kernel-ark/arch/ppc64/kernel/setup.c
David Gibson 533f08172e [PATCH] ppc64: dynamically allocate segment tables
PPC64 machines before Power4 need a segment table page allocated for each
CPU.  Currently these are allocated statically in a big array in head.S for
all CPUs.  The segment tables need to be in the first segment (so
do_stab_bolted doesn't take a recursive fault on the stab itself), but
other than that there are no constraints which require the stabs for the
secondary CPUs to be statically allocated.

This patch allocates segment tables dynamically during boot, using
lmb_alloc() to ensure they are within the first 256M segment.  This reduces
the kernel image size by 192k...

Tested on RS64 iSeries, POWER3 pSeries, and POWER5.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-07-27 16:25:58 -07:00

1361 lines
34 KiB
C

/*
*
* Common boot and setup code.
*
* Copyright (C) 2001 PPC64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <linux/config.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/reboot.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/ide.h>
#include <linux/seq_file.h>
#include <linux/ioport.h>
#include <linux/console.h>
#include <linux/version.h>
#include <linux/tty.h>
#include <linux/root_dev.h>
#include <linux/notifier.h>
#include <linux/cpu.h>
#include <linux/unistd.h>
#include <linux/serial.h>
#include <linux/serial_8250.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/processor.h>
#include <asm/pgtable.h>
#include <asm/bootinfo.h>
#include <asm/smp.h>
#include <asm/elf.h>
#include <asm/machdep.h>
#include <asm/paca.h>
#include <asm/ppcdebug.h>
#include <asm/time.h>
#include <asm/cputable.h>
#include <asm/sections.h>
#include <asm/btext.h>
#include <asm/nvram.h>
#include <asm/setup.h>
#include <asm/system.h>
#include <asm/rtas.h>
#include <asm/iommu.h>
#include <asm/serial.h>
#include <asm/cache.h>
#include <asm/page.h>
#include <asm/mmu.h>
#include <asm/lmb.h>
#include <asm/iSeries/ItLpNaca.h>
#ifdef DEBUG
#define DBG(fmt...) udbg_printf(fmt)
#else
#define DBG(fmt...)
#endif
/*
* Here are some early debugging facilities. You can enable one
* but your kernel will not boot on anything else if you do so
*/
/* This one is for use on LPAR machines that support an HVC console
* on vterm 0
*/
extern void udbg_init_debug_lpar(void);
/* This one is for use on Apple G5 machines
*/
extern void udbg_init_pmac_realmode(void);
/* That's RTAS panel debug */
extern void call_rtas_display_status_delay(unsigned char c);
/* Here's maple real mode debug */
extern void udbg_init_maple_realmode(void);
#define EARLY_DEBUG_INIT() do {} while(0)
#if 0
#define EARLY_DEBUG_INIT() udbg_init_debug_lpar()
#define EARLY_DEBUG_INIT() udbg_init_maple_realmode()
#define EARLY_DEBUG_INIT() udbg_init_pmac_realmode()
#define EARLY_DEBUG_INIT() \
do { ppc_md.udbg_putc = call_rtas_display_status_delay; } while(0)
#endif
/* extern void *stab; */
extern unsigned long klimit;
extern void mm_init_ppc64(void);
extern void stab_initialize(unsigned long stab);
extern void htab_initialize(void);
extern void early_init_devtree(void *flat_dt);
extern void unflatten_device_tree(void);
extern void smp_release_cpus(void);
int have_of = 1;
int boot_cpuid = 0;
int boot_cpuid_phys = 0;
dev_t boot_dev;
u64 ppc64_pft_size;
u64 ppc64_debug_switch;
struct ppc64_caches ppc64_caches;
EXPORT_SYMBOL_GPL(ppc64_caches);
/*
* These are used in binfmt_elf.c to put aux entries on the stack
* for each elf executable being started.
*/
int dcache_bsize;
int icache_bsize;
int ucache_bsize;
/* The main machine-dep calls structure
*/
struct machdep_calls ppc_md;
EXPORT_SYMBOL(ppc_md);
#ifdef CONFIG_MAGIC_SYSRQ
unsigned long SYSRQ_KEY;
#endif /* CONFIG_MAGIC_SYSRQ */
static int ppc64_panic_event(struct notifier_block *, unsigned long, void *);
static struct notifier_block ppc64_panic_block = {
.notifier_call = ppc64_panic_event,
.priority = INT_MIN /* may not return; must be done last */
};
/*
* Perhaps we can put the pmac screen_info[] here
* on pmac as well so we don't need the ifdef's.
* Until we get multiple-console support in here
* that is. -- Cort
* Maybe tie it to serial consoles, since this is really what
* these processors use on existing boards. -- Dan
*/
struct screen_info screen_info = {
.orig_x = 0,
.orig_y = 25,
.orig_video_cols = 80,
.orig_video_lines = 25,
.orig_video_isVGA = 1,
.orig_video_points = 16
};
/*
* Initialize the PPCDBG state. Called before relocation has been enabled.
*/
void __init ppcdbg_initialize(void)
{
ppc64_debug_switch = PPC_DEBUG_DEFAULT; /* | PPCDBG_BUSWALK | */
/* PPCDBG_PHBINIT | PPCDBG_MM | PPCDBG_MMINIT | PPCDBG_TCEINIT | PPCDBG_TCE */;
}
/*
* Early boot console based on udbg
*/
static struct console udbg_console = {
.name = "udbg",
.write = udbg_console_write,
.flags = CON_PRINTBUFFER,
.index = -1,
};
static int early_console_initialized;
void __init disable_early_printk(void)
{
if (!early_console_initialized)
return;
unregister_console(&udbg_console);
early_console_initialized = 0;
}
#if defined(CONFIG_PPC_MULTIPLATFORM) && defined(CONFIG_SMP)
static int smt_enabled_cmdline;
/* Look for ibm,smt-enabled OF option */
static void check_smt_enabled(void)
{
struct device_node *dn;
char *smt_option;
/* Allow the command line to overrule the OF option */
if (smt_enabled_cmdline)
return;
dn = of_find_node_by_path("/options");
if (dn) {
smt_option = (char *)get_property(dn, "ibm,smt-enabled", NULL);
if (smt_option) {
if (!strcmp(smt_option, "on"))
smt_enabled_at_boot = 1;
else if (!strcmp(smt_option, "off"))
smt_enabled_at_boot = 0;
}
}
}
/* Look for smt-enabled= cmdline option */
static int __init early_smt_enabled(char *p)
{
smt_enabled_cmdline = 1;
if (!p)
return 0;
if (!strcmp(p, "on") || !strcmp(p, "1"))
smt_enabled_at_boot = 1;
else if (!strcmp(p, "off") || !strcmp(p, "0"))
smt_enabled_at_boot = 0;
return 0;
}
early_param("smt-enabled", early_smt_enabled);
/**
* setup_cpu_maps - initialize the following cpu maps:
* cpu_possible_map
* cpu_present_map
* cpu_sibling_map
*
* Having the possible map set up early allows us to restrict allocations
* of things like irqstacks to num_possible_cpus() rather than NR_CPUS.
*
* We do not initialize the online map here; cpus set their own bits in
* cpu_online_map as they come up.
*
* This function is valid only for Open Firmware systems. finish_device_tree
* must be called before using this.
*
* While we're here, we may as well set the "physical" cpu ids in the paca.
*/
static void __init setup_cpu_maps(void)
{
struct device_node *dn = NULL;
int cpu = 0;
int swap_cpuid = 0;
check_smt_enabled();
while ((dn = of_find_node_by_type(dn, "cpu")) && cpu < NR_CPUS) {
u32 *intserv;
int j, len = sizeof(u32), nthreads;
intserv = (u32 *)get_property(dn, "ibm,ppc-interrupt-server#s",
&len);
if (!intserv)
intserv = (u32 *)get_property(dn, "reg", NULL);
nthreads = len / sizeof(u32);
for (j = 0; j < nthreads && cpu < NR_CPUS; j++) {
cpu_set(cpu, cpu_present_map);
set_hard_smp_processor_id(cpu, intserv[j]);
if (intserv[j] == boot_cpuid_phys)
swap_cpuid = cpu;
cpu_set(cpu, cpu_possible_map);
cpu++;
}
}
/* Swap CPU id 0 with boot_cpuid_phys, so we can always assume that
* boot cpu is logical 0.
*/
if (boot_cpuid_phys != get_hard_smp_processor_id(0)) {
u32 tmp;
tmp = get_hard_smp_processor_id(0);
set_hard_smp_processor_id(0, boot_cpuid_phys);
set_hard_smp_processor_id(swap_cpuid, tmp);
}
/*
* On pSeries LPAR, we need to know how many cpus
* could possibly be added to this partition.
*/
if (systemcfg->platform == PLATFORM_PSERIES_LPAR &&
(dn = of_find_node_by_path("/rtas"))) {
int num_addr_cell, num_size_cell, maxcpus;
unsigned int *ireg;
num_addr_cell = prom_n_addr_cells(dn);
num_size_cell = prom_n_size_cells(dn);
ireg = (unsigned int *)
get_property(dn, "ibm,lrdr-capacity", NULL);
if (!ireg)
goto out;
maxcpus = ireg[num_addr_cell + num_size_cell];
/* Double maxcpus for processors which have SMT capability */
if (cpu_has_feature(CPU_FTR_SMT))
maxcpus *= 2;
if (maxcpus > NR_CPUS) {
printk(KERN_WARNING
"Partition configured for %d cpus, "
"operating system maximum is %d.\n",
maxcpus, NR_CPUS);
maxcpus = NR_CPUS;
} else
printk(KERN_INFO "Partition configured for %d cpus.\n",
maxcpus);
for (cpu = 0; cpu < maxcpus; cpu++)
cpu_set(cpu, cpu_possible_map);
out:
of_node_put(dn);
}
/*
* Do the sibling map; assume only two threads per processor.
*/
for_each_cpu(cpu) {
cpu_set(cpu, cpu_sibling_map[cpu]);
if (cpu_has_feature(CPU_FTR_SMT))
cpu_set(cpu ^ 0x1, cpu_sibling_map[cpu]);
}
systemcfg->processorCount = num_present_cpus();
}
#endif /* defined(CONFIG_PPC_MULTIPLATFORM) && defined(CONFIG_SMP) */
#ifdef CONFIG_PPC_MULTIPLATFORM
extern struct machdep_calls pSeries_md;
extern struct machdep_calls pmac_md;
extern struct machdep_calls maple_md;
extern struct machdep_calls bpa_md;
/* Ultimately, stuff them in an elf section like initcalls... */
static struct machdep_calls __initdata *machines[] = {
#ifdef CONFIG_PPC_PSERIES
&pSeries_md,
#endif /* CONFIG_PPC_PSERIES */
#ifdef CONFIG_PPC_PMAC
&pmac_md,
#endif /* CONFIG_PPC_PMAC */
#ifdef CONFIG_PPC_MAPLE
&maple_md,
#endif /* CONFIG_PPC_MAPLE */
#ifdef CONFIG_PPC_BPA
&bpa_md,
#endif
NULL
};
/*
* Early initialization entry point. This is called by head.S
* with MMU translation disabled. We rely on the "feature" of
* the CPU that ignores the top 2 bits of the address in real
* mode so we can access kernel globals normally provided we
* only toy with things in the RMO region. From here, we do
* some early parsing of the device-tree to setup out LMB
* data structures, and allocate & initialize the hash table
* and segment tables so we can start running with translation
* enabled.
*
* It is this function which will call the probe() callback of
* the various platform types and copy the matching one to the
* global ppc_md structure. Your platform can eventually do
* some very early initializations from the probe() routine, but
* this is not recommended, be very careful as, for example, the
* device-tree is not accessible via normal means at this point.
*/
void __init early_setup(unsigned long dt_ptr)
{
struct paca_struct *lpaca = get_paca();
static struct machdep_calls **mach;
/*
* Enable early debugging if any specified (see top of
* this file)
*/
EARLY_DEBUG_INIT();
DBG(" -> early_setup()\n");
/*
* Fill the default DBG level (do we want to keep
* that old mecanism around forever ?)
*/
ppcdbg_initialize();
/*
* Do early initializations using the flattened device
* tree, like retreiving the physical memory map or
* calculating/retreiving the hash table size
*/
early_init_devtree(__va(dt_ptr));
/*
* Iterate all ppc_md structures until we find the proper
* one for the current machine type
*/
DBG("Probing machine type for platform %x...\n",
systemcfg->platform);
for (mach = machines; *mach; mach++) {
if ((*mach)->probe(systemcfg->platform))
break;
}
/* What can we do if we didn't find ? */
if (*mach == NULL) {
DBG("No suitable machine found !\n");
for (;;);
}
ppc_md = **mach;
/* our udbg callbacks got overriden by the above, let's put them
* back in. Ultimately, I want those things to be split from the
* main ppc_md
*/
EARLY_DEBUG_INIT();
DBG("Found, Initializing memory management...\n");
/*
* Initialize stab / SLB management
*/
stab_initialize(lpaca->stab_real);
/*
* Initialize the MMU Hash table and create the linear mapping
* of memory
*/
htab_initialize();
DBG(" <- early_setup()\n");
}
/*
* Initialize some remaining members of the ppc64_caches and systemcfg structures
* (at least until we get rid of them completely). This is mostly some
* cache informations about the CPU that will be used by cache flush
* routines and/or provided to userland
*/
static void __init initialize_cache_info(void)
{
struct device_node *np;
unsigned long num_cpus = 0;
DBG(" -> initialize_cache_info()\n");
for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
num_cpus += 1;
/* We're assuming *all* of the CPUs have the same
* d-cache and i-cache sizes... -Peter
*/
if ( num_cpus == 1 ) {
u32 *sizep, *lsizep;
u32 size, lsize;
const char *dc, *ic;
/* Then read cache informations */
if (systemcfg->platform == PLATFORM_POWERMAC) {
dc = "d-cache-block-size";
ic = "i-cache-block-size";
} else {
dc = "d-cache-line-size";
ic = "i-cache-line-size";
}
size = 0;
lsize = cur_cpu_spec->dcache_bsize;
sizep = (u32 *)get_property(np, "d-cache-size", NULL);
if (sizep != NULL)
size = *sizep;
lsizep = (u32 *) get_property(np, dc, NULL);
if (lsizep != NULL)
lsize = *lsizep;
if (sizep == 0 || lsizep == 0)
DBG("Argh, can't find dcache properties ! "
"sizep: %p, lsizep: %p\n", sizep, lsizep);
systemcfg->dcache_size = ppc64_caches.dsize = size;
systemcfg->dcache_line_size =
ppc64_caches.dline_size = lsize;
ppc64_caches.log_dline_size = __ilog2(lsize);
ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
size = 0;
lsize = cur_cpu_spec->icache_bsize;
sizep = (u32 *)get_property(np, "i-cache-size", NULL);
if (sizep != NULL)
size = *sizep;
lsizep = (u32 *)get_property(np, ic, NULL);
if (lsizep != NULL)
lsize = *lsizep;
if (sizep == 0 || lsizep == 0)
DBG("Argh, can't find icache properties ! "
"sizep: %p, lsizep: %p\n", sizep, lsizep);
systemcfg->icache_size = ppc64_caches.isize = size;
systemcfg->icache_line_size =
ppc64_caches.iline_size = lsize;
ppc64_caches.log_iline_size = __ilog2(lsize);
ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
}
}
/* Add an eye catcher and the systemcfg layout version number */
strcpy(systemcfg->eye_catcher, "SYSTEMCFG:PPC64");
systemcfg->version.major = SYSTEMCFG_MAJOR;
systemcfg->version.minor = SYSTEMCFG_MINOR;
systemcfg->processor = mfspr(SPRN_PVR);
DBG(" <- initialize_cache_info()\n");
}
static void __init check_for_initrd(void)
{
#ifdef CONFIG_BLK_DEV_INITRD
u64 *prop;
DBG(" -> check_for_initrd()\n");
prop = (u64 *)get_property(of_chosen, "linux,initrd-start", NULL);
if (prop != NULL) {
initrd_start = (unsigned long)__va(*prop);
prop = (u64 *)get_property(of_chosen, "linux,initrd-end", NULL);
if (prop != NULL) {
initrd_end = (unsigned long)__va(*prop);
initrd_below_start_ok = 1;
} else
initrd_start = 0;
}
/* If we were passed an initrd, set the ROOT_DEV properly if the values
* look sensible. If not, clear initrd reference.
*/
if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
initrd_end > initrd_start)
ROOT_DEV = Root_RAM0;
else
initrd_start = initrd_end = 0;
if (initrd_start)
printk("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end);
DBG(" <- check_for_initrd()\n");
#endif /* CONFIG_BLK_DEV_INITRD */
}
#endif /* CONFIG_PPC_MULTIPLATFORM */
/*
* Do some initial setup of the system. The parameters are those which
* were passed in from the bootloader.
*/
void __init setup_system(void)
{
DBG(" -> setup_system()\n");
#ifdef CONFIG_PPC_ISERIES
/* pSeries systems are identified in prom.c via OF. */
if (itLpNaca.xLparInstalled == 1)
systemcfg->platform = PLATFORM_ISERIES_LPAR;
ppc_md.init_early();
#else /* CONFIG_PPC_ISERIES */
/*
* Unflatten the device-tree passed by prom_init or kexec
*/
unflatten_device_tree();
/*
* Fill the ppc64_caches & systemcfg structures with informations
* retreived from the device-tree. Need to be called before
* finish_device_tree() since the later requires some of the
* informations filled up here to properly parse the interrupt
* tree.
* It also sets up the cache line sizes which allows to call
* routines like flush_icache_range (used by the hash init
* later on).
*/
initialize_cache_info();
#ifdef CONFIG_PPC_RTAS
/*
* Initialize RTAS if available
*/
rtas_initialize();
#endif /* CONFIG_PPC_RTAS */
/*
* Check if we have an initrd provided via the device-tree
*/
check_for_initrd();
/*
* Do some platform specific early initializations, that includes
* setting up the hash table pointers. It also sets up some interrupt-mapping
* related options that will be used by finish_device_tree()
*/
ppc_md.init_early();
/*
* "Finish" the device-tree, that is do the actual parsing of
* some of the properties like the interrupt map
*/
finish_device_tree();
/*
* Initialize xmon
*/
#ifdef CONFIG_XMON_DEFAULT
xmon_init();
#endif
/*
* Register early console
*/
early_console_initialized = 1;
register_console(&udbg_console);
/* Save unparsed command line copy for /proc/cmdline */
strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
parse_early_param();
#endif /* !CONFIG_PPC_ISERIES */
#if defined(CONFIG_SMP) && !defined(CONFIG_PPC_ISERIES)
/*
* iSeries has already initialized the cpu maps at this point.
*/
setup_cpu_maps();
/* Release secondary cpus out of their spinloops at 0x60 now that
* we can map physical -> logical CPU ids
*/
smp_release_cpus();
#endif /* defined(CONFIG_SMP) && !defined(CONFIG_PPC_ISERIES) */
printk("Starting Linux PPC64 %s\n", UTS_RELEASE);
printk("-----------------------------------------------------\n");
printk("ppc64_pft_size = 0x%lx\n", ppc64_pft_size);
printk("ppc64_debug_switch = 0x%lx\n", ppc64_debug_switch);
printk("ppc64_interrupt_controller = 0x%ld\n", ppc64_interrupt_controller);
printk("systemcfg = 0x%p\n", systemcfg);
printk("systemcfg->platform = 0x%x\n", systemcfg->platform);
printk("systemcfg->processorCount = 0x%lx\n", systemcfg->processorCount);
printk("systemcfg->physicalMemorySize = 0x%lx\n", systemcfg->physicalMemorySize);
printk("ppc64_caches.dcache_line_size = 0x%x\n",
ppc64_caches.dline_size);
printk("ppc64_caches.icache_line_size = 0x%x\n",
ppc64_caches.iline_size);
printk("htab_address = 0x%p\n", htab_address);
printk("htab_hash_mask = 0x%lx\n", htab_hash_mask);
printk("-----------------------------------------------------\n");
mm_init_ppc64();
DBG(" <- setup_system()\n");
}
/* also used by kexec */
void machine_shutdown(void)
{
if (ppc_md.nvram_sync)
ppc_md.nvram_sync();
}
void machine_restart(char *cmd)
{
machine_shutdown();
ppc_md.restart(cmd);
#ifdef CONFIG_SMP
smp_send_stop();
#endif
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
void machine_power_off(void)
{
machine_shutdown();
ppc_md.power_off();
#ifdef CONFIG_SMP
smp_send_stop();
#endif
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
void machine_halt(void)
{
machine_shutdown();
ppc_md.halt();
#ifdef CONFIG_SMP
smp_send_stop();
#endif
printk(KERN_EMERG "System Halted, OK to turn off power\n");
local_irq_disable();
while (1) ;
}
static int ppc64_panic_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
ppc_md.panic((char *)ptr); /* May not return */
return NOTIFY_DONE;
}
#ifdef CONFIG_SMP
DEFINE_PER_CPU(unsigned int, pvr);
#endif
static int show_cpuinfo(struct seq_file *m, void *v)
{
unsigned long cpu_id = (unsigned long)v - 1;
unsigned int pvr;
unsigned short maj;
unsigned short min;
if (cpu_id == NR_CPUS) {
seq_printf(m, "timebase\t: %lu\n", ppc_tb_freq);
if (ppc_md.get_cpuinfo != NULL)
ppc_md.get_cpuinfo(m);
return 0;
}
/* We only show online cpus: disable preempt (overzealous, I
* knew) to prevent cpu going down. */
preempt_disable();
if (!cpu_online(cpu_id)) {
preempt_enable();
return 0;
}
#ifdef CONFIG_SMP
pvr = per_cpu(pvr, cpu_id);
#else
pvr = mfspr(SPRN_PVR);
#endif
maj = (pvr >> 8) & 0xFF;
min = pvr & 0xFF;
seq_printf(m, "processor\t: %lu\n", cpu_id);
seq_printf(m, "cpu\t\t: ");
if (cur_cpu_spec->pvr_mask)
seq_printf(m, "%s", cur_cpu_spec->cpu_name);
else
seq_printf(m, "unknown (%08x)", pvr);
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC))
seq_printf(m, ", altivec supported");
#endif /* CONFIG_ALTIVEC */
seq_printf(m, "\n");
/*
* Assume here that all clock rates are the same in a
* smp system. -- Cort
*/
seq_printf(m, "clock\t\t: %lu.%06luMHz\n", ppc_proc_freq / 1000000,
ppc_proc_freq % 1000000);
seq_printf(m, "revision\t: %hd.%hd\n\n", maj, min);
preempt_enable();
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos <= NR_CPUS ? (void *)((*pos)+1) : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
struct seq_operations cpuinfo_op = {
.start =c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
/*
* These three variables are used to save values passed to us by prom_init()
* via the device tree. The TCE variables are needed because with a memory_limit
* in force we may need to explicitly map the TCE are at the top of RAM.
*/
unsigned long memory_limit;
unsigned long tce_alloc_start;
unsigned long tce_alloc_end;
#ifdef CONFIG_PPC_ISERIES
/*
* On iSeries we just parse the mem=X option from the command line.
* On pSeries it's a bit more complicated, see prom_init_mem()
*/
static int __init early_parsemem(char *p)
{
if (!p)
return 0;
memory_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
return 0;
}
early_param("mem", early_parsemem);
#endif /* CONFIG_PPC_ISERIES */
#ifdef CONFIG_PPC_MULTIPLATFORM
static int __init set_preferred_console(void)
{
struct device_node *prom_stdout = NULL;
char *name;
u32 *spd;
int offset = 0;
DBG(" -> set_preferred_console()\n");
/* The user has requested a console so this is already set up. */
if (strstr(saved_command_line, "console=")) {
DBG(" console was specified !\n");
return -EBUSY;
}
if (!of_chosen) {
DBG(" of_chosen is NULL !\n");
return -ENODEV;
}
/* We are getting a weird phandle from OF ... */
/* ... So use the full path instead */
name = (char *)get_property(of_chosen, "linux,stdout-path", NULL);
if (name == NULL) {
DBG(" no linux,stdout-path !\n");
return -ENODEV;
}
prom_stdout = of_find_node_by_path(name);
if (!prom_stdout) {
DBG(" can't find stdout package %s !\n", name);
return -ENODEV;
}
DBG("stdout is %s\n", prom_stdout->full_name);
name = (char *)get_property(prom_stdout, "name", NULL);
if (!name) {
DBG(" stdout package has no name !\n");
goto not_found;
}
spd = (u32 *)get_property(prom_stdout, "current-speed", NULL);
if (0)
;
#ifdef CONFIG_SERIAL_8250_CONSOLE
else if (strcmp(name, "serial") == 0) {
int i;
u32 *reg = (u32 *)get_property(prom_stdout, "reg", &i);
if (i > 8) {
switch (reg[1]) {
case 0x3f8:
offset = 0;
break;
case 0x2f8:
offset = 1;
break;
case 0x898:
offset = 2;
break;
case 0x890:
offset = 3;
break;
default:
/* We dont recognise the serial port */
goto not_found;
}
}
}
#endif /* CONFIG_SERIAL_8250_CONSOLE */
#ifdef CONFIG_PPC_PSERIES
else if (strcmp(name, "vty") == 0) {
u32 *reg = (u32 *)get_property(prom_stdout, "reg", NULL);
char *compat = (char *)get_property(prom_stdout, "compatible", NULL);
if (reg && compat && (strcmp(compat, "hvterm-protocol") == 0)) {
/* Host Virtual Serial Interface */
int offset;
switch (reg[0]) {
case 0x30000000:
offset = 0;
break;
case 0x30000001:
offset = 1;
break;
default:
goto not_found;
}
of_node_put(prom_stdout);
DBG("Found hvsi console at offset %d\n", offset);
return add_preferred_console("hvsi", offset, NULL);
} else {
/* pSeries LPAR virtual console */
of_node_put(prom_stdout);
DBG("Found hvc console\n");
return add_preferred_console("hvc", 0, NULL);
}
}
#endif /* CONFIG_PPC_PSERIES */
#ifdef CONFIG_SERIAL_PMACZILOG_CONSOLE
else if (strcmp(name, "ch-a") == 0)
offset = 0;
else if (strcmp(name, "ch-b") == 0)
offset = 1;
#endif /* CONFIG_SERIAL_PMACZILOG_CONSOLE */
else
goto not_found;
of_node_put(prom_stdout);
DBG("Found serial console at ttyS%d\n", offset);
if (spd) {
static char __initdata opt[16];
sprintf(opt, "%d", *spd);
return add_preferred_console("ttyS", offset, opt);
} else
return add_preferred_console("ttyS", offset, NULL);
not_found:
DBG("No preferred console found !\n");
of_node_put(prom_stdout);
return -ENODEV;
}
console_initcall(set_preferred_console);
#endif /* CONFIG_PPC_MULTIPLATFORM */
#ifdef CONFIG_IRQSTACKS
static void __init irqstack_early_init(void)
{
unsigned int i;
/*
* interrupt stacks must be under 256MB, we cannot afford to take
* SLB misses on them.
*/
for_each_cpu(i) {
softirq_ctx[i] = (struct thread_info *)__va(lmb_alloc_base(THREAD_SIZE,
THREAD_SIZE, 0x10000000));
hardirq_ctx[i] = (struct thread_info *)__va(lmb_alloc_base(THREAD_SIZE,
THREAD_SIZE, 0x10000000));
}
}
#else
#define irqstack_early_init()
#endif
/*
* Stack space used when we detect a bad kernel stack pointer, and
* early in SMP boots before relocation is enabled.
*/
static void __init emergency_stack_init(void)
{
unsigned long limit;
unsigned int i;
/*
* Emergency stacks must be under 256MB, we cannot afford to take
* SLB misses on them. The ABI also requires them to be 128-byte
* aligned.
*
* Since we use these as temporary stacks during secondary CPU
* bringup, we need to get at them in real mode. This means they
* must also be within the RMO region.
*/
limit = min(0x10000000UL, lmb.rmo_size);
for_each_cpu(i)
paca[i].emergency_sp = __va(lmb_alloc_base(PAGE_SIZE, 128,
limit)) + PAGE_SIZE;
}
/*
* Called from setup_arch to initialize the bitmap of available
* syscalls in the systemcfg page
*/
void __init setup_syscall_map(void)
{
unsigned int i, count64 = 0, count32 = 0;
extern unsigned long *sys_call_table;
extern unsigned long *sys_call_table32;
extern unsigned long sys_ni_syscall;
for (i = 0; i < __NR_syscalls; i++) {
if (sys_call_table[i] == sys_ni_syscall)
continue;
count64++;
systemcfg->syscall_map_64[i >> 5] |= 0x80000000UL >> (i & 0x1f);
}
for (i = 0; i < __NR_syscalls; i++) {
if (sys_call_table32[i] == sys_ni_syscall)
continue;
count32++;
systemcfg->syscall_map_32[i >> 5] |= 0x80000000UL >> (i & 0x1f);
}
printk(KERN_INFO "Syscall map setup, %d 32 bits and %d 64 bits syscalls\n",
count32, count64);
}
/*
* Called into from start_kernel, after lock_kernel has been called.
* Initializes bootmem, which is unsed to manage page allocation until
* mem_init is called.
*/
void __init setup_arch(char **cmdline_p)
{
extern void do_init_bootmem(void);
ppc64_boot_msg(0x12, "Setup Arch");
*cmdline_p = cmd_line;
/*
* Set cache line size based on type of cpu as a default.
* Systems with OF can look in the properties on the cpu node(s)
* for a possibly more accurate value.
*/
dcache_bsize = ppc64_caches.dline_size;
icache_bsize = ppc64_caches.iline_size;
/* reboot on panic */
panic_timeout = 180;
if (ppc_md.panic)
notifier_chain_register(&panic_notifier_list, &ppc64_panic_block);
init_mm.start_code = PAGE_OFFSET;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = klimit;
irqstack_early_init();
emergency_stack_init();
stabs_alloc();
/* set up the bootmem stuff with available memory */
do_init_bootmem();
sparse_init();
/* initialize the syscall map in systemcfg */
setup_syscall_map();
ppc_md.setup_arch();
/* Use the default idle loop if the platform hasn't provided one. */
if (NULL == ppc_md.idle_loop) {
ppc_md.idle_loop = default_idle;
printk(KERN_INFO "Using default idle loop\n");
}
paging_init();
ppc64_boot_msg(0x15, "Setup Done");
}
/* ToDo: do something useful if ppc_md is not yet setup. */
#define PPC64_LINUX_FUNCTION 0x0f000000
#define PPC64_IPL_MESSAGE 0xc0000000
#define PPC64_TERM_MESSAGE 0xb0000000
#define PPC64_ATTN_MESSAGE 0xa0000000
#define PPC64_DUMP_MESSAGE 0xd0000000
static void ppc64_do_msg(unsigned int src, const char *msg)
{
if (ppc_md.progress) {
char buf[128];
sprintf(buf, "%08X\n", src);
ppc_md.progress(buf, 0);
snprintf(buf, 128, "%s", msg);
ppc_md.progress(buf, 0);
}
}
/* Print a boot progress message. */
void ppc64_boot_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
printk("[boot]%04x %s\n", src, msg);
}
/* Print a termination message (print only -- does not stop the kernel) */
void ppc64_terminate_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg);
printk("[terminate]%04x %s\n", src, msg);
}
/* Print something that needs attention (device error, etc) */
void ppc64_attention_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_ATTN_MESSAGE|src, msg);
printk("[attention]%04x %s\n", src, msg);
}
/* Print a dump progress message. */
void ppc64_dump_msg(unsigned int src, const char *msg)
{
ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_DUMP_MESSAGE|src, msg);
printk("[dump]%04x %s\n", src, msg);
}
/* This should only be called on processor 0 during calibrate decr */
void __init setup_default_decr(void)
{
struct paca_struct *lpaca = get_paca();
lpaca->default_decr = tb_ticks_per_jiffy;
lpaca->next_jiffy_update_tb = get_tb() + tb_ticks_per_jiffy;
}
#ifndef CONFIG_PPC_ISERIES
/*
* This function can be used by platforms to "find" legacy serial ports.
* It works for "serial" nodes under an "isa" node, and will try to
* respect the "ibm,aix-loc" property if any. It works with up to 8
* ports.
*/
#define MAX_LEGACY_SERIAL_PORTS 8
static struct plat_serial8250_port serial_ports[MAX_LEGACY_SERIAL_PORTS+1];
static unsigned int old_serial_count;
void __init generic_find_legacy_serial_ports(u64 *physport,
unsigned int *default_speed)
{
struct device_node *np;
u32 *sizeprop;
struct isa_reg_property {
u32 space;
u32 address;
u32 size;
};
struct pci_reg_property {
struct pci_address addr;
u32 size_hi;
u32 size_lo;
};
DBG(" -> generic_find_legacy_serial_port()\n");
*physport = 0;
if (default_speed)
*default_speed = 0;
np = of_find_node_by_path("/");
if (!np)
return;
/* First fill our array */
for (np = NULL; (np = of_find_node_by_type(np, "serial"));) {
struct device_node *isa, *pci;
struct isa_reg_property *reg;
unsigned long phys_size, addr_size, io_base;
u32 *rangesp;
u32 *interrupts, *clk, *spd;
char *typep;
int index, rlen, rentsize;
/* Ok, first check if it's under an "isa" parent */
isa = of_get_parent(np);
if (!isa || strcmp(isa->name, "isa")) {
DBG("%s: no isa parent found\n", np->full_name);
continue;
}
/* Now look for an "ibm,aix-loc" property that gives us ordering
* if any...
*/
typep = (char *)get_property(np, "ibm,aix-loc", NULL);
/* Get the ISA port number */
reg = (struct isa_reg_property *)get_property(np, "reg", NULL);
if (reg == NULL)
goto next_port;
/* We assume the interrupt number isn't translated ... */
interrupts = (u32 *)get_property(np, "interrupts", NULL);
/* get clock freq. if present */
clk = (u32 *)get_property(np, "clock-frequency", NULL);
/* get default speed if present */
spd = (u32 *)get_property(np, "current-speed", NULL);
/* Default to locate at end of array */
index = old_serial_count; /* end of the array by default */
/* If we have a location index, then use it */
if (typep && *typep == 'S') {
index = simple_strtol(typep+1, NULL, 0) - 1;
/* if index is out of range, use end of array instead */
if (index >= MAX_LEGACY_SERIAL_PORTS)
index = old_serial_count;
/* if our index is still out of range, that mean that
* array is full, we could scan for a free slot but that
* make little sense to bother, just skip the port
*/
if (index >= MAX_LEGACY_SERIAL_PORTS)
goto next_port;
if (index >= old_serial_count)
old_serial_count = index + 1;
/* Check if there is a port who already claimed our slot */
if (serial_ports[index].iobase != 0) {
/* if we still have some room, move it, else override */
if (old_serial_count < MAX_LEGACY_SERIAL_PORTS) {
DBG("Moved legacy port %d -> %d\n", index,
old_serial_count);
serial_ports[old_serial_count++] =
serial_ports[index];
} else {
DBG("Replacing legacy port %d\n", index);
}
}
}
if (index >= MAX_LEGACY_SERIAL_PORTS)
goto next_port;
if (index >= old_serial_count)
old_serial_count = index + 1;
/* Now fill the entry */
memset(&serial_ports[index], 0, sizeof(struct plat_serial8250_port));
serial_ports[index].uartclk = clk ? *clk : BASE_BAUD * 16;
serial_ports[index].iobase = reg->address;
serial_ports[index].irq = interrupts ? interrupts[0] : 0;
serial_ports[index].flags = ASYNC_BOOT_AUTOCONF;
DBG("Added legacy port, index: %d, port: %x, irq: %d, clk: %d\n",
index,
serial_ports[index].iobase,
serial_ports[index].irq,
serial_ports[index].uartclk);
/* Get phys address of IO reg for port 1 */
if (index != 0)
goto next_port;
pci = of_get_parent(isa);
if (!pci) {
DBG("%s: no pci parent found\n", np->full_name);
goto next_port;
}
rangesp = (u32 *)get_property(pci, "ranges", &rlen);
if (rangesp == NULL) {
of_node_put(pci);
goto next_port;
}
rlen /= 4;
/* we need the #size-cells of the PCI bridge node itself */
phys_size = 1;
sizeprop = (u32 *)get_property(pci, "#size-cells", NULL);
if (sizeprop != NULL)
phys_size = *sizeprop;
/* we need the parent #addr-cells */
addr_size = prom_n_addr_cells(pci);
rentsize = 3 + addr_size + phys_size;
io_base = 0;
for (;rlen >= rentsize; rlen -= rentsize,rangesp += rentsize) {
if (((rangesp[0] >> 24) & 0x3) != 1)
continue; /* not IO space */
io_base = rangesp[3];
if (addr_size == 2)
io_base = (io_base << 32) | rangesp[4];
}
if (io_base != 0) {
*physport = io_base + reg->address;
if (default_speed && spd)
*default_speed = *spd;
}
of_node_put(pci);
next_port:
of_node_put(isa);
}
DBG(" <- generic_find_legacy_serial_port()\n");
}
static struct platform_device serial_device = {
.name = "serial8250",
.id = 0,
.dev = {
.platform_data = serial_ports,
},
};
static int __init serial_dev_init(void)
{
return platform_device_register(&serial_device);
}
arch_initcall(serial_dev_init);
#endif /* CONFIG_PPC_ISERIES */
int check_legacy_ioport(unsigned long base_port)
{
if (ppc_md.check_legacy_ioport == NULL)
return 0;
return ppc_md.check_legacy_ioport(base_port);
}
EXPORT_SYMBOL(check_legacy_ioport);
#ifdef CONFIG_XMON
static int __init early_xmon(char *p)
{
/* ensure xmon is enabled */
if (p) {
if (strncmp(p, "on", 2) == 0)
xmon_init();
if (strncmp(p, "early", 5) != 0)
return 0;
}
xmon_init();
debugger(NULL);
return 0;
}
early_param("xmon", early_xmon);
#endif
void cpu_die(void)
{
if (ppc_md.cpu_die)
ppc_md.cpu_die();
}