]; /* 0A0 */
u32 mcast_addr[6], __res11[2]; /* 0C0 */
u32 int_clock_threshold, __res12[3]; /* 0E0 */
u32 hw_addr[6], __res13[61]; /* 0F0 */
u32 core_control; /* 1FC */
};
struct port {
struct resource *mem_res;
struct eth_regs __iomem *regs;
struct npe *npe;
struct net_device *netdev;
struct napi_struct napi;
struct net_device_stats stat;
struct mii_if_info mii;
struct delayed_work mdio_thread;
struct eth_plat_info *plat;
buffer_t *rx_buff_tab[RX_DESCS], *tx_buff_tab[TX_DESCS];
struct desc *desc_tab; /* coherent */
u32 desc_tab_phys;
int id; /* logical port ID */
u16 mii_bmcr;
};
/* NPE message structure */
struct msg {
#ifdef __ARMEB__
u8 cmd, eth_id, byte2, byte3;
u8 byte4, byte5, byte6, byte7;
#else
u8 byte3, byte2, eth_id, cmd;
u8 byte7, byte6, byte5, byte4;
#endif
};
/* Ethernet packet descriptor */
struct desc {
u32 next; /* pointer to next buffer, unused */
#ifdef __ARMEB__
u16 buf_len; /* buffer length */
u16 pkt_len; /* packet length */
u32 data; /* pointer to data buffer in RAM */
u8 dest_id;
u8 src_id;
u16 flags;
u8 qos;
u8 padlen;
u16 vlan_tci;
#else
u16 pkt_len; /* packet length */
u16 buf_len; /* buffer length */
u32 data; /* pointer to data buffer in RAM */
u16 flags;
u8 src_id;
u8 dest_id;
u16 vlan_tci;
u8 padlen;
u8 qos;
#endif
#ifdef __ARMEB__
u8 dst_mac_0, dst_mac_1, dst_mac_2, dst_mac_3;
u8 dst_mac_4, dst_mac_5, src_mac_0, src_mac_1;
u8 src_mac_2, src_mac_3, src_mac_4, src_mac_5;
#else
u8 dst_mac_3, dst_mac_2, dst_mac_1, dst_mac_0;
u8 src_mac_1, src_mac_0, dst_mac_5, dst_mac_4;
u8 src_mac_5, src_mac_4, src_mac_3, src_mac_2;
#endif
};
#define rx_desc_phys(port, n) ((port)->desc_tab_phys + \
(n) * sizeof(struct desc))
#define rx_desc_ptr(port, n) (&(port)->desc_tab[n])
#define tx_desc_phys(port, n) ((port)->desc_tab_phys + \
((n) + RX_DESCS) * sizeof(struct desc))
#define tx_desc_ptr(port, n) (&(port)->desc_tab[(n) + RX_DESCS])
#ifndef __ARMEB__
static inline void memcpy_swab32(u32 *dest, u32 *src, int cnt)
{
int i;
for (i = 0; i < cnt; i++)
dest[i] = swab32(src[i]);
}
#endif
static spinlock_t mdio_lock;
static struct eth_regs __iomem *mdio_regs; /* mdio command and status only */
static int ports_open;
static struct port *npe_port_tab[MAX_NPES];
static struct dma_pool *dma_pool;
static u16 mdio_cmd(struct net_device *dev, int phy_id, int location,
int write, u16 cmd)
{
int cycles = 0;
if (__raw_readl(&mdio_regs->mdio_command[3]) & 0x80) {
printk(KERN_ERR "%s: MII not ready to transmit\n", dev->name);
return 0;
}
if (write) {
__raw_writel(cmd & 0xFF, &mdio_regs->mdio_command[0]);
__raw_writel(cmd >> 8, &mdio_regs->mdio_command[1]);
}
__raw_writel(((phy_id << 5) | location) & 0xFF,
&mdio_regs->mdio_command[2]);
__raw_writel((phy_id >> 3) | (write << 2) | 0x80 /* GO */,
&mdio_regs->mdio_command[3]);
while ((cycles < MAX_MDIO_RETRIES) &&
(__raw_readl(&mdio_regs->mdio_command[3]) & 0x80)) {
udelay(1);
cycles++;
}
if (cycles == MAX_MDIO_RETRIES) {
printk(KERN_ERR "%s: MII write failed\n", dev->name);
return 0;
}
#if DEBUG_MDIO
printk(KERN_DEBUG "%s: mdio_cmd() took %i cycles\n", dev->name,
cycles);
#endif
if (write)
return 0;
if (__raw_readl(&mdio_regs->mdio_status[3]) & 0x80) {
printk(KERN_ERR "%s: MII read failed\n", dev->name);
return 0;
}
return (__raw_readl(&mdio_regs->mdio_status[0]) & 0xFF) |
(__raw_readl(&mdio_regs->mdio_status[1]) << 8);
}
static int mdio_read(struct net_device *dev, int phy_id, int location)
{
unsigned long flags;
u16 val;
spin_lock_irqsave(&mdio_lock, flags);
val = mdio_cmd(dev, phy_id, location, 0, 0);
spin_unlock_irqrestore(&mdio_lock, flags);
return val;
}
static void mdio_write(struct net_device *dev, int phy_id, int location,
int val)
{
unsigned long flags;
spin_lock_irqsave(&mdio_lock, flags);
mdio_cmd(dev, phy_id, location, 1, val);
spin_unlock_irqrestore(&mdio_lock, flags);
}
static void phy_reset(struct net_device *dev, int phy_id)
{
struct port *port = netdev_priv(dev);
int cycles = 0;
mdio_write(dev, phy_id, MII_BMCR, port->mii_bmcr | BMCR_RESET);
while (cycles < MAX_MII_RESET_RETRIES) {
if (!(mdio_read(dev, phy_id, MII_BMCR) & BMCR_RESET)) {
#if DEBUG_MDIO
printk(KERN_DEBUG "%s: phy_reset() took %i cycles\n",
dev->name, cycles);
#endif
return;
}
udelay(1);
cycles++;
}
printk(KERN_ERR "%s: MII reset failed\n", dev->name);
}
static void eth_set_duplex(struct port *port)
{
if (port->mii.full_duplex)
__raw_writel(DEFAULT_TX_CNTRL0 & ~TX_CNTRL0_HALFDUPLEX,
&port->regs->tx_control[0]);
else
__raw_writel(DEFAULT_TX_CNTRL0 | TX_CNTRL0_HALFDUPLEX,
&port->regs->tx_control[0]);
}
static void phy_check_media(struct port *port, int init)
{
if (mii_check_media(&port->mii, 1, init))
eth_set_duplex(port);
if (port->mii.force_media) { /* mii_check_media() doesn't work */
struct net_device *dev = port->netdev;
int cur_link = mii_link_ok(&port->mii);
int prev_link = netif_carrier_ok(dev);
if (!prev_link && cur_link) {
printk(KERN_INFO "%s: link up\n", dev->name);
netif_carrier_on(dev);
} else if (prev_link && !cur_link) {
printk(KERN_INFO "%s: link down\n", dev->name);
netif_carrier_off(dev);
}
}
}
static void mdio_thread(struct work_struct *work)
{
struct port *port = container_of(work, struct port, mdio_thread.work);
phy_check_media(port, 0);
schedule_delayed_work(&port->mdio_thread, MDIO_INTERVAL);
}
static inline void debug_pkt(struct net_device *dev, const char *func,
u8 *data, int len)
{
#if DEBUG_PKT_BYTES
int i;
printk(KERN_DEBUG "%s: %s(%i) ", dev->name, func, len);
for (i = 0; i < len; i++) {
if (i >= DEBUG_PKT_BYTES)
break;
printk("%s%02X",
((i == 6) || (i == 12) || (i >= 14)) ? " " : "",
data[i]);
}
printk("\n");
#endif
}
static inline void debug_desc(u32 phys, struct desc *desc)
{
#if DEBUG_DESC
printk(KERN_DEBUG "%X: %X %3X %3X %08X %2X < %2X %4X %X"
" %X %X %02X%02X%02X%02X%02X%02X < %02X%02X%02X%02X%02X%02X\n",
phys, desc->next, desc->buf_len, desc->pkt_len,
desc->data, desc->dest_id, desc->src_id, desc->flags,
desc->qos, desc->padlen, desc->vlan_tci,
desc->dst_mac_0, desc->dst_mac_1, desc->dst_mac_2,
desc->dst_mac_3, desc->dst_mac_4, desc->dst_mac_5,
desc->src_mac_0, desc->src_mac_1, desc->src_mac_2,
desc->src_mac_3, desc->src_mac_4, desc->src_mac_5);
#endif
}
static inline void debug_queue(unsigned int queue, int is_get, u32 phys)
{
#if DEBUG_QUEUES
static struct {
int queue;
char *name;
} names[] = {
{ TX_QUEUE(0x10), "TX#0 " },
{ TX_QUEUE(0x20), "TX#1 " },
{ TX_QUEUE(0x00), "TX#2 " },
{ RXFREE_QUEUE(0x10), "RX-free#0 " },
{ RXFREE_QUEUE(0x20), "RX-free#1 " },
{ RXFREE_QUEUE(0x00), "RX-free#2 " },
{ TXDONE_QUEUE, "TX-done " },
};
int i;
for (i = 0; i < ARRAY_SIZE(names); i++)
if (names[i].queue == queue)
break;
printk(KERN_DEBUG "Queue %i %s%s %X\n", queue,
i < ARRAY_SIZE(names) ? names[i].name : "",
is_get ? "->" : "<-", phys);
#endif
}
static inline u32 queue_get_entry(unsigned int queue)
{
u32 phys = qmgr_get_entry(queue);
debug_queue(queue, 1, phys);
return phys;
}
static inline int queue_get_desc(unsigned int queue, struct port *port,
int is_tx)
{
u32 phys, tab_phys, n_desc;
struct desc *tab;
if (!(phys = queue_get_entry(queue)))
return -1;
phys &= ~0x1F; /* mask out non-address bits */
tab_phys = is_tx ? tx_desc_phys(port, 0) : rx_desc_phys(port, 0);
tab = is_tx ? tx_desc_ptr(port, 0) : rx_desc_ptr(port, 0);
n_desc = (phys - tab_phys) / sizeof(struct desc);
BUG_ON(n_desc >= (is_tx ? TX_DESCS : RX_DESCS));
debug_desc(phys, &tab[n_desc]);
BUG_ON(tab[n_desc].next);
return n_desc;
}
static inline void queue_put_desc(unsigned int queue, u32 phys,
struct desc *desc)
{
debug_queue(queue, 0, phys);
debug_desc(phys, desc);
BUG_ON(phys & 0x1F);
qmgr_put_entry(queue, phys);
BUG_ON(qmgr_stat_overflow(queue));
}
static inline void dma_unmap_tx(struct port *port, struct desc *desc)
{
#ifdef __ARMEB__
dma_unmap_single(&port->netdev->dev, desc->data,
desc->buf_len, DMA_TO_DEVICE);
#else
dma_unmap_single(&port->netdev->dev, desc->data & ~3,
ALIGN((desc->data & 3) + desc->buf_len, 4),
DMA_TO_DEVICE);
#endif
}
static void eth_rx_irq(void *pdev)
{
struct net_device *dev = pdev;
struct port *port = netdev_priv(dev);
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_rx_irq\n", dev->name);
#endif
qmgr_disable_irq(port->plat->rxq);
netif_rx_schedule(dev, &port->napi);
}
static int eth_poll(struct napi_struct *napi, int budget)
{
struct port *port = container_of(napi, struct port, napi);
struct net_device *dev = port->netdev;
unsigned int rxq = port->plat->rxq, rxfreeq = RXFREE_QUEUE(port->id);
int received = 0;
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll\n", dev->name);
#endif
while (received < budget) {
struct sk_buff *skb;
struct desc *desc;
int n;
#ifdef __ARMEB__
struct sk_buff *temp;
u32 phys;
#endif
if ((n = queue_get_desc(rxq, port, 0)) < 0) {
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll netif_rx_complete\n",
dev->name);
#endif
netif_rx_complete(dev, napi);
qmgr_enable_irq(rxq);
if (!qmgr_stat_empty(rxq) &&
netif_rx_reschedule(dev, napi)) {
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll"
" netif_rx_reschedule successed\n",
dev->name);
#endif
qmgr_disable_irq(rxq);
continue;
}
#if DEBUG_RX
printk(KERN_DEBUG "%s: eth_poll all done\n",
dev->name);
#endif
return received; /* all work done */
}
desc = rx_desc_ptr(port, n);
#ifdef __ARMEB__
if ((skb = netdev_alloc_skb(dev, RX_BUFF_SIZE))) {
phys = dma_map_single(&dev->dev, skb->data,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(&dev->dev, phys)) {
dev_kfree_skb(skb);
skb = NULL;
}
}
#else
skb = netdev_alloc_skb(dev,
ALIGN(NET_IP_ALIGN + desc->pkt_len, 4));
#endif
if (!skb) {
port->stat.rx_dropped++;
/* put the desc back on RX-ready queue */
desc->buf_len = MAX_MRU;
desc->pkt_len = 0;
queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
continue;
}
/* process received frame */
#ifdef __ARMEB__
temp = skb;
skb = port->rx_buff_tab[n];
dma_unmap_single(&dev->dev, desc->data - NET_IP_ALIGN,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
#else
dma_sync_single(&dev->dev, desc->data - NET_IP_ALIGN,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
memcpy_swab32((u32 *)skb->data, (u32 *)port->rx_buff_tab[n],
ALIGN(NET_IP_ALIGN + desc->pkt_len, 4) / 4);
#endif
skb_reserve(skb, NET_IP_ALIGN);
skb_put(skb, desc->pkt_len);
debug_pkt(dev, "eth_poll", skb->data, skb->len);
skb->protocol = eth_type_trans(skb, dev);
port->stat.rx_packets++;
port->stat.rx_bytes += skb->len;
netif_receive_skb(skb);
/* put the new buffer on RX-free queue */
#ifdef __ARMEB__
port->rx_buff_tab[n] = temp;
desc->data = phys + NET_IP_ALIGN;
#endif
desc->buf_len = MAX_MRU;
desc->pkt_len = 0;
queue_put_desc(rxfreeq, rx_desc_phys(port, n), desc);
received++;
}
#if DEBUG_RX
printk(KERN_DEBUG "eth_poll(): end, not all work done\n");
#endif
return received; /* not all work done */
}
static void eth_txdone_irq(void *unused)
{
u32 phys;
#if DEBUG_TX
printk(KERN_DEBUG DRV_NAME ": eth_txdone_irq\n");
#endif
while ((phys = queue_get_entry(TXDONE_QUEUE)) != 0) {
u32 npe_id, n_desc;
struct port *port;
struct desc *desc;
int start;
npe_id = phys & 3;
BUG_ON(npe_id >= MAX_NPES);
port = npe_port_tab[npe_id];
BUG_ON(!port);
phys &= ~0x1F; /* mask out non-address bits */
n_desc = (phys - tx_desc_phys(port, 0)) / sizeof(struct desc);
BUG_ON(n_desc >= TX_DESCS);
desc = tx_desc_ptr(port, n_desc);
debug_desc(phys, desc);
if (port->tx_buff_tab[n_desc]) { /* not the draining packet */
port->stat.tx_packets++;
port->stat.tx_bytes += desc->pkt_len;
dma_unmap_tx(port, desc);
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_txdone_irq free %p\n",
port->netdev->name, port->tx_buff_tab[n_desc]);
#endif
free_buffer_irq(port->tx_buff_tab[n_desc]);
port->tx_buff_tab[n_desc] = NULL;
}
start = qmgr_stat_empty(port->plat->txreadyq);
queue_put_desc(port->plat->txreadyq, phys, desc);
if (start) {
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_txdone_irq xmit ready\n",
port->netdev->name);
#endif
netif_wake_queue(port->netdev);
}
}
}
static int eth_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct port *port = netdev_priv(dev);
unsigned int txreadyq = port->plat->txreadyq;
int len, offset, bytes, n;
void *mem;
u32 phys;
struct desc *desc;
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit\n", dev->name);
#endif
if (unlikely(skb->len > MAX_MRU)) {
dev_kfree_skb(skb);
port->stat.tx_errors++;
return NETDEV_TX_OK;
}
debug_pkt(dev, "eth_xmit", skb->data, skb->len);
len = skb->len;
#ifdef __ARMEB__
offset = 0; /* no need to keep alignment */
bytes = len;
mem = skb->data;
#else
offset = (int)skb->data & 3; /* keep 32-bit alignment */
bytes = ALIGN(offset + len, 4);
if (!(mem = kmalloc(bytes, GFP_ATOMIC))) {
dev_kfree_skb(skb);
port->stat.tx_dropped++;
return NETDEV_TX_OK;
}
memcpy_swab32(mem, (u32 *)((int)skb->data & ~3), bytes / 4);
dev_kfree_skb(skb);
#endif
phys = dma_map_single(&dev->dev, mem, bytes, DMA_TO_DEVICE);
if (dma_mapping_error(&dev->dev, phys)) {
#ifdef __ARMEB__
dev_kfree_skb(skb);
#else
kfree(mem);
#endif
port->stat.tx_dropped++;
return NETDEV_TX_OK;
}
n = queue_get_desc(txreadyq, port, 1);
BUG_ON(n < 0);
desc = tx_desc_ptr(port, n);
#ifdef __ARMEB__
port->tx_buff_tab[n] = skb;
#else
port->tx_buff_tab[n] = mem;
#endif
desc->data = phys + offset;
desc->buf_len = desc->pkt_len = len;
/* NPE firmware pads short frames with zeros internally */
wmb();
queue_put_desc(TX_QUEUE(port->id), tx_desc_phys(port, n), desc);
dev->trans_start = jiffies;
if (qmgr_stat_empty(txreadyq)) {
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit queue full\n", dev->name);
#endif
netif_stop_queue(dev);
/* we could miss TX ready interrupt */
if (!qmgr_stat_empty(txreadyq)) {
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit ready again\n",
dev->name);
#endif
netif_wake_queue(dev);
}
}
#if DEBUG_TX
printk(KERN_DEBUG "%s: eth_xmit end\n", dev->name);
#endif
return NETDEV_TX_OK;
}
static struct net_device_stats *eth_stats(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
return &port->stat;
}
static void eth_set_mcast_list(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct dev_mc_list *mclist = dev->mc_list;
u8 diffs[ETH_ALEN], *addr;
int cnt = dev->mc_count, i;
if ((dev->flags & IFF_PROMISC) || !mclist || !cnt) {
__raw_writel(DEFAULT_RX_CNTRL0 & ~RX_CNTRL0_ADDR_FLTR_EN,
&port->regs->rx_control[0]);
return;
}
memset(diffs, 0, ETH_ALEN);
addr = mclist->dmi_addr; /* first MAC address */
while (--cnt && (mclist = mclist->next))
for (i = 0; i < ETH_ALEN; i++)
diffs[i] |= addr[i] ^ mclist->dmi_addr[i];
for (i = 0; i < ETH_ALEN; i++) {
__raw_writel(addr[i], &port->regs->mcast_addr[i]);
__raw_writel(~diffs[i], &port->regs->mcast_mask[i]);
}
__raw_writel(DEFAULT_RX_CNTRL0 | RX_CNTRL0_ADDR_FLTR_EN,
&port->regs->rx_control[0]);
}
static int eth_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
struct port *port = netdev_priv(dev);
unsigned int duplex_chg;
int err;
if (!netif_running(dev))
return -EINVAL;
err = generic_mii_ioctl(&port->mii, if_mii(req), cmd, &duplex_chg);
if (duplex_chg)
eth_set_duplex(port);
return err;
}
static int request_queues(struct port *port)
{
int err;
err = qmgr_request_queue(RXFREE_QUEUE(port->id), RX_DESCS, 0, 0);
if (err)
return err;
err = qmgr_request_queue(port->plat->rxq, RX_DESCS, 0, 0);
if (err)
goto rel_rxfree;
err = qmgr_request_queue(TX_QUEUE(port->id), TX_DESCS, 0, 0);
if (err)
goto rel_rx;
err = qmgr_request_queue(port->plat->txreadyq, TX_DESCS, 0, 0);
if (err)
goto rel_tx;
/* TX-done queue handles skbs sent out by the NPEs */
if (!ports_open) {
err = qmgr_request_queue(TXDONE_QUEUE, TXDONE_QUEUE_LEN, 0, 0);
if (err)
goto rel_txready;
}
return 0;
rel_txready:
qmgr_release_queue(port->plat->txreadyq);
rel_tx:
qmgr_release_queue(TX_QUEUE(port->id));
rel_rx:
qmgr_release_queue(port->plat->rxq);
rel_rxfree:
qmgr_release_queue(RXFREE_QUEUE(port->id));
printk(KERN_DEBUG "%s: unable to request hardware queues\n",
port->netdev->name);
return err;
}
static void release_queues(struct port *port)
{
qmgr_release_queue(RXFREE_QUEUE(port->id));
qmgr_release_queue(port->plat->rxq);
qmgr_release_queue(TX_QUEUE(port->id));
qmgr_release_queue(port->plat->txreadyq);
if (!ports_open)
qmgr_release_queue(TXDONE_QUEUE);
}
static int init_queues(struct port *port)
{
int i;
if (!ports_open)
if (!(dma_pool = dma_pool_create(DRV_NAME, NULL,
POOL_ALLOC_SIZE, 32, 0)))
return -ENOMEM;
if (!(port->desc_tab = dma_pool_alloc(dma_pool, GFP_KERNEL,
&port->desc_tab_phys)))
return -ENOMEM;
memset(port->desc_tab, 0, POOL_ALLOC_SIZE);
memset(port->rx_buff_tab, 0, sizeof(port->rx_buff_tab)); /* tables */
memset(port->tx_buff_tab, 0, sizeof(port->tx_buff_tab));
/* Setup RX buffers */
for (i = 0; i < RX_DESCS; i++) {
struct desc *desc = rx_desc_ptr(port, i);
buffer_t *buff; /* skb or kmalloc()ated memory */
void *data;
#ifdef __ARMEB__
if (!(buff = netdev_alloc_skb(port->netdev, RX_BUFF_SIZE)))
return -ENOMEM;
data = buff->data;
#else
if (!(buff = kmalloc(RX_BUFF_SIZE, GFP_KERNEL)))
return -ENOMEM;
data = buff;
#endif
desc->buf_len = MAX_MRU;
desc->data = dma_map_single(&port->netdev->dev, data,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
if (dma_mapping_error(&port->netdev->dev, desc->data)) {
free_buffer(buff);
return -EIO;
}
desc->data += NET_IP_ALIGN;
port->rx_buff_tab[i] = buff;
}
return 0;
}
static void destroy_queues(struct port *port)
{
int i;
if (port->desc_tab) {
for (i = 0; i < RX_DESCS; i++) {
struct desc *desc = rx_desc_ptr(port, i);
buffer_t *buff = port->rx_buff_tab[i];
if (buff) {
dma_unmap_single(&port->netdev->dev,
desc->data - NET_IP_ALIGN,
RX_BUFF_SIZE, DMA_FROM_DEVICE);
free_buffer(buff);
}
}
for (i = 0; i < TX_DESCS; i++) {
struct desc *desc = tx_desc_ptr(port, i);
buffer_t *buff = port->tx_buff_tab[i];
if (buff) {
dma_unmap_tx(port, desc);
free_buffer(buff);
}
}
dma_pool_free(dma_pool, port->desc_tab, port->desc_tab_phys);
port->desc_tab = NULL;
}
if (!ports_open && dma_pool) {
dma_pool_destroy(dma_pool);
dma_pool = NULL;
}
}
static int eth_open(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct npe *npe = port->npe;
struct msg msg;
int i, err;
if (!npe_running(npe)) {
err = npe_load_firmware(npe, npe_name(npe), &dev->dev);
if (err)
return err;
if (npe_recv_message(npe, &msg, "ETH_GET_STATUS")) {
printk(KERN_ERR "%s: %s not responding\n", dev->name,
npe_name(npe));
return -EIO;
}
}
mdio_write(dev, port->plat->phy, MII_BMCR, port->mii_bmcr);
memset(&msg, 0, sizeof(msg));
msg.cmd = NPE_VLAN_SETRXQOSENTRY;
msg.eth_id = port->id;
msg.byte5 = port->plat->rxq | 0x80;
msg.byte7 = port->plat->rxq << 4;
for (i = 0; i < 8; i++) {
msg.byte3 = i;
if (npe_send_recv_message(port->npe, &msg, "ETH_SET_RXQ"))
return -EIO;
}
msg.cmd = NPE_EDB_SETPORTADDRESS;
msg.eth_id = PHYSICAL_ID(port->id);
msg.byte2 = dev->dev_addr[0];
msg.byte3 = dev->dev_addr[1];
msg.byte4 = dev->dev_addr[2];
msg.byte5 = dev->dev_addr[3];
msg.byte6 = dev->dev_addr[4];
msg.byte7 = dev->dev_addr[5];
if (npe_send_recv_message(port->npe, &msg, "ETH_SET_MAC"))
return -EIO;
memset(&msg, 0, sizeof(msg));
msg.cmd = NPE_FW_SETFIREWALLMODE;
msg.eth_id = port->id;
if (npe_send_recv_message(port->npe, &msg, "ETH_SET_FIREWALL_MODE"))
return -EIO;
if ((err = request_queues(port)) != 0)
return err;
if ((err = init_queues(port)) != 0) {
destroy_queues(port);
release_queues(port);
return err;
}
for (i = 0; i < ETH_ALEN; i++)
__raw_writel(dev->dev_addr[i], &port->regs->hw_addr[i]);
__raw_writel(0x08, &port->regs->random_seed);
__raw_writel(0x12, &port->regs->partial_empty_threshold);
__raw_writel(0x30, &port->regs->partial_full_threshold);
__raw_writel(0x08, &port->regs->tx_start_bytes);
__raw_writel(0x15, &port->regs->tx_deferral);
__raw_writel(0x08, &port->regs->tx_2part_deferral[0]);
__raw_writel(0x07, &port->regs->tx_2part_deferral[1]);
__raw_writel(0x80, &port->regs->slot_time);
__raw_writel(0x01, &port->regs->int_clock_threshold);
/* Populate queues with buffers, no failure after this point */
for (i = 0; i < TX_DESCS; i++)
queue_put_desc(port->plat->txreadyq,
tx_desc_phys(port, i), tx_desc_ptr(port, i));
for (i = 0; i < RX_DESCS; i++)
queue_put_desc(RXFREE_QUEUE(port->id),
rx_desc_phys(port, i), rx_desc_ptr(port, i));
__raw_writel(TX_CNTRL1_RETRIES, &port->regs->tx_control[1]);
__raw_writel(DEFAULT_TX_CNTRL0, &port->regs->tx_control[0]);
__raw_writel(0, &port->regs->rx_control[1]);
__raw_writel(DEFAULT_RX_CNTRL0, &port->regs->rx_control[0]);
napi_enable(&port->napi);
phy_check_media(port, 1);
eth_set_mcast_list(dev);
netif_start_queue(dev);
schedule_delayed_work(&port->mdio_thread, MDIO_INTERVAL);
qmgr_set_irq(port->plat->rxq, QUEUE_IRQ_SRC_NOT_EMPTY,
eth_rx_irq, dev);
if (!ports_open) {
qmgr_set_irq(TXDONE_QUEUE, QUEUE_IRQ_SRC_NOT_EMPTY,
eth_txdone_irq, NULL);
qmgr_enable_irq(TXDONE_QUEUE);
}
ports_open++;
/* we may already have RX data, enables IRQ */
netif_rx_schedule(dev, &port->napi);
return 0;
}
static int eth_close(struct net_device *dev)
{
struct port *port = netdev_priv(dev);
struct msg msg;
int buffs = RX_DESCS; /* allocated RX buffers */
int i;
ports_open--;
qmgr_disable_irq(port->plat->rxq);
napi_disable(&port->napi);
netif_stop_queue(dev);
while (queue_get_desc(RXFREE_QUEUE(port->id), port, 0) >= 0)
buffs--;
memset(&msg, 0, sizeof(msg));
msg.cmd = NPE_SETLOOPBACK_MODE;
msg.eth_id = port->id;
msg.byte3 = 1;
if (npe_send_recv_message(port->npe, &msg, "ETH_ENABLE_LOOPBACK"))
printk(KERN_CRIT "%s: unable to enable loopback\n", dev->name);
i = 0;
do { /* drain RX buffers */
while (queue_get_desc(port->plat->rxq, port, 0) >= 0)
buffs--;
if (!buffs)
break;
if (qmgr_stat_empty(TX_QUEUE(port->id))) {
/* we have to inject some packet */
struct desc *desc;
u32 phys;
int n = queue_get_desc(port->plat->txreadyq, port, 1);
BUG_ON(n < 0);
desc = tx_desc_ptr(port, n);
phys = tx_desc_phys(port, n);
desc->buf_len = desc->pkt_len = 1;
wmb();
queue_put_desc(TX_QUEUE(port->id), phys, desc);
}
udelay(1);
} while (++i < MAX_CLOSE_WAIT);
if (buffs)
printk(KERN_CRIT "%s: unable to drain RX queue, %i buffer(s)"
" left in NPE\n", dev->name, buffs);
#if DEBUG_CLOSE
if (!buffs)
printk(KERN_DEBUG "Draining RX queue took %i cycles\n", i);
#endif
buffs = TX_DESCS;
while (queue_get_desc(TX_QUEUE(port->id), port, 1) >= 0)
buffs--; /* cancel TX */
i = 0;
do {
while (queue_get_desc(port->plat->txreadyq, port, 1) >= 0)
buffs--;
if (!buffs)
break;
} while (++i < MAX_CLOSE_WAIT);
if (buffs)
printk(KERN_CRIT "%s: unable to drain TX queue, %i buffer(s) "
"left in NPE\n", dev->name, buffs);
#if DEBUG_CLOSE
if (!buffs)
printk(KERN_DEBUG "Draining TX queues took %i cycles\n", i);
#endif
msg.byte3 = 0;
if (npe_send_recv_message(port->npe, &msg, "ETH_DISABLE_LOOPBACK"))
printk(KERN_CRIT "%s: unable to disable loopback\n",
dev->name);
port->mii_bmcr = mdio_read(dev, port->plat->phy, MII_BMCR) &
~(BMCR_RESET | BMCR_PDOWN); /* may have been altered */
mdio_write(dev, port->plat->phy, MII_BMCR,
port->mii_bmcr | BMCR_PDOWN);
if (!ports_open)
qmgr_disable_irq(TXDONE_QUEUE);
cancel_rearming_delayed_work(&port->mdio_thread);
destroy_queues(port);
release_queues(port);
return 0;
}
static int __devinit eth_init_one(struct platform_device *pdev)
{
struct port *port;
struct net_device *dev;
struct eth_plat_info *plat = pdev->dev.platform_data;
u32 regs_phys;
int err;
if (!(dev = alloc_etherdev(sizeof(struct port))))
return -ENOMEM;
SET_NETDEV_DEV(dev, &pdev->dev);
port = netdev_priv(dev);
port->netdev = dev;
port->id = pdev->id;
switch (port->id) {
case IXP4XX_ETH_NPEA:
port->regs = (struct eth_regs __iomem *)IXP4XX_EthA_BASE_VIRT;
regs_phys = IXP4XX_EthA_BASE_PHYS;
break;
case IXP4XX_ETH_NPEB:
port->regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
regs_phys = IXP4XX_EthB_BASE_PHYS;
break;
case IXP4XX_ETH_NPEC:
port->regs = (struct eth_regs __iomem *)IXP4XX_EthC_BASE_VIRT;
regs_phys = IXP4XX_EthC_BASE_PHYS;
break;
default:
err = -ENOSYS;
goto err_free;
}
dev->open = eth_open;
dev->hard_start_xmit = eth_xmit;
dev->stop = eth_close;
dev->get_stats = eth_stats;
dev->do_ioctl = eth_ioctl;
dev->set_multicast_list = eth_set_mcast_list;
dev->tx_queue_len = 100;
netif_napi_add(dev, &port->napi, eth_poll, NAPI_WEIGHT);
if (!(port->npe = npe_request(NPE_ID(port->id)))) {
err = -EIO;
goto err_free;
}
if (register_netdev(dev)) {
err = -EIO;
goto err_npe_rel;
}
port->mem_res = request_mem_region(regs_phys, REGS_SIZE, dev->name);
if (!port->mem_res) {
err = -EBUSY;
goto err_unreg;
}
port->plat = plat;
npe_port_tab[NPE_ID(port->id)] = port;
memcpy(dev->dev_addr, plat->hwaddr, ETH_ALEN);
platform_set_drvdata(pdev, dev);
__raw_writel(DEFAULT_CORE_CNTRL | CORE_RESET,
&port->regs->core_control);
udelay(50);
__raw_writel(DEFAULT_CORE_CNTRL, &port->regs->core_control);
udelay(50);
port->mii.dev = dev;
port->mii.mdio_read = mdio_read;
port->mii.mdio_write = mdio_write;
port->mii.phy_id = plat->phy;
port->mii.phy_id_mask = 0x1F;
port->mii.reg_num_mask = 0x1F;
printk(KERN_INFO "%s: MII PHY %i on %s\n", dev->name, plat->phy,
npe_name(port->npe));
phy_reset(dev, plat->phy);
port->mii_bmcr = mdio_read(dev, plat->phy, MII_BMCR) &
~(BMCR_RESET | BMCR_PDOWN);
mdio_write(dev, plat->phy, MII_BMCR, port->mii_bmcr | BMCR_PDOWN);
INIT_DELAYED_WORK(&port->mdio_thread, mdio_thread);
return 0;
err_unreg:
unregister_netdev(dev);
err_npe_rel:
npe_release(port->npe);
err_free:
free_netdev(dev);
return err;
}
static int __devexit eth_remove_one(struct platform_device *pdev)
{
struct net_device *dev = platform_get_drvdata(pdev);
struct port *port = netdev_priv(dev);
unregister_netdev(dev);
npe_port_tab[NPE_ID(port->id)] = NULL;
platform_set_drvdata(pdev, NULL);
npe_release(port->npe);
release_resource(port->mem_res);
free_netdev(dev);
return 0;
}
static struct platform_driver drv = {
.driver.name = DRV_NAME,
.probe = eth_init_one,
.remove = eth_remove_one,
};
static int __init eth_init_module(void)
{
if (!(ixp4xx_read_feature_bits() & IXP4XX_FEATURE_NPEB_ETH0))
return -ENOSYS;
/* All MII PHY accesses use NPE-B Ethernet registers */
spin_lock_init(&mdio_lock);
mdio_regs = (struct eth_regs __iomem *)IXP4XX_EthB_BASE_VIRT;
__raw_writel(DEFAULT_CORE_CNTRL, &mdio_regs->core_control);
return platform_driver_register(&drv);
}
static void __exit eth_cleanup_module(void)
{
platform_driver_unregister(&drv);
}
MODULE_AUTHOR("Krzysztof Halasa");
MODULE_DESCRIPTION("Intel IXP4xx Ethernet driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:ixp4xx_eth");
module_init(eth_init_module);
module_exit(eth_cleanup_module);