kernel-ark/drivers/ieee1394/pcilynx.c
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

1983 lines
65 KiB
C

/*
* pcilynx.c - Texas Instruments PCILynx driver
* Copyright (C) 1999,2000 Andreas Bombe <andreas.bombe@munich.netsurf.de>,
* Stephan Linz <linz@mazet.de>
* Manfred Weihs <weihs@ict.tuwien.ac.at>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* Contributions:
*
* Manfred Weihs <weihs@ict.tuwien.ac.at>
* reading bus info block (containing GUID) from serial
* eeprom via i2c and storing it in config ROM
* Reworked code for initiating bus resets
* (long, short, with or without hold-off)
* Enhancements in async and iso send code
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/fs.h>
#include <linux/poll.h>
#include <linux/kdev_t.h>
#include <asm/byteorder.h>
#include <asm/atomic.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/irq.h>
#include "csr1212.h"
#include "ieee1394.h"
#include "ieee1394_types.h"
#include "hosts.h"
#include "ieee1394_core.h"
#include "highlevel.h"
#include "pcilynx.h"
#include <linux/i2c.h>
#include <linux/i2c-algo-bit.h>
/* print general (card independent) information */
#define PRINT_G(level, fmt, args...) printk(level "pcilynx: " fmt "\n" , ## args)
/* print card specific information */
#define PRINT(level, card, fmt, args...) printk(level "pcilynx%d: " fmt "\n" , card , ## args)
#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
#define PRINT_GD(level, fmt, args...) printk(level "pcilynx: " fmt "\n" , ## args)
#define PRINTD(level, card, fmt, args...) printk(level "pcilynx%d: " fmt "\n" , card , ## args)
#else
#define PRINT_GD(level, fmt, args...) do {} while (0)
#define PRINTD(level, card, fmt, args...) do {} while (0)
#endif
/* Module Parameters */
static int skip_eeprom = 0;
module_param(skip_eeprom, int, 0444);
MODULE_PARM_DESC(skip_eeprom, "Use generic bus info block instead of serial eeprom (default = 0).");
static struct hpsb_host_driver lynx_driver;
static unsigned int card_id;
/*
* I2C stuff
*/
/* the i2c stuff was inspired by i2c-philips-par.c */
static void bit_setscl(void *data, int state)
{
if (state) {
((struct ti_lynx *) data)->i2c_driven_state |= 0x00000040;
} else {
((struct ti_lynx *) data)->i2c_driven_state &= ~0x00000040;
}
reg_write((struct ti_lynx *) data, SERIAL_EEPROM_CONTROL, ((struct ti_lynx *) data)->i2c_driven_state);
}
static void bit_setsda(void *data, int state)
{
if (state) {
((struct ti_lynx *) data)->i2c_driven_state |= 0x00000010;
} else {
((struct ti_lynx *) data)->i2c_driven_state &= ~0x00000010;
}
reg_write((struct ti_lynx *) data, SERIAL_EEPROM_CONTROL, ((struct ti_lynx *) data)->i2c_driven_state);
}
static int bit_getscl(void *data)
{
return reg_read((struct ti_lynx *) data, SERIAL_EEPROM_CONTROL) & 0x00000040;
}
static int bit_getsda(void *data)
{
return reg_read((struct ti_lynx *) data, SERIAL_EEPROM_CONTROL) & 0x00000010;
}
static int bit_reg(struct i2c_client *client)
{
return 0;
}
static int bit_unreg(struct i2c_client *client)
{
return 0;
}
static struct i2c_algo_bit_data bit_data = {
.setsda = bit_setsda,
.setscl = bit_setscl,
.getsda = bit_getsda,
.getscl = bit_getscl,
.udelay = 5,
.mdelay = 5,
.timeout = 100,
};
static struct i2c_adapter bit_ops = {
.id = 0xAA, //FIXME: probably we should get an id in i2c-id.h
.client_register = bit_reg,
.client_unregister = bit_unreg,
.name = "PCILynx I2C",
};
/*
* PCL handling functions.
*/
static pcl_t alloc_pcl(struct ti_lynx *lynx)
{
u8 m;
int i, j;
spin_lock(&lynx->lock);
/* FIXME - use ffz() to make this readable */
for (i = 0; i < (LOCALRAM_SIZE / 1024); i++) {
m = lynx->pcl_bmap[i];
for (j = 0; j < 8; j++) {
if (m & 1<<j) {
continue;
}
m |= 1<<j;
lynx->pcl_bmap[i] = m;
spin_unlock(&lynx->lock);
return 8 * i + j;
}
}
spin_unlock(&lynx->lock);
return -1;
}
#if 0
static void free_pcl(struct ti_lynx *lynx, pcl_t pclid)
{
int off, bit;
off = pclid / 8;
bit = pclid % 8;
if (pclid < 0) {
return;
}
spin_lock(&lynx->lock);
if (lynx->pcl_bmap[off] & 1<<bit) {
lynx->pcl_bmap[off] &= ~(1<<bit);
} else {
PRINT(KERN_ERR, lynx->id,
"attempted to free unallocated PCL %d", pclid);
}
spin_unlock(&lynx->lock);
}
/* functions useful for debugging */
static void pretty_print_pcl(const struct ti_pcl *pcl)
{
int i;
printk("PCL next %08x, userdata %08x, status %08x, remtrans %08x, nextbuf %08x\n",
pcl->next, pcl->user_data, pcl->pcl_status,
pcl->remaining_transfer_count, pcl->next_data_buffer);
printk("PCL");
for (i=0; i<13; i++) {
printk(" c%x:%08x d%x:%08x",
i, pcl->buffer[i].control, i, pcl->buffer[i].pointer);
if (!(i & 0x3) && (i != 12)) printk("\nPCL");
}
printk("\n");
}
static void print_pcl(const struct ti_lynx *lynx, pcl_t pclid)
{
struct ti_pcl pcl;
get_pcl(lynx, pclid, &pcl);
pretty_print_pcl(&pcl);
}
#endif
/***********************************
* IEEE-1394 functionality section *
***********************************/
static int get_phy_reg(struct ti_lynx *lynx, int addr)
{
int retval;
int i = 0;
unsigned long flags;
if (addr > 15) {
PRINT(KERN_ERR, lynx->id,
"%s: PHY register address %d out of range",
__FUNCTION__, addr);
return -1;
}
spin_lock_irqsave(&lynx->phy_reg_lock, flags);
reg_write(lynx, LINK_PHY, LINK_PHY_READ | LINK_PHY_ADDR(addr));
do {
retval = reg_read(lynx, LINK_PHY);
if (i > 10000) {
PRINT(KERN_ERR, lynx->id, "%s: runaway loop, aborting",
__FUNCTION__);
retval = -1;
break;
}
i++;
} while ((retval & 0xf00) != LINK_PHY_RADDR(addr));
reg_write(lynx, LINK_INT_STATUS, LINK_INT_PHY_REG_RCVD);
spin_unlock_irqrestore(&lynx->phy_reg_lock, flags);
if (retval != -1) {
return retval & 0xff;
} else {
return -1;
}
}
static int set_phy_reg(struct ti_lynx *lynx, int addr, int val)
{
unsigned long flags;
if (addr > 15) {
PRINT(KERN_ERR, lynx->id,
"%s: PHY register address %d out of range", __FUNCTION__, addr);
return -1;
}
if (val > 0xff) {
PRINT(KERN_ERR, lynx->id,
"%s: PHY register value %d out of range", __FUNCTION__, val);
return -1;
}
spin_lock_irqsave(&lynx->phy_reg_lock, flags);
reg_write(lynx, LINK_PHY, LINK_PHY_WRITE | LINK_PHY_ADDR(addr)
| LINK_PHY_WDATA(val));
spin_unlock_irqrestore(&lynx->phy_reg_lock, flags);
return 0;
}
static int sel_phy_reg_page(struct ti_lynx *lynx, int page)
{
int reg;
if (page > 7) {
PRINT(KERN_ERR, lynx->id,
"%s: PHY page %d out of range", __FUNCTION__, page);
return -1;
}
reg = get_phy_reg(lynx, 7);
if (reg != -1) {
reg &= 0x1f;
reg |= (page << 5);
set_phy_reg(lynx, 7, reg);
return 0;
} else {
return -1;
}
}
#if 0 /* not needed at this time */
static int sel_phy_reg_port(struct ti_lynx *lynx, int port)
{
int reg;
if (port > 15) {
PRINT(KERN_ERR, lynx->id,
"%s: PHY port %d out of range", __FUNCTION__, port);
return -1;
}
reg = get_phy_reg(lynx, 7);
if (reg != -1) {
reg &= 0xf0;
reg |= port;
set_phy_reg(lynx, 7, reg);
return 0;
} else {
return -1;
}
}
#endif
static u32 get_phy_vendorid(struct ti_lynx *lynx)
{
u32 pvid = 0;
sel_phy_reg_page(lynx, 1);
pvid |= (get_phy_reg(lynx, 10) << 16);
pvid |= (get_phy_reg(lynx, 11) << 8);
pvid |= get_phy_reg(lynx, 12);
PRINT(KERN_INFO, lynx->id, "PHY vendor id 0x%06x", pvid);
return pvid;
}
static u32 get_phy_productid(struct ti_lynx *lynx)
{
u32 id = 0;
sel_phy_reg_page(lynx, 1);
id |= (get_phy_reg(lynx, 13) << 16);
id |= (get_phy_reg(lynx, 14) << 8);
id |= get_phy_reg(lynx, 15);
PRINT(KERN_INFO, lynx->id, "PHY product id 0x%06x", id);
return id;
}
static quadlet_t generate_own_selfid(struct ti_lynx *lynx,
struct hpsb_host *host)
{
quadlet_t lsid;
char phyreg[7];
int i;
phyreg[0] = lynx->phy_reg0;
for (i = 1; i < 7; i++) {
phyreg[i] = get_phy_reg(lynx, i);
}
/* FIXME? We assume a TSB21LV03A phy here. This code doesn't support
more than 3 ports on the PHY anyway. */
lsid = 0x80400000 | ((phyreg[0] & 0xfc) << 22);
lsid |= (phyreg[1] & 0x3f) << 16; /* gap count */
lsid |= (phyreg[2] & 0xc0) << 8; /* max speed */
if (!hpsb_disable_irm)
lsid |= (phyreg[6] & 0x01) << 11; /* contender (phy dependent) */
/* lsid |= 1 << 11; *//* set contender (hack) */
lsid |= (phyreg[6] & 0x10) >> 3; /* initiated reset */
for (i = 0; i < (phyreg[2] & 0xf); i++) { /* ports */
if (phyreg[3 + i] & 0x4) {
lsid |= (((phyreg[3 + i] & 0x8) | 0x10) >> 3)
<< (6 - i*2);
} else {
lsid |= 1 << (6 - i*2);
}
}
cpu_to_be32s(&lsid);
PRINT(KERN_DEBUG, lynx->id, "generated own selfid 0x%x", lsid);
return lsid;
}
static void handle_selfid(struct ti_lynx *lynx, struct hpsb_host *host)
{
quadlet_t *q = lynx->rcv_page;
int phyid, isroot, size;
quadlet_t lsid = 0;
int i;
if (lynx->phy_reg0 == -1 || lynx->selfid_size == -1) return;
size = lynx->selfid_size;
phyid = lynx->phy_reg0;
i = (size > 16 ? 16 : size) / 4 - 1;
while (i >= 0) {
cpu_to_be32s(&q[i]);
i--;
}
if (!lynx->phyic.reg_1394a) {
lsid = generate_own_selfid(lynx, host);
}
isroot = (phyid & 2) != 0;
phyid >>= 2;
PRINT(KERN_INFO, lynx->id, "SelfID process finished (phyid %d, %s)",
phyid, (isroot ? "root" : "not root"));
reg_write(lynx, LINK_ID, (0xffc0 | phyid) << 16);
if (!lynx->phyic.reg_1394a && !size) {
hpsb_selfid_received(host, lsid);
}
while (size > 0) {
struct selfid *sid = (struct selfid *)q;
if (!lynx->phyic.reg_1394a && !sid->extended
&& (sid->phy_id == (phyid + 1))) {
hpsb_selfid_received(host, lsid);
}
if (q[0] == ~q[1]) {
PRINT(KERN_DEBUG, lynx->id, "SelfID packet 0x%x rcvd",
q[0]);
hpsb_selfid_received(host, q[0]);
} else {
PRINT(KERN_INFO, lynx->id,
"inconsistent selfid 0x%x/0x%x", q[0], q[1]);
}
q += 2;
size -= 8;
}
if (!lynx->phyic.reg_1394a && isroot && phyid != 0) {
hpsb_selfid_received(host, lsid);
}
hpsb_selfid_complete(host, phyid, isroot);
if (host->in_bus_reset) return; /* in bus reset again */
if (isroot) reg_set_bits(lynx, LINK_CONTROL, LINK_CONTROL_CYCMASTER); //FIXME: I do not think, we need this here
reg_set_bits(lynx, LINK_CONTROL,
LINK_CONTROL_RCV_CMP_VALID | LINK_CONTROL_TX_ASYNC_EN
| LINK_CONTROL_RX_ASYNC_EN | LINK_CONTROL_CYCTIMEREN);
}
/* This must be called with the respective queue_lock held. */
static void send_next(struct ti_lynx *lynx, int what)
{
struct ti_pcl pcl;
struct lynx_send_data *d;
struct hpsb_packet *packet;
d = (what == hpsb_iso ? &lynx->iso_send : &lynx->async);
if (!list_empty(&d->pcl_queue)) {
PRINT(KERN_ERR, lynx->id, "trying to queue a new packet in nonempty fifo");
BUG();
}
packet = driver_packet(d->queue.next);
list_move_tail(&packet->driver_list, &d->pcl_queue);
d->header_dma = pci_map_single(lynx->dev, packet->header,
packet->header_size, PCI_DMA_TODEVICE);
if (packet->data_size) {
d->data_dma = pci_map_single(lynx->dev, packet->data,
packet->data_size,
PCI_DMA_TODEVICE);
} else {
d->data_dma = 0;
}
pcl.next = PCL_NEXT_INVALID;
pcl.async_error_next = PCL_NEXT_INVALID;
pcl.pcl_status = 0;
pcl.buffer[0].control = packet->speed_code << 14 | packet->header_size;
#ifndef __BIG_ENDIAN
pcl.buffer[0].control |= PCL_BIGENDIAN;
#endif
pcl.buffer[0].pointer = d->header_dma;
pcl.buffer[1].control = PCL_LAST_BUFF | packet->data_size;
pcl.buffer[1].pointer = d->data_dma;
switch (packet->type) {
case hpsb_async:
pcl.buffer[0].control |= PCL_CMD_XMT;
break;
case hpsb_iso:
pcl.buffer[0].control |= PCL_CMD_XMT | PCL_ISOMODE;
break;
case hpsb_raw:
pcl.buffer[0].control |= PCL_CMD_UNFXMT;
break;
}
put_pcl(lynx, d->pcl, &pcl);
run_pcl(lynx, d->pcl_start, d->channel);
}
/* called from subsystem core */
static int lynx_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
{
struct ti_lynx *lynx = host->hostdata;
struct lynx_send_data *d;
unsigned long flags;
if (packet->data_size >= 4096) {
PRINT(KERN_ERR, lynx->id, "transmit packet data too big (%Zd)",
packet->data_size);
return -EOVERFLOW;
}
switch (packet->type) {
case hpsb_async:
case hpsb_raw:
d = &lynx->async;
break;
case hpsb_iso:
d = &lynx->iso_send;
break;
default:
PRINT(KERN_ERR, lynx->id, "invalid packet type %d",
packet->type);
return -EINVAL;
}
if (packet->tcode == TCODE_WRITEQ
|| packet->tcode == TCODE_READQ_RESPONSE) {
cpu_to_be32s(&packet->header[3]);
}
spin_lock_irqsave(&d->queue_lock, flags);
list_add_tail(&packet->driver_list, &d->queue);
if (list_empty(&d->pcl_queue))
send_next(lynx, packet->type);
spin_unlock_irqrestore(&d->queue_lock, flags);
return 0;
}
/* called from subsystem core */
static int lynx_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
{
struct ti_lynx *lynx = host->hostdata;
int retval = 0;
struct hpsb_packet *packet;
LIST_HEAD(packet_list);
unsigned long flags;
int phy_reg;
switch (cmd) {
case RESET_BUS:
if (reg_read(lynx, LINK_INT_STATUS) & LINK_INT_PHY_BUSRESET) {
retval = 0;
break;
}
switch (arg) {
case SHORT_RESET:
if (lynx->phyic.reg_1394a) {
phy_reg = get_phy_reg(lynx, 5);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg |= 0x40;
PRINT(KERN_INFO, lynx->id, "resetting bus (short bus reset) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 5, phy_reg); /* set ISBR */
break;
} else {
PRINT(KERN_INFO, lynx->id, "cannot do short bus reset, because of old phy");
/* fall through to long bus reset */
}
case LONG_RESET:
phy_reg = get_phy_reg(lynx, 1);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg |= 0x40;
PRINT(KERN_INFO, lynx->id, "resetting bus (long bus reset) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 1, phy_reg); /* clear RHB, set IBR */
break;
case SHORT_RESET_NO_FORCE_ROOT:
if (lynx->phyic.reg_1394a) {
phy_reg = get_phy_reg(lynx, 1);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
if (phy_reg & 0x80) {
phy_reg &= ~0x80;
set_phy_reg(lynx, 1, phy_reg); /* clear RHB */
}
phy_reg = get_phy_reg(lynx, 5);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg |= 0x40;
PRINT(KERN_INFO, lynx->id, "resetting bus (short bus reset, no force_root) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 5, phy_reg); /* set ISBR */
break;
} else {
PRINT(KERN_INFO, lynx->id, "cannot do short bus reset, because of old phy");
/* fall through to long bus reset */
}
case LONG_RESET_NO_FORCE_ROOT:
phy_reg = get_phy_reg(lynx, 1);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg &= ~0x80;
phy_reg |= 0x40;
PRINT(KERN_INFO, lynx->id, "resetting bus (long bus reset, no force_root) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 1, phy_reg); /* clear RHB, set IBR */
break;
case SHORT_RESET_FORCE_ROOT:
if (lynx->phyic.reg_1394a) {
phy_reg = get_phy_reg(lynx, 1);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
if (!(phy_reg & 0x80)) {
phy_reg |= 0x80;
set_phy_reg(lynx, 1, phy_reg); /* set RHB */
}
phy_reg = get_phy_reg(lynx, 5);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg |= 0x40;
PRINT(KERN_INFO, lynx->id, "resetting bus (short bus reset, force_root set) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 5, phy_reg); /* set ISBR */
break;
} else {
PRINT(KERN_INFO, lynx->id, "cannot do short bus reset, because of old phy");
/* fall through to long bus reset */
}
case LONG_RESET_FORCE_ROOT:
phy_reg = get_phy_reg(lynx, 1);
if (phy_reg == -1) {
PRINT(KERN_ERR, lynx->id, "cannot reset bus, because read phy reg failed");
retval = -1;
break;
}
phy_reg |= 0xc0;
PRINT(KERN_INFO, lynx->id, "resetting bus (long bus reset, force_root set) on request");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
set_phy_reg(lynx, 1, phy_reg); /* set IBR and RHB */
break;
default:
PRINT(KERN_ERR, lynx->id, "unknown argument for reset_bus command %d", arg);
retval = -1;
}
break;
case GET_CYCLE_COUNTER:
retval = reg_read(lynx, CYCLE_TIMER);
break;
case SET_CYCLE_COUNTER:
reg_write(lynx, CYCLE_TIMER, arg);
break;
case SET_BUS_ID:
reg_write(lynx, LINK_ID,
(arg << 22) | (reg_read(lynx, LINK_ID) & 0x003f0000));
break;
case ACT_CYCLE_MASTER:
if (arg) {
reg_set_bits(lynx, LINK_CONTROL,
LINK_CONTROL_CYCMASTER);
} else {
reg_clear_bits(lynx, LINK_CONTROL,
LINK_CONTROL_CYCMASTER);
}
break;
case CANCEL_REQUESTS:
spin_lock_irqsave(&lynx->async.queue_lock, flags);
reg_write(lynx, DMA_CHAN_CTRL(CHANNEL_ASYNC_SEND), 0);
list_splice(&lynx->async.queue, &packet_list);
INIT_LIST_HEAD(&lynx->async.queue);
if (list_empty(&lynx->async.pcl_queue)) {
spin_unlock_irqrestore(&lynx->async.queue_lock, flags);
PRINTD(KERN_DEBUG, lynx->id, "no async packet in PCL to cancel");
} else {
struct ti_pcl pcl;
u32 ack;
struct hpsb_packet *packet;
PRINT(KERN_INFO, lynx->id, "cancelling async packet, that was already in PCL");
get_pcl(lynx, lynx->async.pcl, &pcl);
packet = driver_packet(lynx->async.pcl_queue.next);
list_del_init(&packet->driver_list);
pci_unmap_single(lynx->dev, lynx->async.header_dma,
packet->header_size, PCI_DMA_TODEVICE);
if (packet->data_size) {
pci_unmap_single(lynx->dev, lynx->async.data_dma,
packet->data_size, PCI_DMA_TODEVICE);
}
spin_unlock_irqrestore(&lynx->async.queue_lock, flags);
if (pcl.pcl_status & DMA_CHAN_STAT_PKTCMPL) {
if (pcl.pcl_status & DMA_CHAN_STAT_SPECIALACK) {
ack = (pcl.pcl_status >> 15) & 0xf;
PRINTD(KERN_INFO, lynx->id, "special ack %d", ack);
ack = (ack == 1 ? ACKX_TIMEOUT : ACKX_SEND_ERROR);
} else {
ack = (pcl.pcl_status >> 15) & 0xf;
}
} else {
PRINT(KERN_INFO, lynx->id, "async packet was not completed");
ack = ACKX_ABORTED;
}
hpsb_packet_sent(host, packet, ack);
}
while (!list_empty(&packet_list)) {
packet = driver_packet(packet_list.next);
list_del_init(&packet->driver_list);
hpsb_packet_sent(host, packet, ACKX_ABORTED);
}
break;
case ISO_LISTEN_CHANNEL:
spin_lock_irqsave(&lynx->iso_rcv.lock, flags);
if (lynx->iso_rcv.chan_count++ == 0) {
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ISO_RCV),
DMA_WORD1_CMP_ENABLE_MASTER);
}
spin_unlock_irqrestore(&lynx->iso_rcv.lock, flags);
break;
case ISO_UNLISTEN_CHANNEL:
spin_lock_irqsave(&lynx->iso_rcv.lock, flags);
if (--lynx->iso_rcv.chan_count == 0) {
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ISO_RCV),
0);
}
spin_unlock_irqrestore(&lynx->iso_rcv.lock, flags);
break;
default:
PRINT(KERN_ERR, lynx->id, "unknown devctl command %d", cmd);
retval = -1;
}
return retval;
}
/***************************************
* IEEE-1394 functionality section END *
***************************************/
#ifdef CONFIG_IEEE1394_PCILYNX_PORTS
/* VFS functions for local bus / aux device access. Access to those
* is implemented as a character device instead of block devices
* because buffers are not wanted for this. Therefore llseek (from
* VFS) can be used for these char devices with obvious effects.
*/
static int mem_open(struct inode*, struct file*);
static int mem_release(struct inode*, struct file*);
static unsigned int aux_poll(struct file*, struct poll_table_struct*);
static loff_t mem_llseek(struct file*, loff_t, int);
static ssize_t mem_read (struct file*, char*, size_t, loff_t*);
static ssize_t mem_write(struct file*, const char*, size_t, loff_t*);
static struct file_operations aux_ops = {
.owner = THIS_MODULE,
.read = mem_read,
.write = mem_write,
.poll = aux_poll,
.llseek = mem_llseek,
.open = mem_open,
.release = mem_release,
};
static void aux_setup_pcls(struct ti_lynx *lynx)
{
struct ti_pcl pcl;
pcl.next = PCL_NEXT_INVALID;
pcl.user_data = pcl_bus(lynx, lynx->dmem_pcl);
put_pcl(lynx, lynx->dmem_pcl, &pcl);
}
static int mem_open(struct inode *inode, struct file *file)
{
int cid = iminor(inode);
enum { t_rom, t_aux, t_ram } type;
struct memdata *md;
if (cid < PCILYNX_MINOR_AUX_START) {
/* just for completeness */
return -ENXIO;
} else if (cid < PCILYNX_MINOR_ROM_START) {
cid -= PCILYNX_MINOR_AUX_START;
if (cid >= num_of_cards || !cards[cid].aux_port)
return -ENXIO;
type = t_aux;
} else if (cid < PCILYNX_MINOR_RAM_START) {
cid -= PCILYNX_MINOR_ROM_START;
if (cid >= num_of_cards || !cards[cid].local_rom)
return -ENXIO;
type = t_rom;
} else {
/* WARNING: Know what you are doing when opening RAM.
* It is currently used inside the driver! */
cid -= PCILYNX_MINOR_RAM_START;
if (cid >= num_of_cards || !cards[cid].local_ram)
return -ENXIO;
type = t_ram;
}
md = (struct memdata *)kmalloc(sizeof(struct memdata), SLAB_KERNEL);
if (md == NULL)
return -ENOMEM;
md->lynx = &cards[cid];
md->cid = cid;
switch (type) {
case t_rom:
md->type = rom;
break;
case t_ram:
md->type = ram;
break;
case t_aux:
atomic_set(&md->aux_intr_last_seen,
atomic_read(&cards[cid].aux_intr_seen));
md->type = aux;
break;
}
file->private_data = md;
return 0;
}
static int mem_release(struct inode *inode, struct file *file)
{
kfree(file->private_data);
return 0;
}
static unsigned int aux_poll(struct file *file, poll_table *pt)
{
struct memdata *md = (struct memdata *)file->private_data;
int cid = md->cid;
unsigned int mask;
/* reading and writing is always allowed */
mask = POLLIN | POLLRDNORM | POLLOUT | POLLWRNORM;
if (md->type == aux) {
poll_wait(file, &cards[cid].aux_intr_wait, pt);
if (atomic_read(&md->aux_intr_last_seen)
!= atomic_read(&cards[cid].aux_intr_seen)) {
mask |= POLLPRI;
atomic_inc(&md->aux_intr_last_seen);
}
}
return mask;
}
loff_t mem_llseek(struct file *file, loff_t offs, int orig)
{
loff_t newoffs;
switch (orig) {
case 0:
newoffs = offs;
break;
case 1:
newoffs = offs + file->f_pos;
break;
case 2:
newoffs = PCILYNX_MAX_MEMORY + 1 + offs;
break;
default:
return -EINVAL;
}
if (newoffs < 0 || newoffs > PCILYNX_MAX_MEMORY + 1) return -EINVAL;
file->f_pos = newoffs;
return newoffs;
}
/*
* do not DMA if count is too small because this will have a serious impact
* on performance - the value 2400 was found by experiment and may not work
* everywhere as good as here - use mem_mindma option for modules to change
*/
static short mem_mindma = 2400;
module_param(mem_mindma, short, 0444);
MODULE_PARM_DESC(mem_mindma, "Minimum amount of data required to use DMA");
static ssize_t mem_dmaread(struct memdata *md, u32 physbuf, ssize_t count,
int offset)
{
pcltmp_t pcltmp;
struct ti_pcl *pcl;
size_t retval;
int i;
DECLARE_WAITQUEUE(wait, current);
count &= ~3;
count = min(count, 53196);
retval = count;
if (reg_read(md->lynx, DMA_CHAN_CTRL(CHANNEL_LOCALBUS))
& DMA_CHAN_CTRL_BUSY) {
PRINT(KERN_WARNING, md->lynx->id, "DMA ALREADY ACTIVE!");
}
reg_write(md->lynx, LBUS_ADDR, md->type | offset);
pcl = edit_pcl(md->lynx, md->lynx->dmem_pcl, &pcltmp);
pcl->buffer[0].control = PCL_CMD_LBUS_TO_PCI | min(count, 4092);
pcl->buffer[0].pointer = physbuf;
count -= 4092;
i = 0;
while (count > 0) {
i++;
pcl->buffer[i].control = min(count, 4092);
pcl->buffer[i].pointer = physbuf + i * 4092;
count -= 4092;
}
pcl->buffer[i].control |= PCL_LAST_BUFF;
commit_pcl(md->lynx, md->lynx->dmem_pcl, &pcltmp);
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&md->lynx->mem_dma_intr_wait, &wait);
run_sub_pcl(md->lynx, md->lynx->dmem_pcl, 2, CHANNEL_LOCALBUS);
schedule();
while (reg_read(md->lynx, DMA_CHAN_CTRL(CHANNEL_LOCALBUS))
& DMA_CHAN_CTRL_BUSY) {
if (signal_pending(current)) {
retval = -EINTR;
break;
}
schedule();
}
reg_write(md->lynx, DMA_CHAN_CTRL(CHANNEL_LOCALBUS), 0);
remove_wait_queue(&md->lynx->mem_dma_intr_wait, &wait);
if (reg_read(md->lynx, DMA_CHAN_CTRL(CHANNEL_LOCALBUS))
& DMA_CHAN_CTRL_BUSY) {
PRINT(KERN_ERR, md->lynx->id, "DMA STILL ACTIVE!");
}
return retval;
}
static ssize_t mem_read(struct file *file, char *buffer, size_t count,
loff_t *offset)
{
struct memdata *md = (struct memdata *)file->private_data;
ssize_t bcount;
size_t alignfix;
loff_t off = *offset; /* avoid useless 64bit-arithmetic */
ssize_t retval;
void *membase;
if ((off + count) > PCILYNX_MAX_MEMORY+1) {
count = PCILYNX_MAX_MEMORY+1 - off;
}
if (count == 0 || off > PCILYNX_MAX_MEMORY) {
return -ENOSPC;
}
switch (md->type) {
case rom:
membase = md->lynx->local_rom;
break;
case ram:
membase = md->lynx->local_ram;
break;
case aux:
membase = md->lynx->aux_port;
break;
default:
panic("pcilynx%d: unsupported md->type %d in %s",
md->lynx->id, md->type, __FUNCTION__);
}
down(&md->lynx->mem_dma_mutex);
if (count < mem_mindma) {
memcpy_fromio(md->lynx->mem_dma_buffer, membase+off, count);
goto out;
}
bcount = count;
alignfix = 4 - (off % 4);
if (alignfix != 4) {
if (bcount < alignfix) {
alignfix = bcount;
}
memcpy_fromio(md->lynx->mem_dma_buffer, membase+off,
alignfix);
if (bcount == alignfix) {
goto out;
}
bcount -= alignfix;
off += alignfix;
}
while (bcount >= 4) {
retval = mem_dmaread(md, md->lynx->mem_dma_buffer_dma
+ count - bcount, bcount, off);
if (retval < 0) return retval;
bcount -= retval;
off += retval;
}
if (bcount) {
memcpy_fromio(md->lynx->mem_dma_buffer + count - bcount,
membase+off, bcount);
}
out:
retval = copy_to_user(buffer, md->lynx->mem_dma_buffer, count);
up(&md->lynx->mem_dma_mutex);
if (retval) return -EFAULT;
*offset += count;
return count;
}
static ssize_t mem_write(struct file *file, const char *buffer, size_t count,
loff_t *offset)
{
struct memdata *md = (struct memdata *)file->private_data;
if (((*offset) + count) > PCILYNX_MAX_MEMORY+1) {
count = PCILYNX_MAX_MEMORY+1 - *offset;
}
if (count == 0 || *offset > PCILYNX_MAX_MEMORY) {
return -ENOSPC;
}
/* FIXME: dereferencing pointers to PCI mem doesn't work everywhere */
switch (md->type) {
case aux:
if (copy_from_user(md->lynx->aux_port+(*offset), buffer, count))
return -EFAULT;
break;
case ram:
if (copy_from_user(md->lynx->local_ram+(*offset), buffer, count))
return -EFAULT;
break;
case rom:
/* the ROM may be writeable */
if (copy_from_user(md->lynx->local_rom+(*offset), buffer, count))
return -EFAULT;
break;
}
file->f_pos += count;
return count;
}
#endif /* CONFIG_IEEE1394_PCILYNX_PORTS */
/********************************************************
* Global stuff (interrupt handler, init/shutdown code) *
********************************************************/
static irqreturn_t lynx_irq_handler(int irq, void *dev_id,
struct pt_regs *regs_are_unused)
{
struct ti_lynx *lynx = (struct ti_lynx *)dev_id;
struct hpsb_host *host = lynx->host;
u32 intmask;
u32 linkint;
linkint = reg_read(lynx, LINK_INT_STATUS);
intmask = reg_read(lynx, PCI_INT_STATUS);
if (!(intmask & PCI_INT_INT_PEND))
return IRQ_NONE;
PRINTD(KERN_DEBUG, lynx->id, "interrupt: 0x%08x / 0x%08x", intmask,
linkint);
reg_write(lynx, LINK_INT_STATUS, linkint);
reg_write(lynx, PCI_INT_STATUS, intmask);
#ifdef CONFIG_IEEE1394_PCILYNX_PORTS
if (intmask & PCI_INT_AUX_INT) {
atomic_inc(&lynx->aux_intr_seen);
wake_up_interruptible(&lynx->aux_intr_wait);
}
if (intmask & PCI_INT_DMA_HLT(CHANNEL_LOCALBUS)) {
wake_up_interruptible(&lynx->mem_dma_intr_wait);
}
#endif
if (intmask & PCI_INT_1394) {
if (linkint & LINK_INT_PHY_TIMEOUT) {
PRINT(KERN_INFO, lynx->id, "PHY timeout occurred");
}
if (linkint & LINK_INT_PHY_BUSRESET) {
PRINT(KERN_INFO, lynx->id, "bus reset interrupt");
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
if (!host->in_bus_reset)
hpsb_bus_reset(host);
}
if (linkint & LINK_INT_PHY_REG_RCVD) {
u32 reg;
spin_lock(&lynx->phy_reg_lock);
reg = reg_read(lynx, LINK_PHY);
spin_unlock(&lynx->phy_reg_lock);
if (!host->in_bus_reset) {
PRINT(KERN_INFO, lynx->id,
"phy reg received without reset");
} else if (reg & 0xf00) {
PRINT(KERN_INFO, lynx->id,
"unsolicited phy reg %d received",
(reg >> 8) & 0xf);
} else {
lynx->phy_reg0 = reg & 0xff;
handle_selfid(lynx, host);
}
}
if (linkint & LINK_INT_ISO_STUCK) {
PRINT(KERN_INFO, lynx->id, "isochronous transmitter stuck");
}
if (linkint & LINK_INT_ASYNC_STUCK) {
PRINT(KERN_INFO, lynx->id, "asynchronous transmitter stuck");
}
if (linkint & LINK_INT_SENT_REJECT) {
PRINT(KERN_INFO, lynx->id, "sent reject");
}
if (linkint & LINK_INT_TX_INVALID_TC) {
PRINT(KERN_INFO, lynx->id, "invalid transaction code");
}
if (linkint & LINK_INT_GRF_OVERFLOW) {
/* flush FIFO if overflow happens during reset */
if (host->in_bus_reset)
reg_write(lynx, FIFO_CONTROL,
FIFO_CONTROL_GRF_FLUSH);
PRINT(KERN_INFO, lynx->id, "GRF overflow");
}
if (linkint & LINK_INT_ITF_UNDERFLOW) {
PRINT(KERN_INFO, lynx->id, "ITF underflow");
}
if (linkint & LINK_INT_ATF_UNDERFLOW) {
PRINT(KERN_INFO, lynx->id, "ATF underflow");
}
}
if (intmask & PCI_INT_DMA_HLT(CHANNEL_ISO_RCV)) {
PRINTD(KERN_DEBUG, lynx->id, "iso receive");
spin_lock(&lynx->iso_rcv.lock);
lynx->iso_rcv.stat[lynx->iso_rcv.next] =
reg_read(lynx, DMA_CHAN_STAT(CHANNEL_ISO_RCV));
lynx->iso_rcv.used++;
lynx->iso_rcv.next = (lynx->iso_rcv.next + 1) % NUM_ISORCV_PCL;
if ((lynx->iso_rcv.next == lynx->iso_rcv.last)
|| !lynx->iso_rcv.chan_count) {
PRINTD(KERN_DEBUG, lynx->id, "stopped");
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ISO_RCV), 0);
}
run_sub_pcl(lynx, lynx->iso_rcv.pcl_start, lynx->iso_rcv.next,
CHANNEL_ISO_RCV);
spin_unlock(&lynx->iso_rcv.lock);
tasklet_schedule(&lynx->iso_rcv.tq);
}
if (intmask & PCI_INT_DMA_HLT(CHANNEL_ASYNC_SEND)) {
PRINTD(KERN_DEBUG, lynx->id, "async sent");
spin_lock(&lynx->async.queue_lock);
if (list_empty(&lynx->async.pcl_queue)) {
spin_unlock(&lynx->async.queue_lock);
PRINT(KERN_WARNING, lynx->id, "async dma halted, but no queued packet (maybe it was cancelled)");
} else {
struct ti_pcl pcl;
u32 ack;
struct hpsb_packet *packet;
get_pcl(lynx, lynx->async.pcl, &pcl);
packet = driver_packet(lynx->async.pcl_queue.next);
list_del_init(&packet->driver_list);
pci_unmap_single(lynx->dev, lynx->async.header_dma,
packet->header_size, PCI_DMA_TODEVICE);
if (packet->data_size) {
pci_unmap_single(lynx->dev, lynx->async.data_dma,
packet->data_size, PCI_DMA_TODEVICE);
}
if (!list_empty(&lynx->async.queue)) {
send_next(lynx, hpsb_async);
}
spin_unlock(&lynx->async.queue_lock);
if (pcl.pcl_status & DMA_CHAN_STAT_PKTCMPL) {
if (pcl.pcl_status & DMA_CHAN_STAT_SPECIALACK) {
ack = (pcl.pcl_status >> 15) & 0xf;
PRINTD(KERN_INFO, lynx->id, "special ack %d", ack);
ack = (ack == 1 ? ACKX_TIMEOUT : ACKX_SEND_ERROR);
} else {
ack = (pcl.pcl_status >> 15) & 0xf;
}
} else {
PRINT(KERN_INFO, lynx->id, "async packet was not completed");
ack = ACKX_SEND_ERROR;
}
hpsb_packet_sent(host, packet, ack);
}
}
if (intmask & PCI_INT_DMA_HLT(CHANNEL_ISO_SEND)) {
PRINTD(KERN_DEBUG, lynx->id, "iso sent");
spin_lock(&lynx->iso_send.queue_lock);
if (list_empty(&lynx->iso_send.pcl_queue)) {
spin_unlock(&lynx->iso_send.queue_lock);
PRINT(KERN_ERR, lynx->id, "iso send dma halted, but no queued packet");
} else {
struct ti_pcl pcl;
u32 ack;
struct hpsb_packet *packet;
get_pcl(lynx, lynx->iso_send.pcl, &pcl);
packet = driver_packet(lynx->iso_send.pcl_queue.next);
list_del_init(&packet->driver_list);
pci_unmap_single(lynx->dev, lynx->iso_send.header_dma,
packet->header_size, PCI_DMA_TODEVICE);
if (packet->data_size) {
pci_unmap_single(lynx->dev, lynx->iso_send.data_dma,
packet->data_size, PCI_DMA_TODEVICE);
}
if (!list_empty(&lynx->iso_send.queue)) {
send_next(lynx, hpsb_iso);
}
spin_unlock(&lynx->iso_send.queue_lock);
if (pcl.pcl_status & DMA_CHAN_STAT_PKTCMPL) {
if (pcl.pcl_status & DMA_CHAN_STAT_SPECIALACK) {
ack = (pcl.pcl_status >> 15) & 0xf;
PRINTD(KERN_INFO, lynx->id, "special ack %d", ack);
ack = (ack == 1 ? ACKX_TIMEOUT : ACKX_SEND_ERROR);
} else {
ack = (pcl.pcl_status >> 15) & 0xf;
}
} else {
PRINT(KERN_INFO, lynx->id, "iso send packet was not completed");
ack = ACKX_SEND_ERROR;
}
hpsb_packet_sent(host, packet, ack); //FIXME: maybe we should just use ACK_COMPLETE and ACKX_SEND_ERROR
}
}
if (intmask & PCI_INT_DMA_HLT(CHANNEL_ASYNC_RCV)) {
/* general receive DMA completed */
int stat = reg_read(lynx, DMA_CHAN_STAT(CHANNEL_ASYNC_RCV));
PRINTD(KERN_DEBUG, lynx->id, "received packet size %d",
stat & 0x1fff);
if (stat & DMA_CHAN_STAT_SELFID) {
lynx->selfid_size = stat & 0x1fff;
handle_selfid(lynx, host);
} else {
quadlet_t *q_data = lynx->rcv_page;
if ((*q_data >> 4 & 0xf) == TCODE_READQ_RESPONSE
|| (*q_data >> 4 & 0xf) == TCODE_WRITEQ) {
cpu_to_be32s(q_data + 3);
}
hpsb_packet_received(host, q_data, stat & 0x1fff, 0);
}
run_pcl(lynx, lynx->rcv_pcl_start, CHANNEL_ASYNC_RCV);
}
return IRQ_HANDLED;
}
static void iso_rcv_bh(struct ti_lynx *lynx)
{
unsigned int idx;
quadlet_t *data;
unsigned long flags;
spin_lock_irqsave(&lynx->iso_rcv.lock, flags);
while (lynx->iso_rcv.used) {
idx = lynx->iso_rcv.last;
spin_unlock_irqrestore(&lynx->iso_rcv.lock, flags);
data = lynx->iso_rcv.page[idx / ISORCV_PER_PAGE]
+ (idx % ISORCV_PER_PAGE) * MAX_ISORCV_SIZE;
if ((*data >> 16) + 4 != (lynx->iso_rcv.stat[idx] & 0x1fff)) {
PRINT(KERN_ERR, lynx->id,
"iso length mismatch 0x%08x/0x%08x", *data,
lynx->iso_rcv.stat[idx]);
}
if (lynx->iso_rcv.stat[idx]
& (DMA_CHAN_STAT_PCIERR | DMA_CHAN_STAT_PKTERR)) {
PRINT(KERN_INFO, lynx->id,
"iso receive error on %d to 0x%p", idx, data);
} else {
hpsb_packet_received(lynx->host, data,
lynx->iso_rcv.stat[idx] & 0x1fff,
0);
}
spin_lock_irqsave(&lynx->iso_rcv.lock, flags);
lynx->iso_rcv.last = (idx + 1) % NUM_ISORCV_PCL;
lynx->iso_rcv.used--;
}
if (lynx->iso_rcv.chan_count) {
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ISO_RCV),
DMA_WORD1_CMP_ENABLE_MASTER);
}
spin_unlock_irqrestore(&lynx->iso_rcv.lock, flags);
}
static void remove_card(struct pci_dev *dev)
{
struct ti_lynx *lynx;
struct device *lynx_dev;
int i;
lynx = pci_get_drvdata(dev);
if (!lynx) return;
pci_set_drvdata(dev, NULL);
lynx_dev = get_device(&lynx->host->device);
switch (lynx->state) {
case is_host:
reg_write(lynx, PCI_INT_ENABLE, 0);
hpsb_remove_host(lynx->host);
case have_intr:
reg_write(lynx, PCI_INT_ENABLE, 0);
free_irq(lynx->dev->irq, lynx);
/* Disable IRM Contender and LCtrl */
if (lynx->phyic.reg_1394a)
set_phy_reg(lynx, 4, ~0xc0 & get_phy_reg(lynx, 4));
/* Let all other nodes know to ignore us */
lynx_devctl(lynx->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
case have_iomappings:
reg_set_bits(lynx, MISC_CONTROL, MISC_CONTROL_SWRESET);
/* Fix buggy cards with autoboot pin not tied low: */
reg_write(lynx, DMA0_CHAN_CTRL, 0);
iounmap(lynx->registers);
iounmap(lynx->local_rom);
iounmap(lynx->local_ram);
iounmap(lynx->aux_port);
case have_1394_buffers:
for (i = 0; i < ISORCV_PAGES; i++) {
if (lynx->iso_rcv.page[i]) {
pci_free_consistent(lynx->dev, PAGE_SIZE,
lynx->iso_rcv.page[i],
lynx->iso_rcv.page_dma[i]);
}
}
pci_free_consistent(lynx->dev, PAGE_SIZE, lynx->rcv_page,
lynx->rcv_page_dma);
case have_aux_buf:
#ifdef CONFIG_IEEE1394_PCILYNX_PORTS
pci_free_consistent(lynx->dev, 65536, lynx->mem_dma_buffer,
lynx->mem_dma_buffer_dma);
#endif
case have_pcl_mem:
#ifndef CONFIG_IEEE1394_PCILYNX_LOCALRAM
pci_free_consistent(lynx->dev, LOCALRAM_SIZE, lynx->pcl_mem,
lynx->pcl_mem_dma);
#endif
case clear:
/* do nothing - already freed */
;
}
tasklet_kill(&lynx->iso_rcv.tq);
if (lynx_dev)
put_device(lynx_dev);
}
static int __devinit add_card(struct pci_dev *dev,
const struct pci_device_id *devid_is_unused)
{
#define FAIL(fmt, args...) do { \
PRINT_G(KERN_ERR, fmt , ## args); \
remove_card(dev); \
return error; \
} while (0)
char irq_buf[16];
struct hpsb_host *host;
struct ti_lynx *lynx; /* shortcut to currently handled device */
struct ti_pcl pcl;
u32 *pcli;
int i;
int error;
error = -ENXIO;
if (pci_set_dma_mask(dev, 0xffffffff))
FAIL("DMA address limits not supported for PCILynx hardware");
if (pci_enable_device(dev))
FAIL("failed to enable PCILynx hardware");
pci_set_master(dev);
error = -ENOMEM;
host = hpsb_alloc_host(&lynx_driver, sizeof(struct ti_lynx), &dev->dev);
if (!host) FAIL("failed to allocate control structure memory");
lynx = host->hostdata;
lynx->id = card_id++;
lynx->dev = dev;
lynx->state = clear;
lynx->host = host;
host->pdev = dev;
pci_set_drvdata(dev, lynx);
spin_lock_init(&lynx->lock);
spin_lock_init(&lynx->phy_reg_lock);
#ifndef CONFIG_IEEE1394_PCILYNX_LOCALRAM
lynx->pcl_mem = pci_alloc_consistent(dev, LOCALRAM_SIZE,
&lynx->pcl_mem_dma);
if (lynx->pcl_mem != NULL) {
lynx->state = have_pcl_mem;
PRINT(KERN_INFO, lynx->id,
"allocated PCL memory %d Bytes @ 0x%p", LOCALRAM_SIZE,
lynx->pcl_mem);
} else {
FAIL("failed to allocate PCL memory area");
}
#endif
#ifdef CONFIG_IEEE1394_PCILYNX_PORTS
lynx->mem_dma_buffer = pci_alloc_consistent(dev, 65536,
&lynx->mem_dma_buffer_dma);
if (lynx->mem_dma_buffer == NULL) {
FAIL("failed to allocate DMA buffer for aux");
}
lynx->state = have_aux_buf;
#endif
lynx->rcv_page = pci_alloc_consistent(dev, PAGE_SIZE,
&lynx->rcv_page_dma);
if (lynx->rcv_page == NULL) {
FAIL("failed to allocate receive buffer");
}
lynx->state = have_1394_buffers;
for (i = 0; i < ISORCV_PAGES; i++) {
lynx->iso_rcv.page[i] =
pci_alloc_consistent(dev, PAGE_SIZE,
&lynx->iso_rcv.page_dma[i]);
if (lynx->iso_rcv.page[i] == NULL) {
FAIL("failed to allocate iso receive buffers");
}
}
lynx->registers = ioremap_nocache(pci_resource_start(dev,0),
PCILYNX_MAX_REGISTER);
lynx->local_ram = ioremap(pci_resource_start(dev,1), PCILYNX_MAX_MEMORY);
lynx->aux_port = ioremap(pci_resource_start(dev,2), PCILYNX_MAX_MEMORY);
lynx->local_rom = ioremap(pci_resource_start(dev,PCI_ROM_RESOURCE),
PCILYNX_MAX_MEMORY);
lynx->state = have_iomappings;
if (lynx->registers == NULL) {
FAIL("failed to remap registers - card not accessible");
}
#ifdef CONFIG_IEEE1394_PCILYNX_LOCALRAM
if (lynx->local_ram == NULL) {
FAIL("failed to remap local RAM which is required for "
"operation");
}
#endif
reg_set_bits(lynx, MISC_CONTROL, MISC_CONTROL_SWRESET);
/* Fix buggy cards with autoboot pin not tied low: */
reg_write(lynx, DMA0_CHAN_CTRL, 0);
#ifndef __sparc__
sprintf (irq_buf, "%d", dev->irq);
#else
sprintf (irq_buf, "%s", __irq_itoa(dev->irq));
#endif
if (!request_irq(dev->irq, lynx_irq_handler, SA_SHIRQ,
PCILYNX_DRIVER_NAME, lynx)) {
PRINT(KERN_INFO, lynx->id, "allocated interrupt %s", irq_buf);
lynx->state = have_intr;
} else {
FAIL("failed to allocate shared interrupt %s", irq_buf);
}
/* alloc_pcl return values are not checked, it is expected that the
* provided PCL space is sufficient for the initial allocations */
#ifdef CONFIG_IEEE1394_PCILYNX_PORTS
if (lynx->aux_port != NULL) {
lynx->dmem_pcl = alloc_pcl(lynx);
aux_setup_pcls(lynx);
sema_init(&lynx->mem_dma_mutex, 1);
}
#endif
lynx->rcv_pcl = alloc_pcl(lynx);
lynx->rcv_pcl_start = alloc_pcl(lynx);
lynx->async.pcl = alloc_pcl(lynx);
lynx->async.pcl_start = alloc_pcl(lynx);
lynx->iso_send.pcl = alloc_pcl(lynx);
lynx->iso_send.pcl_start = alloc_pcl(lynx);
for (i = 0; i < NUM_ISORCV_PCL; i++) {
lynx->iso_rcv.pcl[i] = alloc_pcl(lynx);
}
lynx->iso_rcv.pcl_start = alloc_pcl(lynx);
/* all allocations successful - simple init stuff follows */
reg_write(lynx, PCI_INT_ENABLE, PCI_INT_DMA_ALL);
#ifdef CONFIG_IEEE1394_PCILYNX_PORTS
reg_set_bits(lynx, PCI_INT_ENABLE, PCI_INT_AUX_INT);
init_waitqueue_head(&lynx->mem_dma_intr_wait);
init_waitqueue_head(&lynx->aux_intr_wait);
#endif
tasklet_init(&lynx->iso_rcv.tq, (void (*)(unsigned long))iso_rcv_bh,
(unsigned long)lynx);
spin_lock_init(&lynx->iso_rcv.lock);
spin_lock_init(&lynx->async.queue_lock);
lynx->async.channel = CHANNEL_ASYNC_SEND;
spin_lock_init(&lynx->iso_send.queue_lock);
lynx->iso_send.channel = CHANNEL_ISO_SEND;
PRINT(KERN_INFO, lynx->id, "remapped memory spaces reg 0x%p, rom 0x%p, "
"ram 0x%p, aux 0x%p", lynx->registers, lynx->local_rom,
lynx->local_ram, lynx->aux_port);
/* now, looking for PHY register set */
if ((get_phy_reg(lynx, 2) & 0xe0) == 0xe0) {
lynx->phyic.reg_1394a = 1;
PRINT(KERN_INFO, lynx->id,
"found 1394a conform PHY (using extended register set)");
lynx->phyic.vendor = get_phy_vendorid(lynx);
lynx->phyic.product = get_phy_productid(lynx);
} else {
lynx->phyic.reg_1394a = 0;
PRINT(KERN_INFO, lynx->id, "found old 1394 PHY");
}
lynx->selfid_size = -1;
lynx->phy_reg0 = -1;
INIT_LIST_HEAD(&lynx->async.queue);
INIT_LIST_HEAD(&lynx->async.pcl_queue);
INIT_LIST_HEAD(&lynx->iso_send.queue);
INIT_LIST_HEAD(&lynx->iso_send.pcl_queue);
pcl.next = pcl_bus(lynx, lynx->rcv_pcl);
put_pcl(lynx, lynx->rcv_pcl_start, &pcl);
pcl.next = PCL_NEXT_INVALID;
pcl.async_error_next = PCL_NEXT_INVALID;
pcl.buffer[0].control = PCL_CMD_RCV | 16;
#ifndef __BIG_ENDIAN
pcl.buffer[0].control |= PCL_BIGENDIAN;
#endif
pcl.buffer[1].control = PCL_LAST_BUFF | 4080;
pcl.buffer[0].pointer = lynx->rcv_page_dma;
pcl.buffer[1].pointer = lynx->rcv_page_dma + 16;
put_pcl(lynx, lynx->rcv_pcl, &pcl);
pcl.next = pcl_bus(lynx, lynx->async.pcl);
pcl.async_error_next = pcl_bus(lynx, lynx->async.pcl);
put_pcl(lynx, lynx->async.pcl_start, &pcl);
pcl.next = pcl_bus(lynx, lynx->iso_send.pcl);
pcl.async_error_next = PCL_NEXT_INVALID;
put_pcl(lynx, lynx->iso_send.pcl_start, &pcl);
pcl.next = PCL_NEXT_INVALID;
pcl.async_error_next = PCL_NEXT_INVALID;
pcl.buffer[0].control = PCL_CMD_RCV | 4;
#ifndef __BIG_ENDIAN
pcl.buffer[0].control |= PCL_BIGENDIAN;
#endif
pcl.buffer[1].control = PCL_LAST_BUFF | 2044;
for (i = 0; i < NUM_ISORCV_PCL; i++) {
int page = i / ISORCV_PER_PAGE;
int sec = i % ISORCV_PER_PAGE;
pcl.buffer[0].pointer = lynx->iso_rcv.page_dma[page]
+ sec * MAX_ISORCV_SIZE;
pcl.buffer[1].pointer = pcl.buffer[0].pointer + 4;
put_pcl(lynx, lynx->iso_rcv.pcl[i], &pcl);
}
pcli = (u32 *)&pcl;
for (i = 0; i < NUM_ISORCV_PCL; i++) {
pcli[i] = pcl_bus(lynx, lynx->iso_rcv.pcl[i]);
}
put_pcl(lynx, lynx->iso_rcv.pcl_start, &pcl);
/* FIFO sizes from left to right: ITF=48 ATF=48 GRF=160 */
reg_write(lynx, FIFO_SIZES, 0x003030a0);
/* 20 byte threshold before triggering PCI transfer */
reg_write(lynx, DMA_GLOBAL_REGISTER, 0x2<<24);
/* threshold on both send FIFOs before transmitting:
FIFO size - cache line size - 1 */
i = reg_read(lynx, PCI_LATENCY_CACHELINE) & 0xff;
i = 0x30 - i - 1;
reg_write(lynx, FIFO_XMIT_THRESHOLD, (i << 8) | i);
reg_set_bits(lynx, PCI_INT_ENABLE, PCI_INT_1394);
reg_write(lynx, LINK_INT_ENABLE, LINK_INT_PHY_TIMEOUT
| LINK_INT_PHY_REG_RCVD | LINK_INT_PHY_BUSRESET
| LINK_INT_ISO_STUCK | LINK_INT_ASYNC_STUCK
| LINK_INT_SENT_REJECT | LINK_INT_TX_INVALID_TC
| LINK_INT_GRF_OVERFLOW | LINK_INT_ITF_UNDERFLOW
| LINK_INT_ATF_UNDERFLOW);
reg_write(lynx, DMA_WORD0_CMP_VALUE(CHANNEL_ASYNC_RCV), 0);
reg_write(lynx, DMA_WORD0_CMP_ENABLE(CHANNEL_ASYNC_RCV), 0xa<<4);
reg_write(lynx, DMA_WORD1_CMP_VALUE(CHANNEL_ASYNC_RCV), 0);
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ASYNC_RCV),
DMA_WORD1_CMP_MATCH_LOCAL_NODE | DMA_WORD1_CMP_MATCH_BROADCAST
| DMA_WORD1_CMP_MATCH_EXACT | DMA_WORD1_CMP_MATCH_BUS_BCAST
| DMA_WORD1_CMP_ENABLE_SELF_ID | DMA_WORD1_CMP_ENABLE_MASTER);
run_pcl(lynx, lynx->rcv_pcl_start, CHANNEL_ASYNC_RCV);
reg_write(lynx, DMA_WORD0_CMP_VALUE(CHANNEL_ISO_RCV), 0);
reg_write(lynx, DMA_WORD0_CMP_ENABLE(CHANNEL_ISO_RCV), 0x9<<4);
reg_write(lynx, DMA_WORD1_CMP_VALUE(CHANNEL_ISO_RCV), 0);
reg_write(lynx, DMA_WORD1_CMP_ENABLE(CHANNEL_ISO_RCV), 0);
run_sub_pcl(lynx, lynx->iso_rcv.pcl_start, 0, CHANNEL_ISO_RCV);
reg_write(lynx, LINK_CONTROL, LINK_CONTROL_RCV_CMP_VALID
| LINK_CONTROL_TX_ISO_EN | LINK_CONTROL_RX_ISO_EN
| LINK_CONTROL_TX_ASYNC_EN | LINK_CONTROL_RX_ASYNC_EN
| LINK_CONTROL_RESET_TX | LINK_CONTROL_RESET_RX);
if (!lynx->phyic.reg_1394a) {
if (!hpsb_disable_irm) {
/* attempt to enable contender bit -FIXME- would this
* work elsewhere? */
reg_set_bits(lynx, GPIO_CTRL_A, 0x1);
reg_write(lynx, GPIO_DATA_BASE + 0x3c, 0x1);
}
} else {
/* set the contender (if appropriate) and LCtrl bit in the
* extended PHY register set. (Should check that PHY_02_EXTENDED
* is set in register 2?)
*/
i = get_phy_reg(lynx, 4);
i |= PHY_04_LCTRL;
if (hpsb_disable_irm)
i &= !PHY_04_CONTENDER;
else
i |= PHY_04_CONTENDER;
if (i != -1) set_phy_reg(lynx, 4, i);
}
if (!skip_eeprom)
{
/* needed for i2c communication with serial eeprom */
struct i2c_adapter *i2c_ad;
struct i2c_algo_bit_data i2c_adapter_data;
error = -ENOMEM;
i2c_ad = kmalloc(sizeof(struct i2c_adapter), SLAB_KERNEL);
if (!i2c_ad) FAIL("failed to allocate I2C adapter memory");
memcpy(i2c_ad, &bit_ops, sizeof(struct i2c_adapter));
i2c_adapter_data = bit_data;
i2c_ad->algo_data = &i2c_adapter_data;
i2c_adapter_data.data = lynx;
PRINTD(KERN_DEBUG, lynx->id,"original eeprom control: %d",
reg_read(lynx, SERIAL_EEPROM_CONTROL));
/* reset hardware to sane state */
lynx->i2c_driven_state = 0x00000070;
reg_write(lynx, SERIAL_EEPROM_CONTROL, lynx->i2c_driven_state);
if (i2c_bit_add_bus(i2c_ad) < 0)
{
kfree(i2c_ad);
error = -ENXIO;
FAIL("unable to register i2c");
}
else
{
/* do i2c stuff */
unsigned char i2c_cmd = 0x10;
struct i2c_msg msg[2] = { { 0x50, 0, 1, &i2c_cmd },
{ 0x50, I2C_M_RD, 20, (unsigned char*) lynx->bus_info_block }
};
#ifdef CONFIG_IEEE1394_VERBOSEDEBUG
union i2c_smbus_data data;
if (i2c_smbus_xfer(i2c_ad, 80, 0, I2C_SMBUS_WRITE, 0, I2C_SMBUS_BYTE,NULL))
PRINT(KERN_ERR, lynx->id,"eeprom read start has failed");
else
{
u16 addr;
for (addr=0x00; addr < 0x100; addr++) {
if (i2c_smbus_xfer(i2c_ad, 80, 0, I2C_SMBUS_READ, 0, I2C_SMBUS_BYTE,& data)) {
PRINT(KERN_ERR, lynx->id, "unable to read i2c %x", addr);
break;
}
else
PRINT(KERN_DEBUG, lynx->id,"got serial eeprom data at %x: %x",addr, data.byte);
}
}
#endif
/* we use i2c_transfer, because i2c_smbus_read_block_data does not work properly and we
do it more efficiently in one transaction rather then using several reads */
if (i2c_transfer(i2c_ad, msg, 2) < 0) {
PRINT(KERN_ERR, lynx->id, "unable to read bus info block from i2c");
} else {
int i;
PRINT(KERN_INFO, lynx->id, "got bus info block from serial eeprom");
/* FIXME: probably we shoud rewrite the max_rec, max_ROM(1394a),
* generation(1394a) and link_spd(1394a) field and recalculate
* the CRC */
for (i = 0; i < 5 ; i++)
PRINTD(KERN_DEBUG, lynx->id, "Businfo block quadlet %i: %08x",
i, be32_to_cpu(lynx->bus_info_block[i]));
/* info_length, crc_length and 1394 magic number to check, if it is really a bus info block */
if (((be32_to_cpu(lynx->bus_info_block[0]) & 0xffff0000) == 0x04040000) &&
(lynx->bus_info_block[1] == __constant_cpu_to_be32(0x31333934)))
{
PRINT(KERN_DEBUG, lynx->id, "read a valid bus info block from");
} else {
kfree(i2c_ad);
error = -ENXIO;
FAIL("read something from serial eeprom, but it does not seem to be a valid bus info block");
}
}
i2c_bit_del_bus(i2c_ad);
kfree(i2c_ad);
}
}
host->csr.guid_hi = be32_to_cpu(lynx->bus_info_block[3]);
host->csr.guid_lo = be32_to_cpu(lynx->bus_info_block[4]);
host->csr.cyc_clk_acc = (be32_to_cpu(lynx->bus_info_block[2]) >> 16) & 0xff;
host->csr.max_rec = (be32_to_cpu(lynx->bus_info_block[2]) >> 12) & 0xf;
if (!lynx->phyic.reg_1394a)
host->csr.lnk_spd = (get_phy_reg(lynx, 2) & 0xc0) >> 6;
else
host->csr.lnk_spd = be32_to_cpu(lynx->bus_info_block[2]) & 0x7;
if (hpsb_add_host(host)) {
error = -ENOMEM;
FAIL("Failed to register host with highlevel");
}
lynx->state = is_host;
return 0;
#undef FAIL
}
static struct pci_device_id pci_table[] = {
{
.vendor = PCI_VENDOR_ID_TI,
.device = PCI_DEVICE_ID_TI_PCILYNX,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
},
{ } /* Terminating entry */
};
static struct pci_driver lynx_pci_driver = {
.name = PCILYNX_DRIVER_NAME,
.id_table = pci_table,
.probe = add_card,
.remove = remove_card,
};
static struct hpsb_host_driver lynx_driver = {
.owner = THIS_MODULE,
.name = PCILYNX_DRIVER_NAME,
.set_hw_config_rom = NULL,
.transmit_packet = lynx_transmit,
.devctl = lynx_devctl,
.isoctl = NULL,
};
MODULE_AUTHOR("Andreas E. Bombe <andreas.bombe@munich.netsurf.de>");
MODULE_DESCRIPTION("driver for Texas Instruments PCI Lynx IEEE-1394 controller");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("pcilynx");
MODULE_DEVICE_TABLE(pci, pci_table);
static int __init pcilynx_init(void)
{
int ret;
#ifdef CONFIG_IEEE1394_PCILYNX_PORTS
if (register_chrdev(PCILYNX_MAJOR, PCILYNX_DRIVER_NAME, &aux_ops)) {
PRINT_G(KERN_ERR, "allocation of char major number %d failed",
PCILYNX_MAJOR);
return -EBUSY;
}
#endif
ret = pci_register_driver(&lynx_pci_driver);
if (ret < 0) {
PRINT_G(KERN_ERR, "PCI module init failed");
goto free_char_dev;
}
return 0;
free_char_dev:
#ifdef CONFIG_IEEE1394_PCILYNX_PORTS
unregister_chrdev(PCILYNX_MAJOR, PCILYNX_DRIVER_NAME);
#endif
return ret;
}
static void __exit pcilynx_cleanup(void)
{
pci_unregister_driver(&lynx_pci_driver);
#ifdef CONFIG_IEEE1394_PCILYNX_PORTS
unregister_chrdev(PCILYNX_MAJOR, PCILYNX_DRIVER_NAME);
#endif
}
module_init(pcilynx_init);
module_exit(pcilynx_cleanup);