5a72e04df5
Using CPU hotplug to support suspend/resume SMP. Both S3 and S4 use disable/enable_nonboot_cpus API. The S4 part is based on Pavel's original S4 SMP patch. Signed-off-by: Li Shaohua<shaohua.li@intel.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1436 lines
33 KiB
C
1436 lines
33 KiB
C
/*
|
|
* linux/kernel/power/swsusp.c
|
|
*
|
|
* This file is to realize architecture-independent
|
|
* machine suspend feature using pretty near only high-level routines
|
|
*
|
|
* Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
|
|
* Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
|
|
*
|
|
* This file is released under the GPLv2.
|
|
*
|
|
* I'd like to thank the following people for their work:
|
|
*
|
|
* Pavel Machek <pavel@ucw.cz>:
|
|
* Modifications, defectiveness pointing, being with me at the very beginning,
|
|
* suspend to swap space, stop all tasks. Port to 2.4.18-ac and 2.5.17.
|
|
*
|
|
* Steve Doddi <dirk@loth.demon.co.uk>:
|
|
* Support the possibility of hardware state restoring.
|
|
*
|
|
* Raph <grey.havens@earthling.net>:
|
|
* Support for preserving states of network devices and virtual console
|
|
* (including X and svgatextmode)
|
|
*
|
|
* Kurt Garloff <garloff@suse.de>:
|
|
* Straightened the critical function in order to prevent compilers from
|
|
* playing tricks with local variables.
|
|
*
|
|
* Andreas Mohr <a.mohr@mailto.de>
|
|
*
|
|
* Alex Badea <vampire@go.ro>:
|
|
* Fixed runaway init
|
|
*
|
|
* More state savers are welcome. Especially for the scsi layer...
|
|
*
|
|
* For TODOs,FIXMEs also look in Documentation/power/swsusp.txt
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/smp_lock.h>
|
|
#include <linux/file.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/version.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/vt_kern.h>
|
|
#include <linux/kbd_kern.h>
|
|
#include <linux/keyboard.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/major.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/device.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/console.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/bio.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/io.h>
|
|
|
|
#include "power.h"
|
|
|
|
/* References to section boundaries */
|
|
extern const void __nosave_begin, __nosave_end;
|
|
|
|
/* Variables to be preserved over suspend */
|
|
static int nr_copy_pages_check;
|
|
|
|
extern char resume_file[];
|
|
|
|
/* Local variables that should not be affected by save */
|
|
static unsigned int nr_copy_pages __nosavedata = 0;
|
|
|
|
/* Suspend pagedir is allocated before final copy, therefore it
|
|
must be freed after resume
|
|
|
|
Warning: this is evil. There are actually two pagedirs at time of
|
|
resume. One is "pagedir_save", which is empty frame allocated at
|
|
time of suspend, that must be freed. Second is "pagedir_nosave",
|
|
allocated at time of resume, that travels through memory not to
|
|
collide with anything.
|
|
|
|
Warning: this is even more evil than it seems. Pagedirs this file
|
|
talks about are completely different from page directories used by
|
|
MMU hardware.
|
|
*/
|
|
suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
|
|
static suspend_pagedir_t *pagedir_save;
|
|
|
|
#define SWSUSP_SIG "S1SUSPEND"
|
|
|
|
static struct swsusp_header {
|
|
char reserved[PAGE_SIZE - 20 - sizeof(swp_entry_t)];
|
|
swp_entry_t swsusp_info;
|
|
char orig_sig[10];
|
|
char sig[10];
|
|
} __attribute__((packed, aligned(PAGE_SIZE))) swsusp_header;
|
|
|
|
static struct swsusp_info swsusp_info;
|
|
|
|
/*
|
|
* XXX: We try to keep some more pages free so that I/O operations succeed
|
|
* without paging. Might this be more?
|
|
*/
|
|
#define PAGES_FOR_IO 512
|
|
|
|
/*
|
|
* Saving part...
|
|
*/
|
|
|
|
/* We memorize in swapfile_used what swap devices are used for suspension */
|
|
#define SWAPFILE_UNUSED 0
|
|
#define SWAPFILE_SUSPEND 1 /* This is the suspending device */
|
|
#define SWAPFILE_IGNORED 2 /* Those are other swap devices ignored for suspension */
|
|
|
|
static unsigned short swapfile_used[MAX_SWAPFILES];
|
|
static unsigned short root_swap;
|
|
|
|
static int mark_swapfiles(swp_entry_t prev)
|
|
{
|
|
int error;
|
|
|
|
rw_swap_page_sync(READ,
|
|
swp_entry(root_swap, 0),
|
|
virt_to_page((unsigned long)&swsusp_header));
|
|
if (!memcmp("SWAP-SPACE",swsusp_header.sig, 10) ||
|
|
!memcmp("SWAPSPACE2",swsusp_header.sig, 10)) {
|
|
memcpy(swsusp_header.orig_sig,swsusp_header.sig, 10);
|
|
memcpy(swsusp_header.sig,SWSUSP_SIG, 10);
|
|
swsusp_header.swsusp_info = prev;
|
|
error = rw_swap_page_sync(WRITE,
|
|
swp_entry(root_swap, 0),
|
|
virt_to_page((unsigned long)
|
|
&swsusp_header));
|
|
} else {
|
|
pr_debug("swsusp: Partition is not swap space.\n");
|
|
error = -ENODEV;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Check whether the swap device is the specified resume
|
|
* device, irrespective of whether they are specified by
|
|
* identical names.
|
|
*
|
|
* (Thus, device inode aliasing is allowed. You can say /dev/hda4
|
|
* instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
|
|
* and they'll be considered the same device. This is *necessary* for
|
|
* devfs, since the resume code can only recognize the form /dev/hda4,
|
|
* but the suspend code would see the long name.)
|
|
*/
|
|
static int is_resume_device(const struct swap_info_struct *swap_info)
|
|
{
|
|
struct file *file = swap_info->swap_file;
|
|
struct inode *inode = file->f_dentry->d_inode;
|
|
|
|
return S_ISBLK(inode->i_mode) &&
|
|
swsusp_resume_device == MKDEV(imajor(inode), iminor(inode));
|
|
}
|
|
|
|
static int swsusp_swap_check(void) /* This is called before saving image */
|
|
{
|
|
int i, len;
|
|
|
|
len=strlen(resume_file);
|
|
root_swap = 0xFFFF;
|
|
|
|
swap_list_lock();
|
|
for(i=0; i<MAX_SWAPFILES; i++) {
|
|
if (swap_info[i].flags == 0) {
|
|
swapfile_used[i]=SWAPFILE_UNUSED;
|
|
} else {
|
|
if(!len) {
|
|
printk(KERN_WARNING "resume= option should be used to set suspend device" );
|
|
if(root_swap == 0xFFFF) {
|
|
swapfile_used[i] = SWAPFILE_SUSPEND;
|
|
root_swap = i;
|
|
} else
|
|
swapfile_used[i] = SWAPFILE_IGNORED;
|
|
} else {
|
|
/* we ignore all swap devices that are not the resume_file */
|
|
if (is_resume_device(&swap_info[i])) {
|
|
swapfile_used[i] = SWAPFILE_SUSPEND;
|
|
root_swap = i;
|
|
} else {
|
|
swapfile_used[i] = SWAPFILE_IGNORED;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
swap_list_unlock();
|
|
return (root_swap != 0xffff) ? 0 : -ENODEV;
|
|
}
|
|
|
|
/**
|
|
* This is called after saving image so modification
|
|
* will be lost after resume... and that's what we want.
|
|
* we make the device unusable. A new call to
|
|
* lock_swapdevices can unlock the devices.
|
|
*/
|
|
static void lock_swapdevices(void)
|
|
{
|
|
int i;
|
|
|
|
swap_list_lock();
|
|
for(i = 0; i< MAX_SWAPFILES; i++)
|
|
if(swapfile_used[i] == SWAPFILE_IGNORED) {
|
|
swap_info[i].flags ^= 0xFF;
|
|
}
|
|
swap_list_unlock();
|
|
}
|
|
|
|
/**
|
|
* write_swap_page - Write one page to a fresh swap location.
|
|
* @addr: Address we're writing.
|
|
* @loc: Place to store the entry we used.
|
|
*
|
|
* Allocate a new swap entry and 'sync' it. Note we discard -EIO
|
|
* errors. That is an artifact left over from swsusp. It did not
|
|
* check the return of rw_swap_page_sync() at all, since most pages
|
|
* written back to swap would return -EIO.
|
|
* This is a partial improvement, since we will at least return other
|
|
* errors, though we need to eventually fix the damn code.
|
|
*/
|
|
static int write_page(unsigned long addr, swp_entry_t * loc)
|
|
{
|
|
swp_entry_t entry;
|
|
int error = 0;
|
|
|
|
entry = get_swap_page();
|
|
if (swp_offset(entry) &&
|
|
swapfile_used[swp_type(entry)] == SWAPFILE_SUSPEND) {
|
|
error = rw_swap_page_sync(WRITE, entry,
|
|
virt_to_page(addr));
|
|
if (error == -EIO)
|
|
error = 0;
|
|
if (!error)
|
|
*loc = entry;
|
|
} else
|
|
error = -ENOSPC;
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* data_free - Free the swap entries used by the saved image.
|
|
*
|
|
* Walk the list of used swap entries and free each one.
|
|
* This is only used for cleanup when suspend fails.
|
|
*/
|
|
static void data_free(void)
|
|
{
|
|
swp_entry_t entry;
|
|
int i;
|
|
|
|
for (i = 0; i < nr_copy_pages; i++) {
|
|
entry = (pagedir_nosave + i)->swap_address;
|
|
if (entry.val)
|
|
swap_free(entry);
|
|
else
|
|
break;
|
|
(pagedir_nosave + i)->swap_address = (swp_entry_t){0};
|
|
}
|
|
}
|
|
|
|
/**
|
|
* data_write - Write saved image to swap.
|
|
*
|
|
* Walk the list of pages in the image and sync each one to swap.
|
|
*/
|
|
static int data_write(void)
|
|
{
|
|
int error = 0, i = 0;
|
|
unsigned int mod = nr_copy_pages / 100;
|
|
struct pbe *p;
|
|
|
|
if (!mod)
|
|
mod = 1;
|
|
|
|
printk( "Writing data to swap (%d pages)... ", nr_copy_pages );
|
|
for_each_pbe(p, pagedir_nosave) {
|
|
if (!(i%mod))
|
|
printk( "\b\b\b\b%3d%%", i / mod );
|
|
if ((error = write_page(p->address, &(p->swap_address))))
|
|
return error;
|
|
i++;
|
|
}
|
|
printk("\b\b\b\bdone\n");
|
|
return error;
|
|
}
|
|
|
|
static void dump_info(void)
|
|
{
|
|
pr_debug(" swsusp: Version: %u\n",swsusp_info.version_code);
|
|
pr_debug(" swsusp: Num Pages: %ld\n",swsusp_info.num_physpages);
|
|
pr_debug(" swsusp: UTS Sys: %s\n",swsusp_info.uts.sysname);
|
|
pr_debug(" swsusp: UTS Node: %s\n",swsusp_info.uts.nodename);
|
|
pr_debug(" swsusp: UTS Release: %s\n",swsusp_info.uts.release);
|
|
pr_debug(" swsusp: UTS Version: %s\n",swsusp_info.uts.version);
|
|
pr_debug(" swsusp: UTS Machine: %s\n",swsusp_info.uts.machine);
|
|
pr_debug(" swsusp: UTS Domain: %s\n",swsusp_info.uts.domainname);
|
|
pr_debug(" swsusp: CPUs: %d\n",swsusp_info.cpus);
|
|
pr_debug(" swsusp: Image: %ld Pages\n",swsusp_info.image_pages);
|
|
pr_debug(" swsusp: Pagedir: %ld Pages\n",swsusp_info.pagedir_pages);
|
|
}
|
|
|
|
static void init_header(void)
|
|
{
|
|
memset(&swsusp_info, 0, sizeof(swsusp_info));
|
|
swsusp_info.version_code = LINUX_VERSION_CODE;
|
|
swsusp_info.num_physpages = num_physpages;
|
|
memcpy(&swsusp_info.uts, &system_utsname, sizeof(system_utsname));
|
|
|
|
swsusp_info.suspend_pagedir = pagedir_nosave;
|
|
swsusp_info.cpus = num_online_cpus();
|
|
swsusp_info.image_pages = nr_copy_pages;
|
|
}
|
|
|
|
static int close_swap(void)
|
|
{
|
|
swp_entry_t entry;
|
|
int error;
|
|
|
|
dump_info();
|
|
error = write_page((unsigned long)&swsusp_info, &entry);
|
|
if (!error) {
|
|
printk( "S" );
|
|
error = mark_swapfiles(entry);
|
|
printk( "|\n" );
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* free_pagedir_entries - Free pages used by the page directory.
|
|
*
|
|
* This is used during suspend for error recovery.
|
|
*/
|
|
|
|
static void free_pagedir_entries(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < swsusp_info.pagedir_pages; i++)
|
|
swap_free(swsusp_info.pagedir[i]);
|
|
}
|
|
|
|
|
|
/**
|
|
* write_pagedir - Write the array of pages holding the page directory.
|
|
* @last: Last swap entry we write (needed for header).
|
|
*/
|
|
|
|
static int write_pagedir(void)
|
|
{
|
|
int error = 0;
|
|
unsigned n = 0;
|
|
struct pbe * pbe;
|
|
|
|
printk( "Writing pagedir...");
|
|
for_each_pb_page(pbe, pagedir_nosave) {
|
|
if ((error = write_page((unsigned long)pbe, &swsusp_info.pagedir[n++])))
|
|
return error;
|
|
}
|
|
|
|
swsusp_info.pagedir_pages = n;
|
|
printk("done (%u pages)\n", n);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* write_suspend_image - Write entire image and metadata.
|
|
*
|
|
*/
|
|
|
|
static int write_suspend_image(void)
|
|
{
|
|
int error;
|
|
|
|
init_header();
|
|
if ((error = data_write()))
|
|
goto FreeData;
|
|
|
|
if ((error = write_pagedir()))
|
|
goto FreePagedir;
|
|
|
|
if ((error = close_swap()))
|
|
goto FreePagedir;
|
|
Done:
|
|
return error;
|
|
FreePagedir:
|
|
free_pagedir_entries();
|
|
FreeData:
|
|
data_free();
|
|
goto Done;
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
struct highmem_page {
|
|
char *data;
|
|
struct page *page;
|
|
struct highmem_page *next;
|
|
};
|
|
|
|
static struct highmem_page *highmem_copy;
|
|
|
|
static int save_highmem_zone(struct zone *zone)
|
|
{
|
|
unsigned long zone_pfn;
|
|
mark_free_pages(zone);
|
|
for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
|
|
struct page *page;
|
|
struct highmem_page *save;
|
|
void *kaddr;
|
|
unsigned long pfn = zone_pfn + zone->zone_start_pfn;
|
|
|
|
if (!(pfn%1000))
|
|
printk(".");
|
|
if (!pfn_valid(pfn))
|
|
continue;
|
|
page = pfn_to_page(pfn);
|
|
/*
|
|
* This condition results from rvmalloc() sans vmalloc_32()
|
|
* and architectural memory reservations. This should be
|
|
* corrected eventually when the cases giving rise to this
|
|
* are better understood.
|
|
*/
|
|
if (PageReserved(page)) {
|
|
printk("highmem reserved page?!\n");
|
|
continue;
|
|
}
|
|
BUG_ON(PageNosave(page));
|
|
if (PageNosaveFree(page))
|
|
continue;
|
|
save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
|
|
if (!save)
|
|
return -ENOMEM;
|
|
save->next = highmem_copy;
|
|
save->page = page;
|
|
save->data = (void *) get_zeroed_page(GFP_ATOMIC);
|
|
if (!save->data) {
|
|
kfree(save);
|
|
return -ENOMEM;
|
|
}
|
|
kaddr = kmap_atomic(page, KM_USER0);
|
|
memcpy(save->data, kaddr, PAGE_SIZE);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
highmem_copy = save;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_HIGHMEM */
|
|
|
|
|
|
static int save_highmem(void)
|
|
{
|
|
#ifdef CONFIG_HIGHMEM
|
|
struct zone *zone;
|
|
int res = 0;
|
|
|
|
pr_debug("swsusp: Saving Highmem\n");
|
|
for_each_zone(zone) {
|
|
if (is_highmem(zone))
|
|
res = save_highmem_zone(zone);
|
|
if (res)
|
|
return res;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int restore_highmem(void)
|
|
{
|
|
#ifdef CONFIG_HIGHMEM
|
|
printk("swsusp: Restoring Highmem\n");
|
|
while (highmem_copy) {
|
|
struct highmem_page *save = highmem_copy;
|
|
void *kaddr;
|
|
highmem_copy = save->next;
|
|
|
|
kaddr = kmap_atomic(save->page, KM_USER0);
|
|
memcpy(kaddr, save->data, PAGE_SIZE);
|
|
kunmap_atomic(kaddr, KM_USER0);
|
|
free_page((long) save->data);
|
|
kfree(save);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int pfn_is_nosave(unsigned long pfn)
|
|
{
|
|
unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
|
|
unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
|
|
return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
|
|
}
|
|
|
|
/**
|
|
* saveable - Determine whether a page should be cloned or not.
|
|
* @pfn: The page
|
|
*
|
|
* We save a page if it's Reserved, and not in the range of pages
|
|
* statically defined as 'unsaveable', or if it isn't reserved, and
|
|
* isn't part of a free chunk of pages.
|
|
*/
|
|
|
|
static int saveable(struct zone * zone, unsigned long * zone_pfn)
|
|
{
|
|
unsigned long pfn = *zone_pfn + zone->zone_start_pfn;
|
|
struct page * page;
|
|
|
|
if (!pfn_valid(pfn))
|
|
return 0;
|
|
|
|
page = pfn_to_page(pfn);
|
|
BUG_ON(PageReserved(page) && PageNosave(page));
|
|
if (PageNosave(page))
|
|
return 0;
|
|
if (PageReserved(page) && pfn_is_nosave(pfn)) {
|
|
pr_debug("[nosave pfn 0x%lx]", pfn);
|
|
return 0;
|
|
}
|
|
if (PageNosaveFree(page))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void count_data_pages(void)
|
|
{
|
|
struct zone *zone;
|
|
unsigned long zone_pfn;
|
|
|
|
nr_copy_pages = 0;
|
|
|
|
for_each_zone(zone) {
|
|
if (is_highmem(zone))
|
|
continue;
|
|
mark_free_pages(zone);
|
|
for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
|
|
nr_copy_pages += saveable(zone, &zone_pfn);
|
|
}
|
|
}
|
|
|
|
|
|
static void copy_data_pages(void)
|
|
{
|
|
struct zone *zone;
|
|
unsigned long zone_pfn;
|
|
struct pbe * pbe = pagedir_nosave;
|
|
|
|
pr_debug("copy_data_pages(): pages to copy: %d\n", nr_copy_pages);
|
|
for_each_zone(zone) {
|
|
if (is_highmem(zone))
|
|
continue;
|
|
mark_free_pages(zone);
|
|
for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
|
|
if (saveable(zone, &zone_pfn)) {
|
|
struct page * page;
|
|
page = pfn_to_page(zone_pfn + zone->zone_start_pfn);
|
|
BUG_ON(!pbe);
|
|
pbe->orig_address = (long) page_address(page);
|
|
/* copy_page is not usable for copying task structs. */
|
|
memcpy((void *)pbe->address, (void *)pbe->orig_address, PAGE_SIZE);
|
|
pbe = pbe->next;
|
|
}
|
|
}
|
|
}
|
|
BUG_ON(pbe);
|
|
}
|
|
|
|
|
|
/**
|
|
* calc_nr - Determine the number of pages needed for a pbe list.
|
|
*/
|
|
|
|
static int calc_nr(int nr_copy)
|
|
{
|
|
int extra = 0;
|
|
int mod = !!(nr_copy % PBES_PER_PAGE);
|
|
int diff = (nr_copy / PBES_PER_PAGE) + mod;
|
|
|
|
do {
|
|
extra += diff;
|
|
nr_copy += diff;
|
|
mod = !!(nr_copy % PBES_PER_PAGE);
|
|
diff = (nr_copy / PBES_PER_PAGE) + mod - extra;
|
|
} while (diff > 0);
|
|
|
|
return nr_copy;
|
|
}
|
|
|
|
/**
|
|
* free_pagedir - free pages allocated with alloc_pagedir()
|
|
*/
|
|
|
|
static inline void free_pagedir(struct pbe *pblist)
|
|
{
|
|
struct pbe *pbe;
|
|
|
|
while (pblist) {
|
|
pbe = (pblist + PB_PAGE_SKIP)->next;
|
|
free_page((unsigned long)pblist);
|
|
pblist = pbe;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fill_pb_page - Create a list of PBEs on a given memory page
|
|
*/
|
|
|
|
static inline void fill_pb_page(struct pbe *pbpage)
|
|
{
|
|
struct pbe *p;
|
|
|
|
p = pbpage;
|
|
pbpage += PB_PAGE_SKIP;
|
|
do
|
|
p->next = p + 1;
|
|
while (++p < pbpage);
|
|
}
|
|
|
|
/**
|
|
* create_pbe_list - Create a list of PBEs on top of a given chain
|
|
* of memory pages allocated with alloc_pagedir()
|
|
*/
|
|
|
|
static void create_pbe_list(struct pbe *pblist, unsigned nr_pages)
|
|
{
|
|
struct pbe *pbpage, *p;
|
|
unsigned num = PBES_PER_PAGE;
|
|
|
|
for_each_pb_page (pbpage, pblist) {
|
|
if (num >= nr_pages)
|
|
break;
|
|
|
|
fill_pb_page(pbpage);
|
|
num += PBES_PER_PAGE;
|
|
}
|
|
if (pbpage) {
|
|
for (num -= PBES_PER_PAGE - 1, p = pbpage; num < nr_pages; p++, num++)
|
|
p->next = p + 1;
|
|
p->next = NULL;
|
|
}
|
|
pr_debug("create_pbe_list(): initialized %d PBEs\n", num);
|
|
}
|
|
|
|
/**
|
|
* alloc_pagedir - Allocate the page directory.
|
|
*
|
|
* First, determine exactly how many pages we need and
|
|
* allocate them.
|
|
*
|
|
* We arrange the pages in a chain: each page is an array of PBES_PER_PAGE
|
|
* struct pbe elements (pbes) and the last element in the page points
|
|
* to the next page.
|
|
*
|
|
* On each page we set up a list of struct_pbe elements.
|
|
*/
|
|
|
|
static struct pbe * alloc_pagedir(unsigned nr_pages)
|
|
{
|
|
unsigned num;
|
|
struct pbe *pblist, *pbe;
|
|
|
|
if (!nr_pages)
|
|
return NULL;
|
|
|
|
pr_debug("alloc_pagedir(): nr_pages = %d\n", nr_pages);
|
|
pblist = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
|
|
for (pbe = pblist, num = PBES_PER_PAGE; pbe && num < nr_pages;
|
|
pbe = pbe->next, num += PBES_PER_PAGE) {
|
|
pbe += PB_PAGE_SKIP;
|
|
pbe->next = (struct pbe *)get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
|
|
}
|
|
if (!pbe) { /* get_zeroed_page() failed */
|
|
free_pagedir(pblist);
|
|
pblist = NULL;
|
|
}
|
|
return pblist;
|
|
}
|
|
|
|
/**
|
|
* free_image_pages - Free pages allocated for snapshot
|
|
*/
|
|
|
|
static void free_image_pages(void)
|
|
{
|
|
struct pbe * p;
|
|
|
|
for_each_pbe(p, pagedir_save) {
|
|
if (p->address) {
|
|
ClearPageNosave(virt_to_page(p->address));
|
|
free_page(p->address);
|
|
p->address = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* alloc_image_pages - Allocate pages for the snapshot.
|
|
*/
|
|
|
|
static int alloc_image_pages(void)
|
|
{
|
|
struct pbe * p;
|
|
|
|
for_each_pbe(p, pagedir_save) {
|
|
p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
|
|
if (!p->address)
|
|
return -ENOMEM;
|
|
SetPageNosave(virt_to_page(p->address));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void swsusp_free(void)
|
|
{
|
|
BUG_ON(PageNosave(virt_to_page(pagedir_save)));
|
|
BUG_ON(PageNosaveFree(virt_to_page(pagedir_save)));
|
|
free_image_pages();
|
|
free_pagedir(pagedir_save);
|
|
}
|
|
|
|
|
|
/**
|
|
* enough_free_mem - Make sure we enough free memory to snapshot.
|
|
*
|
|
* Returns TRUE or FALSE after checking the number of available
|
|
* free pages.
|
|
*/
|
|
|
|
static int enough_free_mem(void)
|
|
{
|
|
if (nr_free_pages() < (nr_copy_pages + PAGES_FOR_IO)) {
|
|
pr_debug("swsusp: Not enough free pages: Have %d\n",
|
|
nr_free_pages());
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
/**
|
|
* enough_swap - Make sure we have enough swap to save the image.
|
|
*
|
|
* Returns TRUE or FALSE after checking the total amount of swap
|
|
* space avaiable.
|
|
*
|
|
* FIXME: si_swapinfo(&i) returns all swap devices information.
|
|
* We should only consider resume_device.
|
|
*/
|
|
|
|
static int enough_swap(void)
|
|
{
|
|
struct sysinfo i;
|
|
|
|
si_swapinfo(&i);
|
|
if (i.freeswap < (nr_copy_pages + PAGES_FOR_IO)) {
|
|
pr_debug("swsusp: Not enough swap. Need %ld\n",i.freeswap);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int swsusp_alloc(void)
|
|
{
|
|
int error;
|
|
|
|
pr_debug("suspend: (pages needed: %d + %d free: %d)\n",
|
|
nr_copy_pages, PAGES_FOR_IO, nr_free_pages());
|
|
|
|
pagedir_nosave = NULL;
|
|
if (!enough_free_mem())
|
|
return -ENOMEM;
|
|
|
|
if (!enough_swap())
|
|
return -ENOSPC;
|
|
|
|
nr_copy_pages = calc_nr(nr_copy_pages);
|
|
|
|
if (!(pagedir_save = alloc_pagedir(nr_copy_pages))) {
|
|
printk(KERN_ERR "suspend: Allocating pagedir failed.\n");
|
|
return -ENOMEM;
|
|
}
|
|
create_pbe_list(pagedir_save, nr_copy_pages);
|
|
pagedir_nosave = pagedir_save;
|
|
if ((error = alloc_image_pages())) {
|
|
printk(KERN_ERR "suspend: Allocating image pages failed.\n");
|
|
swsusp_free();
|
|
return error;
|
|
}
|
|
|
|
nr_copy_pages_check = nr_copy_pages;
|
|
return 0;
|
|
}
|
|
|
|
static int suspend_prepare_image(void)
|
|
{
|
|
int error;
|
|
|
|
pr_debug("swsusp: critical section: \n");
|
|
if (save_highmem()) {
|
|
printk(KERN_CRIT "Suspend machine: Not enough free pages for highmem\n");
|
|
restore_highmem();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
drain_local_pages();
|
|
count_data_pages();
|
|
printk("swsusp: Need to copy %u pages\n", nr_copy_pages);
|
|
|
|
error = swsusp_alloc();
|
|
if (error)
|
|
return error;
|
|
|
|
/* During allocating of suspend pagedir, new cold pages may appear.
|
|
* Kill them.
|
|
*/
|
|
drain_local_pages();
|
|
copy_data_pages();
|
|
|
|
/*
|
|
* End of critical section. From now on, we can write to memory,
|
|
* but we should not touch disk. This specially means we must _not_
|
|
* touch swap space! Except we must write out our image of course.
|
|
*/
|
|
|
|
printk("swsusp: critical section/: done (%d pages copied)\n", nr_copy_pages );
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* It is important _NOT_ to umount filesystems at this point. We want
|
|
* them synced (in case something goes wrong) but we DO not want to mark
|
|
* filesystem clean: it is not. (And it does not matter, if we resume
|
|
* correctly, we'll mark system clean, anyway.)
|
|
*/
|
|
int swsusp_write(void)
|
|
{
|
|
int error;
|
|
device_resume();
|
|
lock_swapdevices();
|
|
error = write_suspend_image();
|
|
/* This will unlock ignored swap devices since writing is finished */
|
|
lock_swapdevices();
|
|
return error;
|
|
|
|
}
|
|
|
|
|
|
extern asmlinkage int swsusp_arch_suspend(void);
|
|
extern asmlinkage int swsusp_arch_resume(void);
|
|
|
|
|
|
asmlinkage int swsusp_save(void)
|
|
{
|
|
int error = 0;
|
|
|
|
if ((error = swsusp_swap_check())) {
|
|
printk(KERN_ERR "swsusp: FATAL: cannot find swap device, try "
|
|
"swapon -a!\n");
|
|
return error;
|
|
}
|
|
return suspend_prepare_image();
|
|
}
|
|
|
|
int swsusp_suspend(void)
|
|
{
|
|
int error;
|
|
if ((error = arch_prepare_suspend()))
|
|
return error;
|
|
local_irq_disable();
|
|
/* At this point, device_suspend() has been called, but *not*
|
|
* device_power_down(). We *must* device_power_down() now.
|
|
* Otherwise, drivers for some devices (e.g. interrupt controllers)
|
|
* become desynchronized with the actual state of the hardware
|
|
* at resume time, and evil weirdness ensues.
|
|
*/
|
|
if ((error = device_power_down(PMSG_FREEZE))) {
|
|
printk(KERN_ERR "Some devices failed to power down, aborting suspend\n");
|
|
local_irq_enable();
|
|
swsusp_free();
|
|
return error;
|
|
}
|
|
save_processor_state();
|
|
if ((error = swsusp_arch_suspend()))
|
|
swsusp_free();
|
|
/* Restore control flow magically appears here */
|
|
restore_processor_state();
|
|
BUG_ON (nr_copy_pages_check != nr_copy_pages);
|
|
restore_highmem();
|
|
device_power_up();
|
|
local_irq_enable();
|
|
return error;
|
|
}
|
|
|
|
int swsusp_resume(void)
|
|
{
|
|
int error;
|
|
local_irq_disable();
|
|
if (device_power_down(PMSG_FREEZE))
|
|
printk(KERN_ERR "Some devices failed to power down, very bad\n");
|
|
/* We'll ignore saved state, but this gets preempt count (etc) right */
|
|
save_processor_state();
|
|
error = swsusp_arch_resume();
|
|
/* Code below is only ever reached in case of failure. Otherwise
|
|
* execution continues at place where swsusp_arch_suspend was called
|
|
*/
|
|
BUG_ON(!error);
|
|
restore_processor_state();
|
|
restore_highmem();
|
|
device_power_up();
|
|
local_irq_enable();
|
|
return error;
|
|
}
|
|
|
|
/* More restore stuff */
|
|
|
|
/*
|
|
* Returns true if given address/order collides with any orig_address
|
|
*/
|
|
static int does_collide_order(unsigned long addr, int order)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i < (1<<order); i++)
|
|
if (!PageNosaveFree(virt_to_page(addr + i * PAGE_SIZE)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* On resume, for storing the PBE list and the image,
|
|
* we can only use memory pages that do not conflict with the pages
|
|
* which had been used before suspend.
|
|
*
|
|
* We don't know which pages are usable until we allocate them.
|
|
*
|
|
* Allocated but unusable (ie eaten) memory pages are linked together
|
|
* to create a list, so that we can free them easily
|
|
*
|
|
* We could have used a type other than (void *)
|
|
* for this purpose, but ...
|
|
*/
|
|
static void **eaten_memory = NULL;
|
|
|
|
static inline void eat_page(void *page)
|
|
{
|
|
void **c;
|
|
|
|
c = eaten_memory;
|
|
eaten_memory = page;
|
|
*eaten_memory = c;
|
|
}
|
|
|
|
static unsigned long get_usable_page(unsigned gfp_mask)
|
|
{
|
|
unsigned long m;
|
|
|
|
m = get_zeroed_page(gfp_mask);
|
|
while (does_collide_order(m, 0)) {
|
|
eat_page((void *)m);
|
|
m = get_zeroed_page(gfp_mask);
|
|
if (!m)
|
|
break;
|
|
}
|
|
return m;
|
|
}
|
|
|
|
static void free_eaten_memory(void)
|
|
{
|
|
unsigned long m;
|
|
void **c;
|
|
int i = 0;
|
|
|
|
c = eaten_memory;
|
|
while (c) {
|
|
m = (unsigned long)c;
|
|
c = *c;
|
|
free_page(m);
|
|
i++;
|
|
}
|
|
eaten_memory = NULL;
|
|
pr_debug("swsusp: %d unused pages freed\n", i);
|
|
}
|
|
|
|
/**
|
|
* check_pagedir - We ensure here that pages that the PBEs point to
|
|
* won't collide with pages where we're going to restore from the loaded
|
|
* pages later
|
|
*/
|
|
|
|
static int check_pagedir(struct pbe *pblist)
|
|
{
|
|
struct pbe *p;
|
|
|
|
/* This is necessary, so that we can free allocated pages
|
|
* in case of failure
|
|
*/
|
|
for_each_pbe (p, pblist)
|
|
p->address = 0UL;
|
|
|
|
for_each_pbe (p, pblist) {
|
|
p->address = get_usable_page(GFP_ATOMIC);
|
|
if (!p->address)
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* swsusp_pagedir_relocate - It is possible, that some memory pages
|
|
* occupied by the list of PBEs collide with pages where we're going to
|
|
* restore from the loaded pages later. We relocate them here.
|
|
*/
|
|
|
|
static struct pbe * swsusp_pagedir_relocate(struct pbe *pblist)
|
|
{
|
|
struct zone *zone;
|
|
unsigned long zone_pfn;
|
|
struct pbe *pbpage, *tail, *p;
|
|
void *m;
|
|
int rel = 0, error = 0;
|
|
|
|
if (!pblist) /* a sanity check */
|
|
return NULL;
|
|
|
|
pr_debug("swsusp: Relocating pagedir (%lu pages to check)\n",
|
|
swsusp_info.pagedir_pages);
|
|
|
|
/* Set page flags */
|
|
|
|
for_each_zone(zone) {
|
|
for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
|
|
SetPageNosaveFree(pfn_to_page(zone_pfn +
|
|
zone->zone_start_pfn));
|
|
}
|
|
|
|
/* Clear orig addresses */
|
|
|
|
for_each_pbe (p, pblist)
|
|
ClearPageNosaveFree(virt_to_page(p->orig_address));
|
|
|
|
tail = pblist + PB_PAGE_SKIP;
|
|
|
|
/* Relocate colliding pages */
|
|
|
|
for_each_pb_page (pbpage, pblist) {
|
|
if (does_collide_order((unsigned long)pbpage, 0)) {
|
|
m = (void *)get_usable_page(GFP_ATOMIC | __GFP_COLD);
|
|
if (!m) {
|
|
error = -ENOMEM;
|
|
break;
|
|
}
|
|
memcpy(m, (void *)pbpage, PAGE_SIZE);
|
|
if (pbpage == pblist)
|
|
pblist = (struct pbe *)m;
|
|
else
|
|
tail->next = (struct pbe *)m;
|
|
|
|
eat_page((void *)pbpage);
|
|
pbpage = (struct pbe *)m;
|
|
|
|
/* We have to link the PBEs again */
|
|
|
|
for (p = pbpage; p < pbpage + PB_PAGE_SKIP; p++)
|
|
if (p->next) /* needed to save the end */
|
|
p->next = p + 1;
|
|
|
|
rel++;
|
|
}
|
|
tail = pbpage + PB_PAGE_SKIP;
|
|
}
|
|
|
|
if (error) {
|
|
printk("\nswsusp: Out of memory\n\n");
|
|
free_pagedir(pblist);
|
|
free_eaten_memory();
|
|
pblist = NULL;
|
|
}
|
|
else
|
|
printk("swsusp: Relocated %d pages\n", rel);
|
|
|
|
return pblist;
|
|
}
|
|
|
|
/*
|
|
* Using bio to read from swap.
|
|
* This code requires a bit more work than just using buffer heads
|
|
* but, it is the recommended way for 2.5/2.6.
|
|
* The following are to signal the beginning and end of I/O. Bios
|
|
* finish asynchronously, while we want them to happen synchronously.
|
|
* A simple atomic_t, and a wait loop take care of this problem.
|
|
*/
|
|
|
|
static atomic_t io_done = ATOMIC_INIT(0);
|
|
|
|
static int end_io(struct bio * bio, unsigned int num, int err)
|
|
{
|
|
if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
|
|
panic("I/O error reading memory image");
|
|
atomic_set(&io_done, 0);
|
|
return 0;
|
|
}
|
|
|
|
static struct block_device * resume_bdev;
|
|
|
|
/**
|
|
* submit - submit BIO request.
|
|
* @rw: READ or WRITE.
|
|
* @off physical offset of page.
|
|
* @page: page we're reading or writing.
|
|
*
|
|
* Straight from the textbook - allocate and initialize the bio.
|
|
* If we're writing, make sure the page is marked as dirty.
|
|
* Then submit it and wait.
|
|
*/
|
|
|
|
static int submit(int rw, pgoff_t page_off, void * page)
|
|
{
|
|
int error = 0;
|
|
struct bio * bio;
|
|
|
|
bio = bio_alloc(GFP_ATOMIC, 1);
|
|
if (!bio)
|
|
return -ENOMEM;
|
|
bio->bi_sector = page_off * (PAGE_SIZE >> 9);
|
|
bio_get(bio);
|
|
bio->bi_bdev = resume_bdev;
|
|
bio->bi_end_io = end_io;
|
|
|
|
if (bio_add_page(bio, virt_to_page(page), PAGE_SIZE, 0) < PAGE_SIZE) {
|
|
printk("swsusp: ERROR: adding page to bio at %ld\n",page_off);
|
|
error = -EFAULT;
|
|
goto Done;
|
|
}
|
|
|
|
if (rw == WRITE)
|
|
bio_set_pages_dirty(bio);
|
|
|
|
atomic_set(&io_done, 1);
|
|
submit_bio(rw | (1 << BIO_RW_SYNC), bio);
|
|
while (atomic_read(&io_done))
|
|
yield();
|
|
|
|
Done:
|
|
bio_put(bio);
|
|
return error;
|
|
}
|
|
|
|
static int bio_read_page(pgoff_t page_off, void * page)
|
|
{
|
|
return submit(READ, page_off, page);
|
|
}
|
|
|
|
static int bio_write_page(pgoff_t page_off, void * page)
|
|
{
|
|
return submit(WRITE, page_off, page);
|
|
}
|
|
|
|
/*
|
|
* Sanity check if this image makes sense with this kernel/swap context
|
|
* I really don't think that it's foolproof but more than nothing..
|
|
*/
|
|
|
|
static const char * sanity_check(void)
|
|
{
|
|
dump_info();
|
|
if(swsusp_info.version_code != LINUX_VERSION_CODE)
|
|
return "kernel version";
|
|
if(swsusp_info.num_physpages != num_physpages)
|
|
return "memory size";
|
|
if (strcmp(swsusp_info.uts.sysname,system_utsname.sysname))
|
|
return "system type";
|
|
if (strcmp(swsusp_info.uts.release,system_utsname.release))
|
|
return "kernel release";
|
|
if (strcmp(swsusp_info.uts.version,system_utsname.version))
|
|
return "version";
|
|
if (strcmp(swsusp_info.uts.machine,system_utsname.machine))
|
|
return "machine";
|
|
#if 0
|
|
if(swsusp_info.cpus != num_online_cpus())
|
|
return "number of cpus";
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static int check_header(void)
|
|
{
|
|
const char * reason = NULL;
|
|
int error;
|
|
|
|
if ((error = bio_read_page(swp_offset(swsusp_header.swsusp_info), &swsusp_info)))
|
|
return error;
|
|
|
|
/* Is this same machine? */
|
|
if ((reason = sanity_check())) {
|
|
printk(KERN_ERR "swsusp: Resume mismatch: %s\n",reason);
|
|
return -EPERM;
|
|
}
|
|
nr_copy_pages = swsusp_info.image_pages;
|
|
return error;
|
|
}
|
|
|
|
static int check_sig(void)
|
|
{
|
|
int error;
|
|
|
|
memset(&swsusp_header, 0, sizeof(swsusp_header));
|
|
if ((error = bio_read_page(0, &swsusp_header)))
|
|
return error;
|
|
if (!memcmp(SWSUSP_SIG, swsusp_header.sig, 10)) {
|
|
memcpy(swsusp_header.sig, swsusp_header.orig_sig, 10);
|
|
|
|
/*
|
|
* Reset swap signature now.
|
|
*/
|
|
error = bio_write_page(0, &swsusp_header);
|
|
} else {
|
|
printk(KERN_ERR "swsusp: Suspend partition has wrong signature?\n");
|
|
return -EINVAL;
|
|
}
|
|
if (!error)
|
|
pr_debug("swsusp: Signature found, resuming\n");
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* data_read - Read image pages from swap.
|
|
*
|
|
* You do not need to check for overlaps, check_pagedir()
|
|
* already did that.
|
|
*/
|
|
|
|
static int data_read(struct pbe *pblist)
|
|
{
|
|
struct pbe * p;
|
|
int error = 0;
|
|
int i = 0;
|
|
int mod = swsusp_info.image_pages / 100;
|
|
|
|
if (!mod)
|
|
mod = 1;
|
|
|
|
printk("swsusp: Reading image data (%lu pages): ",
|
|
swsusp_info.image_pages);
|
|
|
|
for_each_pbe (p, pblist) {
|
|
if (!(i % mod))
|
|
printk("\b\b\b\b%3d%%", i / mod);
|
|
|
|
error = bio_read_page(swp_offset(p->swap_address),
|
|
(void *)p->address);
|
|
if (error)
|
|
return error;
|
|
|
|
i++;
|
|
}
|
|
printk("\b\b\b\bdone\n");
|
|
return error;
|
|
}
|
|
|
|
extern dev_t name_to_dev_t(const char *line);
|
|
|
|
/**
|
|
* read_pagedir - Read page backup list pages from swap
|
|
*/
|
|
|
|
static int read_pagedir(struct pbe *pblist)
|
|
{
|
|
struct pbe *pbpage, *p;
|
|
unsigned i = 0;
|
|
int error;
|
|
|
|
if (!pblist)
|
|
return -EFAULT;
|
|
|
|
printk("swsusp: Reading pagedir (%lu pages)\n",
|
|
swsusp_info.pagedir_pages);
|
|
|
|
for_each_pb_page (pbpage, pblist) {
|
|
unsigned long offset = swp_offset(swsusp_info.pagedir[i++]);
|
|
|
|
error = -EFAULT;
|
|
if (offset) {
|
|
p = (pbpage + PB_PAGE_SKIP)->next;
|
|
error = bio_read_page(offset, (void *)pbpage);
|
|
(pbpage + PB_PAGE_SKIP)->next = p;
|
|
}
|
|
if (error)
|
|
break;
|
|
}
|
|
|
|
if (error)
|
|
free_page((unsigned long)pblist);
|
|
|
|
BUG_ON(i != swsusp_info.pagedir_pages);
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
static int check_suspend_image(void)
|
|
{
|
|
int error = 0;
|
|
|
|
if ((error = check_sig()))
|
|
return error;
|
|
|
|
if ((error = check_header()))
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int read_suspend_image(void)
|
|
{
|
|
int error = 0;
|
|
struct pbe *p;
|
|
|
|
if (!(p = alloc_pagedir(nr_copy_pages)))
|
|
return -ENOMEM;
|
|
|
|
if ((error = read_pagedir(p)))
|
|
return error;
|
|
|
|
create_pbe_list(p, nr_copy_pages);
|
|
|
|
if (!(pagedir_nosave = swsusp_pagedir_relocate(p)))
|
|
return -ENOMEM;
|
|
|
|
/* Allocate memory for the image and read the data from swap */
|
|
|
|
error = check_pagedir(pagedir_nosave);
|
|
free_eaten_memory();
|
|
if (!error)
|
|
error = data_read(pagedir_nosave);
|
|
|
|
if (error) { /* We fail cleanly */
|
|
for_each_pbe (p, pagedir_nosave)
|
|
if (p->address) {
|
|
free_page(p->address);
|
|
p->address = 0UL;
|
|
}
|
|
free_pagedir(pagedir_nosave);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* swsusp_check - Check for saved image in swap
|
|
*/
|
|
|
|
int swsusp_check(void)
|
|
{
|
|
int error;
|
|
|
|
if (!swsusp_resume_device) {
|
|
if (!strlen(resume_file))
|
|
return -ENOENT;
|
|
swsusp_resume_device = name_to_dev_t(resume_file);
|
|
pr_debug("swsusp: Resume From Partition %s\n", resume_file);
|
|
} else {
|
|
pr_debug("swsusp: Resume From Partition %d:%d\n",
|
|
MAJOR(swsusp_resume_device), MINOR(swsusp_resume_device));
|
|
}
|
|
|
|
resume_bdev = open_by_devnum(swsusp_resume_device, FMODE_READ);
|
|
if (!IS_ERR(resume_bdev)) {
|
|
set_blocksize(resume_bdev, PAGE_SIZE);
|
|
error = check_suspend_image();
|
|
if (error)
|
|
blkdev_put(resume_bdev);
|
|
} else
|
|
error = PTR_ERR(resume_bdev);
|
|
|
|
if (!error)
|
|
pr_debug("swsusp: resume file found\n");
|
|
else
|
|
pr_debug("swsusp: Error %d check for resume file\n", error);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* swsusp_read - Read saved image from swap.
|
|
*/
|
|
|
|
int swsusp_read(void)
|
|
{
|
|
int error;
|
|
|
|
if (IS_ERR(resume_bdev)) {
|
|
pr_debug("swsusp: block device not initialised\n");
|
|
return PTR_ERR(resume_bdev);
|
|
}
|
|
|
|
error = read_suspend_image();
|
|
blkdev_put(resume_bdev);
|
|
|
|
if (!error)
|
|
pr_debug("swsusp: Reading resume file was successful\n");
|
|
else
|
|
pr_debug("swsusp: Error %d resuming\n", error);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* swsusp_close - close swap device.
|
|
*/
|
|
|
|
void swsusp_close(void)
|
|
{
|
|
if (IS_ERR(resume_bdev)) {
|
|
pr_debug("swsusp: block device not initialised\n");
|
|
return;
|
|
}
|
|
|
|
blkdev_put(resume_bdev);
|
|
}
|