kernel-ark/arch/powerpc/platforms/pseries/rtasd.c
Paul Mackerras 271c3f35bd powerpc: Fix some compile problems with the VDSO stuff
We needed the VDSO symbols in the arch/ppc asm-offsets.c, and there
were a few usages of _systemcfg still left lying around.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-11-11 23:04:40 +11:00

529 lines
12 KiB
C

/*
* Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Communication to userspace based on kernel/printk.c
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/vmalloc.h>
#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/rtas.h>
#include <asm/prom.h>
#include <asm/nvram.h>
#include <asm/atomic.h>
#if 0
#define DEBUG(A...) printk(KERN_ERR A)
#else
#define DEBUG(A...)
#endif
static DEFINE_SPINLOCK(rtasd_log_lock);
DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
static char *rtas_log_buf;
static unsigned long rtas_log_start;
static unsigned long rtas_log_size;
static int surveillance_timeout = -1;
static unsigned int rtas_event_scan_rate;
static unsigned int rtas_error_log_max;
static unsigned int rtas_error_log_buffer_max;
static int full_rtas_msgs = 0;
extern int no_logging;
volatile int error_log_cnt = 0;
/*
* Since we use 32 bit RTAS, the physical address of this must be below
* 4G or else bad things happen. Allocate this in the kernel data and
* make it big enough.
*/
static unsigned char logdata[RTAS_ERROR_LOG_MAX];
static int get_eventscan_parms(void);
static char *rtas_type[] = {
"Unknown", "Retry", "TCE Error", "Internal Device Failure",
"Timeout", "Data Parity", "Address Parity", "Cache Parity",
"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
};
static char *rtas_event_type(int type)
{
if ((type > 0) && (type < 11))
return rtas_type[type];
switch (type) {
case RTAS_TYPE_EPOW:
return "EPOW";
case RTAS_TYPE_PLATFORM:
return "Platform Error";
case RTAS_TYPE_IO:
return "I/O Event";
case RTAS_TYPE_INFO:
return "Platform Information Event";
case RTAS_TYPE_DEALLOC:
return "Resource Deallocation Event";
case RTAS_TYPE_DUMP:
return "Dump Notification Event";
}
return rtas_type[0];
}
/* To see this info, grep RTAS /var/log/messages and each entry
* will be collected together with obvious begin/end.
* There will be a unique identifier on the begin and end lines.
* This will persist across reboots.
*
* format of error logs returned from RTAS:
* bytes (size) : contents
* --------------------------------------------------------
* 0-7 (8) : rtas_error_log
* 8-47 (40) : extended info
* 48-51 (4) : vendor id
* 52-1023 (vendor specific) : location code and debug data
*/
static void printk_log_rtas(char *buf, int len)
{
int i,j,n = 0;
int perline = 16;
char buffer[64];
char * str = "RTAS event";
if (full_rtas_msgs) {
printk(RTAS_DEBUG "%d -------- %s begin --------\n",
error_log_cnt, str);
/*
* Print perline bytes on each line, each line will start
* with RTAS and a changing number, so syslogd will
* print lines that are otherwise the same. Separate every
* 4 bytes with a space.
*/
for (i = 0; i < len; i++) {
j = i % perline;
if (j == 0) {
memset(buffer, 0, sizeof(buffer));
n = sprintf(buffer, "RTAS %d:", i/perline);
}
if ((i % 4) == 0)
n += sprintf(buffer+n, " ");
n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
if (j == (perline-1))
printk(KERN_DEBUG "%s\n", buffer);
}
if ((i % perline) != 0)
printk(KERN_DEBUG "%s\n", buffer);
printk(RTAS_DEBUG "%d -------- %s end ----------\n",
error_log_cnt, str);
} else {
struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
error_log_cnt, rtas_event_type(errlog->type),
errlog->severity);
}
}
static int log_rtas_len(char * buf)
{
int len;
struct rtas_error_log *err;
/* rtas fixed header */
len = 8;
err = (struct rtas_error_log *)buf;
if (err->extended_log_length) {
/* extended header */
len += err->extended_log_length;
}
if (rtas_error_log_max == 0) {
get_eventscan_parms();
}
if (len > rtas_error_log_max)
len = rtas_error_log_max;
return len;
}
/*
* First write to nvram, if fatal error, that is the only
* place we log the info. The error will be picked up
* on the next reboot by rtasd. If not fatal, run the
* method for the type of error. Currently, only RTAS
* errors have methods implemented, but in the future
* there might be a need to store data in nvram before a
* call to panic().
*
* XXX We write to nvram periodically, to indicate error has
* been written and sync'd, but there is a possibility
* that if we don't shutdown correctly, a duplicate error
* record will be created on next reboot.
*/
void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
{
unsigned long offset;
unsigned long s;
int len = 0;
DEBUG("logging event\n");
if (buf == NULL)
return;
spin_lock_irqsave(&rtasd_log_lock, s);
/* get length and increase count */
switch (err_type & ERR_TYPE_MASK) {
case ERR_TYPE_RTAS_LOG:
len = log_rtas_len(buf);
if (!(err_type & ERR_FLAG_BOOT))
error_log_cnt++;
break;
case ERR_TYPE_KERNEL_PANIC:
default:
spin_unlock_irqrestore(&rtasd_log_lock, s);
return;
}
/* Write error to NVRAM */
if (!no_logging && !(err_type & ERR_FLAG_BOOT))
nvram_write_error_log(buf, len, err_type);
/*
* rtas errors can occur during boot, and we do want to capture
* those somewhere, even if nvram isn't ready (why not?), and even
* if rtasd isn't ready. Put them into the boot log, at least.
*/
if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
printk_log_rtas(buf, len);
/* Check to see if we need to or have stopped logging */
if (fatal || no_logging) {
no_logging = 1;
spin_unlock_irqrestore(&rtasd_log_lock, s);
return;
}
/* call type specific method for error */
switch (err_type & ERR_TYPE_MASK) {
case ERR_TYPE_RTAS_LOG:
offset = rtas_error_log_buffer_max *
((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
/* First copy over sequence number */
memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
/* Second copy over error log data */
offset += sizeof(int);
memcpy(&rtas_log_buf[offset], buf, len);
if (rtas_log_size < LOG_NUMBER)
rtas_log_size += 1;
else
rtas_log_start += 1;
spin_unlock_irqrestore(&rtasd_log_lock, s);
wake_up_interruptible(&rtas_log_wait);
break;
case ERR_TYPE_KERNEL_PANIC:
default:
spin_unlock_irqrestore(&rtasd_log_lock, s);
return;
}
}
static int rtas_log_open(struct inode * inode, struct file * file)
{
return 0;
}
static int rtas_log_release(struct inode * inode, struct file * file)
{
return 0;
}
/* This will check if all events are logged, if they are then, we
* know that we can safely clear the events in NVRAM.
* Next we'll sit and wait for something else to log.
*/
static ssize_t rtas_log_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
int error;
char *tmp;
unsigned long s;
unsigned long offset;
if (!buf || count < rtas_error_log_buffer_max)
return -EINVAL;
count = rtas_error_log_buffer_max;
if (!access_ok(VERIFY_WRITE, buf, count))
return -EFAULT;
tmp = kmalloc(count, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
spin_lock_irqsave(&rtasd_log_lock, s);
/* if it's 0, then we know we got the last one (the one in NVRAM) */
if (rtas_log_size == 0 && !no_logging)
nvram_clear_error_log();
spin_unlock_irqrestore(&rtasd_log_lock, s);
error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
if (error)
goto out;
spin_lock_irqsave(&rtasd_log_lock, s);
offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
memcpy(tmp, &rtas_log_buf[offset], count);
rtas_log_start += 1;
rtas_log_size -= 1;
spin_unlock_irqrestore(&rtasd_log_lock, s);
error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
out:
kfree(tmp);
return error;
}
static unsigned int rtas_log_poll(struct file *file, poll_table * wait)
{
poll_wait(file, &rtas_log_wait, wait);
if (rtas_log_size)
return POLLIN | POLLRDNORM;
return 0;
}
struct file_operations proc_rtas_log_operations = {
.read = rtas_log_read,
.poll = rtas_log_poll,
.open = rtas_log_open,
.release = rtas_log_release,
};
static int enable_surveillance(int timeout)
{
int error;
error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
if (error == 0)
return 0;
if (error == -EINVAL) {
printk(KERN_INFO "rtasd: surveillance not supported\n");
return 0;
}
printk(KERN_ERR "rtasd: could not update surveillance\n");
return -1;
}
static int get_eventscan_parms(void)
{
struct device_node *node;
int *ip;
node = of_find_node_by_path("/rtas");
ip = (int *)get_property(node, "rtas-event-scan-rate", NULL);
if (ip == NULL) {
printk(KERN_ERR "rtasd: no rtas-event-scan-rate\n");
of_node_put(node);
return -1;
}
rtas_event_scan_rate = *ip;
DEBUG("rtas-event-scan-rate %d\n", rtas_event_scan_rate);
/* Make room for the sequence number */
rtas_error_log_max = rtas_get_error_log_max();
rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
of_node_put(node);
return 0;
}
static void do_event_scan(int event_scan)
{
int error;
do {
memset(logdata, 0, rtas_error_log_max);
error = rtas_call(event_scan, 4, 1, NULL,
RTAS_EVENT_SCAN_ALL_EVENTS, 0,
__pa(logdata), rtas_error_log_max);
if (error == -1) {
printk(KERN_ERR "event-scan failed\n");
break;
}
if (error == 0)
pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 0);
} while(error == 0);
}
static void do_event_scan_all_cpus(long delay)
{
int cpu;
lock_cpu_hotplug();
cpu = first_cpu(cpu_online_map);
for (;;) {
set_cpus_allowed(current, cpumask_of_cpu(cpu));
do_event_scan(rtas_token("event-scan"));
set_cpus_allowed(current, CPU_MASK_ALL);
/* Drop hotplug lock, and sleep for the specified delay */
unlock_cpu_hotplug();
msleep_interruptible(delay);
lock_cpu_hotplug();
cpu = next_cpu(cpu, cpu_online_map);
if (cpu == NR_CPUS)
break;
}
unlock_cpu_hotplug();
}
static int rtasd(void *unused)
{
unsigned int err_type;
int event_scan = rtas_token("event-scan");
int rc;
daemonize("rtasd");
if (event_scan == RTAS_UNKNOWN_SERVICE || get_eventscan_parms() == -1)
goto error;
rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
if (!rtas_log_buf) {
printk(KERN_ERR "rtasd: no memory\n");
goto error;
}
printk(KERN_INFO "RTAS daemon started\n");
DEBUG("will sleep for %d milliseconds\n", (30000/rtas_event_scan_rate));
/* See if we have any error stored in NVRAM */
memset(logdata, 0, rtas_error_log_max);
rc = nvram_read_error_log(logdata, rtas_error_log_max, &err_type);
/* We can use rtas_log_buf now */
no_logging = 0;
if (!rc) {
if (err_type != ERR_FLAG_ALREADY_LOGGED) {
pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
}
}
/* First pass. */
do_event_scan_all_cpus(1000);
if (surveillance_timeout != -1) {
DEBUG("enabling surveillance\n");
enable_surveillance(surveillance_timeout);
DEBUG("surveillance enabled\n");
}
/* Delay should be at least one second since some
* machines have problems if we call event-scan too
* quickly. */
for (;;)
do_event_scan_all_cpus(30000/rtas_event_scan_rate);
error:
/* Should delete proc entries */
return -EINVAL;
}
static int __init rtas_init(void)
{
struct proc_dir_entry *entry;
if (!platform_is_pseries())
return 0;
/* No RTAS */
if (rtas_token("event-scan") == RTAS_UNKNOWN_SERVICE) {
printk(KERN_INFO "rtasd: no event-scan on system\n");
return 1;
}
entry = create_proc_entry("ppc64/rtas/error_log", S_IRUSR, NULL);
if (entry)
entry->proc_fops = &proc_rtas_log_operations;
else
printk(KERN_ERR "Failed to create error_log proc entry\n");
if (kernel_thread(rtasd, NULL, CLONE_FS) < 0)
printk(KERN_ERR "Failed to start RTAS daemon\n");
return 0;
}
static int __init surveillance_setup(char *str)
{
int i;
if (get_option(&str,&i)) {
if (i >= 0 && i <= 255)
surveillance_timeout = i;
}
return 1;
}
static int __init rtasmsgs_setup(char *str)
{
if (strcmp(str, "on") == 0)
full_rtas_msgs = 1;
else if (strcmp(str, "off") == 0)
full_rtas_msgs = 0;
return 1;
}
__initcall(rtas_init);
__setup("surveillance=", surveillance_setup);
__setup("rtasmsgs=", rtasmsgs_setup);