kernel-ark/drivers/mmc/host/mmci.c
Russell King 74bc80931c ARM: Fix Versatile/Realview/VExpress MMC card detection sense
The MMC card detection sense has become really confused with negations
at various levels, leading to some platforms not detecting inserted
cards.  Fix this by converting everything to positive logic throughout,
thereby getting rid of these negations.

Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
2010-07-30 23:16:32 +01:00

907 lines
20 KiB
C

/*
* linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
*
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
* Copyright (C) 2010 ST-Ericsson AB.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/log2.h>
#include <linux/mmc/host.h>
#include <linux/amba/bus.h>
#include <linux/clk.h>
#include <linux/scatterlist.h>
#include <linux/gpio.h>
#include <linux/amba/mmci.h>
#include <linux/regulator/consumer.h>
#include <asm/cacheflush.h>
#include <asm/div64.h>
#include <asm/io.h>
#include <asm/sizes.h>
#include "mmci.h"
#define DRIVER_NAME "mmci-pl18x"
static unsigned int fmax = 515633;
/*
* This must be called with host->lock held
*/
static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
{
u32 clk = 0;
if (desired) {
if (desired >= host->mclk) {
clk = MCI_CLK_BYPASS;
host->cclk = host->mclk;
} else {
clk = host->mclk / (2 * desired) - 1;
if (clk >= 256)
clk = 255;
host->cclk = host->mclk / (2 * (clk + 1));
}
if (host->hw_designer == AMBA_VENDOR_ST)
clk |= MCI_ST_FCEN; /* Bug fix in ST IP block */
clk |= MCI_CLK_ENABLE;
/* This hasn't proven to be worthwhile */
/* clk |= MCI_CLK_PWRSAVE; */
}
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
clk |= MCI_4BIT_BUS;
if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
clk |= MCI_ST_8BIT_BUS;
writel(clk, host->base + MMCICLOCK);
}
static void
mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
{
writel(0, host->base + MMCICOMMAND);
BUG_ON(host->data);
host->mrq = NULL;
host->cmd = NULL;
if (mrq->data)
mrq->data->bytes_xfered = host->data_xfered;
/*
* Need to drop the host lock here; mmc_request_done may call
* back into the driver...
*/
spin_unlock(&host->lock);
mmc_request_done(host->mmc, mrq);
spin_lock(&host->lock);
}
static void mmci_stop_data(struct mmci_host *host)
{
writel(0, host->base + MMCIDATACTRL);
writel(0, host->base + MMCIMASK1);
host->data = NULL;
}
static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
{
unsigned int datactrl, timeout, irqmask;
unsigned long long clks;
void __iomem *base;
int blksz_bits;
dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
data->blksz, data->blocks, data->flags);
host->data = data;
host->size = data->blksz;
host->data_xfered = 0;
mmci_init_sg(host, data);
clks = (unsigned long long)data->timeout_ns * host->cclk;
do_div(clks, 1000000000UL);
timeout = data->timeout_clks + (unsigned int)clks;
base = host->base;
writel(timeout, base + MMCIDATATIMER);
writel(host->size, base + MMCIDATALENGTH);
blksz_bits = ffs(data->blksz) - 1;
BUG_ON(1 << blksz_bits != data->blksz);
datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
if (data->flags & MMC_DATA_READ) {
datactrl |= MCI_DPSM_DIRECTION;
irqmask = MCI_RXFIFOHALFFULLMASK;
/*
* If we have less than a FIFOSIZE of bytes to transfer,
* trigger a PIO interrupt as soon as any data is available.
*/
if (host->size < MCI_FIFOSIZE)
irqmask |= MCI_RXDATAAVLBLMASK;
} else {
/*
* We don't actually need to include "FIFO empty" here
* since its implicit in "FIFO half empty".
*/
irqmask = MCI_TXFIFOHALFEMPTYMASK;
}
writel(datactrl, base + MMCIDATACTRL);
writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
writel(irqmask, base + MMCIMASK1);
}
static void
mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
{
void __iomem *base = host->base;
dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
cmd->opcode, cmd->arg, cmd->flags);
if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
writel(0, base + MMCICOMMAND);
udelay(1);
}
c |= cmd->opcode | MCI_CPSM_ENABLE;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136)
c |= MCI_CPSM_LONGRSP;
c |= MCI_CPSM_RESPONSE;
}
if (/*interrupt*/0)
c |= MCI_CPSM_INTERRUPT;
host->cmd = cmd;
writel(cmd->arg, base + MMCIARGUMENT);
writel(c, base + MMCICOMMAND);
}
static void
mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
unsigned int status)
{
if (status & MCI_DATABLOCKEND) {
host->data_xfered += data->blksz;
#ifdef CONFIG_ARCH_U300
/*
* On the U300 some signal or other is
* badly routed so that a data write does
* not properly terminate with a MCI_DATAEND
* status flag. This quirk will make writes
* work again.
*/
if (data->flags & MMC_DATA_WRITE)
status |= MCI_DATAEND;
#endif
}
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ (status %08x)\n", status);
if (status & MCI_DATACRCFAIL)
data->error = -EILSEQ;
else if (status & MCI_DATATIMEOUT)
data->error = -ETIMEDOUT;
else if (status & (MCI_TXUNDERRUN|MCI_RXOVERRUN))
data->error = -EIO;
status |= MCI_DATAEND;
/*
* We hit an error condition. Ensure that any data
* partially written to a page is properly coherent.
*/
if (host->sg_len && data->flags & MMC_DATA_READ)
flush_dcache_page(sg_page(host->sg_ptr));
}
if (status & MCI_DATAEND) {
mmci_stop_data(host);
if (!data->stop) {
mmci_request_end(host, data->mrq);
} else {
mmci_start_command(host, data->stop, 0);
}
}
}
static void
mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
unsigned int status)
{
void __iomem *base = host->base;
host->cmd = NULL;
cmd->resp[0] = readl(base + MMCIRESPONSE0);
cmd->resp[1] = readl(base + MMCIRESPONSE1);
cmd->resp[2] = readl(base + MMCIRESPONSE2);
cmd->resp[3] = readl(base + MMCIRESPONSE3);
if (status & MCI_CMDTIMEOUT) {
cmd->error = -ETIMEDOUT;
} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
cmd->error = -EILSEQ;
}
if (!cmd->data || cmd->error) {
if (host->data)
mmci_stop_data(host);
mmci_request_end(host, cmd->mrq);
} else if (!(cmd->data->flags & MMC_DATA_READ)) {
mmci_start_data(host, cmd->data);
}
}
static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
{
void __iomem *base = host->base;
char *ptr = buffer;
u32 status;
int host_remain = host->size;
do {
int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
if (count > remain)
count = remain;
if (count <= 0)
break;
readsl(base + MMCIFIFO, ptr, count >> 2);
ptr += count;
remain -= count;
host_remain -= count;
if (remain == 0)
break;
status = readl(base + MMCISTATUS);
} while (status & MCI_RXDATAAVLBL);
return ptr - buffer;
}
static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
{
void __iomem *base = host->base;
char *ptr = buffer;
do {
unsigned int count, maxcnt;
maxcnt = status & MCI_TXFIFOEMPTY ? MCI_FIFOSIZE : MCI_FIFOHALFSIZE;
count = min(remain, maxcnt);
writesl(base + MMCIFIFO, ptr, count >> 2);
ptr += count;
remain -= count;
if (remain == 0)
break;
status = readl(base + MMCISTATUS);
} while (status & MCI_TXFIFOHALFEMPTY);
return ptr - buffer;
}
/*
* PIO data transfer IRQ handler.
*/
static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
{
struct mmci_host *host = dev_id;
void __iomem *base = host->base;
u32 status;
status = readl(base + MMCISTATUS);
dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
do {
unsigned long flags;
unsigned int remain, len;
char *buffer;
/*
* For write, we only need to test the half-empty flag
* here - if the FIFO is completely empty, then by
* definition it is more than half empty.
*
* For read, check for data available.
*/
if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
break;
/*
* Map the current scatter buffer.
*/
buffer = mmci_kmap_atomic(host, &flags) + host->sg_off;
remain = host->sg_ptr->length - host->sg_off;
len = 0;
if (status & MCI_RXACTIVE)
len = mmci_pio_read(host, buffer, remain);
if (status & MCI_TXACTIVE)
len = mmci_pio_write(host, buffer, remain, status);
/*
* Unmap the buffer.
*/
mmci_kunmap_atomic(host, buffer, &flags);
host->sg_off += len;
host->size -= len;
remain -= len;
if (remain)
break;
/*
* If we were reading, and we have completed this
* page, ensure that the data cache is coherent.
*/
if (status & MCI_RXACTIVE)
flush_dcache_page(sg_page(host->sg_ptr));
if (!mmci_next_sg(host))
break;
status = readl(base + MMCISTATUS);
} while (1);
/*
* If we're nearing the end of the read, switch to
* "any data available" mode.
*/
if (status & MCI_RXACTIVE && host->size < MCI_FIFOSIZE)
writel(MCI_RXDATAAVLBLMASK, base + MMCIMASK1);
/*
* If we run out of data, disable the data IRQs; this
* prevents a race where the FIFO becomes empty before
* the chip itself has disabled the data path, and
* stops us racing with our data end IRQ.
*/
if (host->size == 0) {
writel(0, base + MMCIMASK1);
writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
}
return IRQ_HANDLED;
}
/*
* Handle completion of command and data transfers.
*/
static irqreturn_t mmci_irq(int irq, void *dev_id)
{
struct mmci_host *host = dev_id;
u32 status;
int ret = 0;
spin_lock(&host->lock);
do {
struct mmc_command *cmd;
struct mmc_data *data;
status = readl(host->base + MMCISTATUS);
status &= readl(host->base + MMCIMASK0);
writel(status, host->base + MMCICLEAR);
dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
data = host->data;
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
mmci_data_irq(host, data, status);
cmd = host->cmd;
if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
mmci_cmd_irq(host, cmd, status);
ret = 1;
} while (status);
spin_unlock(&host->lock);
return IRQ_RETVAL(ret);
}
static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mmci_host *host = mmc_priv(mmc);
unsigned long flags;
WARN_ON(host->mrq != NULL);
if (mrq->data && !is_power_of_2(mrq->data->blksz)) {
dev_err(mmc_dev(mmc), "unsupported block size (%d bytes)\n",
mrq->data->blksz);
mrq->cmd->error = -EINVAL;
mmc_request_done(mmc, mrq);
return;
}
spin_lock_irqsave(&host->lock, flags);
host->mrq = mrq;
if (mrq->data && mrq->data->flags & MMC_DATA_READ)
mmci_start_data(host, mrq->data);
mmci_start_command(host, mrq->cmd, 0);
spin_unlock_irqrestore(&host->lock, flags);
}
static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmci_host *host = mmc_priv(mmc);
u32 pwr = 0;
unsigned long flags;
switch (ios->power_mode) {
case MMC_POWER_OFF:
if(host->vcc &&
regulator_is_enabled(host->vcc))
regulator_disable(host->vcc);
break;
case MMC_POWER_UP:
#ifdef CONFIG_REGULATOR
if (host->vcc)
/* This implicitly enables the regulator */
mmc_regulator_set_ocr(host->vcc, ios->vdd);
#endif
/*
* The translate_vdd function is not used if you have
* an external regulator, or your design is really weird.
* Using it would mean sending in power control BOTH using
* a regulator AND the 4 MMCIPWR bits. If we don't have
* a regulator, we might have some other platform specific
* power control behind this translate function.
*/
if (!host->vcc && host->plat->translate_vdd)
pwr |= host->plat->translate_vdd(mmc_dev(mmc), ios->vdd);
/* The ST version does not have this, fall through to POWER_ON */
if (host->hw_designer != AMBA_VENDOR_ST) {
pwr |= MCI_PWR_UP;
break;
}
case MMC_POWER_ON:
pwr |= MCI_PWR_ON;
break;
}
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
if (host->hw_designer != AMBA_VENDOR_ST)
pwr |= MCI_ROD;
else {
/*
* The ST Micro variant use the ROD bit for something
* else and only has OD (Open Drain).
*/
pwr |= MCI_OD;
}
}
spin_lock_irqsave(&host->lock, flags);
mmci_set_clkreg(host, ios->clock);
if (host->pwr != pwr) {
host->pwr = pwr;
writel(pwr, host->base + MMCIPOWER);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static int mmci_get_ro(struct mmc_host *mmc)
{
struct mmci_host *host = mmc_priv(mmc);
if (host->gpio_wp == -ENOSYS)
return -ENOSYS;
return gpio_get_value(host->gpio_wp);
}
static int mmci_get_cd(struct mmc_host *mmc)
{
struct mmci_host *host = mmc_priv(mmc);
unsigned int status;
if (host->gpio_cd == -ENOSYS)
status = host->plat->status(mmc_dev(host->mmc));
else
status = !gpio_get_value(host->gpio_cd);
/*
* Use positive logic throughout - status is zero for no card,
* non-zero for card inserted.
*/
return status;
}
static const struct mmc_host_ops mmci_ops = {
.request = mmci_request,
.set_ios = mmci_set_ios,
.get_ro = mmci_get_ro,
.get_cd = mmci_get_cd,
};
static void mmci_check_status(unsigned long data)
{
struct mmci_host *host = (struct mmci_host *)data;
unsigned int status = mmci_get_cd(host->mmc);
if (status ^ host->oldstat)
mmc_detect_change(host->mmc, 0);
host->oldstat = status;
mod_timer(&host->timer, jiffies + HZ);
}
static int __devinit mmci_probe(struct amba_device *dev, struct amba_id *id)
{
struct mmci_platform_data *plat = dev->dev.platform_data;
struct mmci_host *host;
struct mmc_host *mmc;
int ret;
/* must have platform data */
if (!plat) {
ret = -EINVAL;
goto out;
}
ret = amba_request_regions(dev, DRIVER_NAME);
if (ret)
goto out;
mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
if (!mmc) {
ret = -ENOMEM;
goto rel_regions;
}
host = mmc_priv(mmc);
host->mmc = mmc;
host->gpio_wp = -ENOSYS;
host->gpio_cd = -ENOSYS;
host->hw_designer = amba_manf(dev);
host->hw_revision = amba_rev(dev);
dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
host->clk = clk_get(&dev->dev, NULL);
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
host->clk = NULL;
goto host_free;
}
ret = clk_enable(host->clk);
if (ret)
goto clk_free;
host->plat = plat;
host->mclk = clk_get_rate(host->clk);
/*
* According to the spec, mclk is max 100 MHz,
* so we try to adjust the clock down to this,
* (if possible).
*/
if (host->mclk > 100000000) {
ret = clk_set_rate(host->clk, 100000000);
if (ret < 0)
goto clk_disable;
host->mclk = clk_get_rate(host->clk);
dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
host->mclk);
}
host->base = ioremap(dev->res.start, resource_size(&dev->res));
if (!host->base) {
ret = -ENOMEM;
goto clk_disable;
}
mmc->ops = &mmci_ops;
mmc->f_min = (host->mclk + 511) / 512;
/*
* If the platform data supplies a maximum operating
* frequency, this takes precedence. Else, we fall back
* to using the module parameter, which has a (low)
* default value in case it is not specified. Either
* value must not exceed the clock rate into the block,
* of course.
*/
if (plat->f_max)
mmc->f_max = min(host->mclk, plat->f_max);
else
mmc->f_max = min(host->mclk, fmax);
dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
#ifdef CONFIG_REGULATOR
/* If we're using the regulator framework, try to fetch a regulator */
host->vcc = regulator_get(&dev->dev, "vmmc");
if (IS_ERR(host->vcc))
host->vcc = NULL;
else {
int mask = mmc_regulator_get_ocrmask(host->vcc);
if (mask < 0)
dev_err(&dev->dev, "error getting OCR mask (%d)\n",
mask);
else {
host->mmc->ocr_avail = (u32) mask;
if (plat->ocr_mask)
dev_warn(&dev->dev,
"Provided ocr_mask/setpower will not be used "
"(using regulator instead)\n");
}
}
#endif
/* Fall back to platform data if no regulator is found */
if (host->vcc == NULL)
mmc->ocr_avail = plat->ocr_mask;
mmc->caps = plat->capabilities;
/*
* We can do SGIO
*/
mmc->max_hw_segs = 16;
mmc->max_phys_segs = NR_SG;
/*
* Since we only have a 16-bit data length register, we must
* ensure that we don't exceed 2^16-1 bytes in a single request.
*/
mmc->max_req_size = 65535;
/*
* Set the maximum segment size. Since we aren't doing DMA
* (yet) we are only limited by the data length register.
*/
mmc->max_seg_size = mmc->max_req_size;
/*
* Block size can be up to 2048 bytes, but must be a power of two.
*/
mmc->max_blk_size = 2048;
/*
* No limit on the number of blocks transferred.
*/
mmc->max_blk_count = mmc->max_req_size;
spin_lock_init(&host->lock);
writel(0, host->base + MMCIMASK0);
writel(0, host->base + MMCIMASK1);
writel(0xfff, host->base + MMCICLEAR);
if (gpio_is_valid(plat->gpio_cd)) {
ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
if (ret == 0)
ret = gpio_direction_input(plat->gpio_cd);
if (ret == 0)
host->gpio_cd = plat->gpio_cd;
else if (ret != -ENOSYS)
goto err_gpio_cd;
}
if (gpio_is_valid(plat->gpio_wp)) {
ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
if (ret == 0)
ret = gpio_direction_input(plat->gpio_wp);
if (ret == 0)
host->gpio_wp = plat->gpio_wp;
else if (ret != -ENOSYS)
goto err_gpio_wp;
}
ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
if (ret)
goto unmap;
ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED, DRIVER_NAME " (pio)", host);
if (ret)
goto irq0_free;
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
amba_set_drvdata(dev, mmc);
host->oldstat = mmci_get_cd(host->mmc);
mmc_add_host(mmc);
dev_info(&dev->dev, "%s: MMCI rev %x cfg %02x at 0x%016llx irq %d,%d\n",
mmc_hostname(mmc), amba_rev(dev), amba_config(dev),
(unsigned long long)dev->res.start, dev->irq[0], dev->irq[1]);
init_timer(&host->timer);
host->timer.data = (unsigned long)host;
host->timer.function = mmci_check_status;
host->timer.expires = jiffies + HZ;
add_timer(&host->timer);
return 0;
irq0_free:
free_irq(dev->irq[0], host);
unmap:
if (host->gpio_wp != -ENOSYS)
gpio_free(host->gpio_wp);
err_gpio_wp:
if (host->gpio_cd != -ENOSYS)
gpio_free(host->gpio_cd);
err_gpio_cd:
iounmap(host->base);
clk_disable:
clk_disable(host->clk);
clk_free:
clk_put(host->clk);
host_free:
mmc_free_host(mmc);
rel_regions:
amba_release_regions(dev);
out:
return ret;
}
static int __devexit mmci_remove(struct amba_device *dev)
{
struct mmc_host *mmc = amba_get_drvdata(dev);
amba_set_drvdata(dev, NULL);
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
del_timer_sync(&host->timer);
mmc_remove_host(mmc);
writel(0, host->base + MMCIMASK0);
writel(0, host->base + MMCIMASK1);
writel(0, host->base + MMCICOMMAND);
writel(0, host->base + MMCIDATACTRL);
free_irq(dev->irq[0], host);
free_irq(dev->irq[1], host);
if (host->gpio_wp != -ENOSYS)
gpio_free(host->gpio_wp);
if (host->gpio_cd != -ENOSYS)
gpio_free(host->gpio_cd);
iounmap(host->base);
clk_disable(host->clk);
clk_put(host->clk);
if (regulator_is_enabled(host->vcc))
regulator_disable(host->vcc);
regulator_put(host->vcc);
mmc_free_host(mmc);
amba_release_regions(dev);
}
return 0;
}
#ifdef CONFIG_PM
static int mmci_suspend(struct amba_device *dev, pm_message_t state)
{
struct mmc_host *mmc = amba_get_drvdata(dev);
int ret = 0;
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
ret = mmc_suspend_host(mmc);
if (ret == 0)
writel(0, host->base + MMCIMASK0);
}
return ret;
}
static int mmci_resume(struct amba_device *dev)
{
struct mmc_host *mmc = amba_get_drvdata(dev);
int ret = 0;
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
ret = mmc_resume_host(mmc);
}
return ret;
}
#else
#define mmci_suspend NULL
#define mmci_resume NULL
#endif
static struct amba_id mmci_ids[] = {
{
.id = 0x00041180,
.mask = 0x000fffff,
},
{
.id = 0x00041181,
.mask = 0x000fffff,
},
/* ST Micro variants */
{
.id = 0x00180180,
.mask = 0x00ffffff,
},
{
.id = 0x00280180,
.mask = 0x00ffffff,
},
{ 0, 0 },
};
static struct amba_driver mmci_driver = {
.drv = {
.name = DRIVER_NAME,
},
.probe = mmci_probe,
.remove = __devexit_p(mmci_remove),
.suspend = mmci_suspend,
.resume = mmci_resume,
.id_table = mmci_ids,
};
static int __init mmci_init(void)
{
return amba_driver_register(&mmci_driver);
}
static void __exit mmci_exit(void)
{
amba_driver_unregister(&mmci_driver);
}
module_init(mmci_init);
module_exit(mmci_exit);
module_param(fmax, uint, 0444);
MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
MODULE_LICENSE("GPL");